McRogueFace/deps_windows/SFML-2.5.1/include/SFML/Graphics/Texture.hpp

734 lines
29 KiB
C++
Raw Permalink Normal View History

////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2018 Laurent Gomila (laurent@sfml-dev.org)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
#ifndef SFML_TEXTURE_HPP
#define SFML_TEXTURE_HPP
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Export.hpp>
#include <SFML/Graphics/Image.hpp>
#include <SFML/Window/GlResource.hpp>
namespace sf
{
class InputStream;
class RenderTarget;
class RenderTexture;
class Text;
class Window;
////////////////////////////////////////////////////////////
/// \brief Image living on the graphics card that can be used for drawing
///
////////////////////////////////////////////////////////////
class SFML_GRAPHICS_API Texture : GlResource
{
public:
////////////////////////////////////////////////////////////
/// \brief Types of texture coordinates that can be used for rendering
///
////////////////////////////////////////////////////////////
enum CoordinateType
{
Normalized, ///< Texture coordinates in range [0 .. 1]
Pixels ///< Texture coordinates in range [0 .. size]
};
public:
////////////////////////////////////////////////////////////
/// \brief Default constructor
///
/// Creates an empty texture.
///
////////////////////////////////////////////////////////////
Texture();
////////////////////////////////////////////////////////////
/// \brief Copy constructor
///
/// \param copy instance to copy
///
////////////////////////////////////////////////////////////
Texture(const Texture& copy);
////////////////////////////////////////////////////////////
/// \brief Destructor
///
////////////////////////////////////////////////////////////
~Texture();
////////////////////////////////////////////////////////////
/// \brief Create the texture
///
/// If this function fails, the texture is left unchanged.
///
/// \param width Width of the texture
/// \param height Height of the texture
///
/// \return True if creation was successful
///
////////////////////////////////////////////////////////////
bool create(unsigned int width, unsigned int height);
////////////////////////////////////////////////////////////
/// \brief Load the texture from a file on disk
///
/// This function is a shortcut for the following code:
/// \code
/// sf::Image image;
/// image.loadFromFile(filename);
/// texture.loadFromImage(image, area);
/// \endcode
///
/// The \a area argument can be used to load only a sub-rectangle
/// of the whole image. If you want the entire image then leave
/// the default value (which is an empty IntRect).
/// If the \a area rectangle crosses the bounds of the image, it
/// is adjusted to fit the image size.
///
/// The maximum size for a texture depends on the graphics
/// driver and can be retrieved with the getMaximumSize function.
///
/// If this function fails, the texture is left unchanged.
///
/// \param filename Path of the image file to load
/// \param area Area of the image to load
///
/// \return True if loading was successful
///
/// \see loadFromMemory, loadFromStream, loadFromImage
///
////////////////////////////////////////////////////////////
bool loadFromFile(const std::string& filename, const IntRect& area = IntRect());
////////////////////////////////////////////////////////////
/// \brief Load the texture from a file in memory
///
/// This function is a shortcut for the following code:
/// \code
/// sf::Image image;
/// image.loadFromMemory(data, size);
/// texture.loadFromImage(image, area);
/// \endcode
///
/// The \a area argument can be used to load only a sub-rectangle
/// of the whole image. If you want the entire image then leave
/// the default value (which is an empty IntRect).
/// If the \a area rectangle crosses the bounds of the image, it
/// is adjusted to fit the image size.
///
/// The maximum size for a texture depends on the graphics
/// driver and can be retrieved with the getMaximumSize function.
///
/// If this function fails, the texture is left unchanged.
///
/// \param data Pointer to the file data in memory
/// \param size Size of the data to load, in bytes
/// \param area Area of the image to load
///
/// \return True if loading was successful
///
/// \see loadFromFile, loadFromStream, loadFromImage
///
////////////////////////////////////////////////////////////
bool loadFromMemory(const void* data, std::size_t size, const IntRect& area = IntRect());
////////////////////////////////////////////////////////////
/// \brief Load the texture from a custom stream
///
/// This function is a shortcut for the following code:
/// \code
/// sf::Image image;
/// image.loadFromStream(stream);
/// texture.loadFromImage(image, area);
/// \endcode
///
/// The \a area argument can be used to load only a sub-rectangle
/// of the whole image. If you want the entire image then leave
/// the default value (which is an empty IntRect).
/// If the \a area rectangle crosses the bounds of the image, it
/// is adjusted to fit the image size.
///
/// The maximum size for a texture depends on the graphics
/// driver and can be retrieved with the getMaximumSize function.
///
/// If this function fails, the texture is left unchanged.
///
/// \param stream Source stream to read from
/// \param area Area of the image to load
///
/// \return True if loading was successful
///
/// \see loadFromFile, loadFromMemory, loadFromImage
///
////////////////////////////////////////////////////////////
bool loadFromStream(InputStream& stream, const IntRect& area = IntRect());
////////////////////////////////////////////////////////////
/// \brief Load the texture from an image
///
/// The \a area argument can be used to load only a sub-rectangle
/// of the whole image. If you want the entire image then leave
/// the default value (which is an empty IntRect).
/// If the \a area rectangle crosses the bounds of the image, it
/// is adjusted to fit the image size.
///
/// The maximum size for a texture depends on the graphics
/// driver and can be retrieved with the getMaximumSize function.
///
/// If this function fails, the texture is left unchanged.
///
/// \param image Image to load into the texture
/// \param area Area of the image to load
///
/// \return True if loading was successful
///
/// \see loadFromFile, loadFromMemory
///
////////////////////////////////////////////////////////////
bool loadFromImage(const Image& image, const IntRect& area = IntRect());
////////////////////////////////////////////////////////////
/// \brief Return the size of the texture
///
/// \return Size in pixels
///
////////////////////////////////////////////////////////////
Vector2u getSize() const;
////////////////////////////////////////////////////////////
/// \brief Copy the texture pixels to an image
///
/// This function performs a slow operation that downloads
/// the texture's pixels from the graphics card and copies
/// them to a new image, potentially applying transformations
/// to pixels if necessary (texture may be padded or flipped).
///
/// \return Image containing the texture's pixels
///
/// \see loadFromImage
///
////////////////////////////////////////////////////////////
Image copyToImage() const;
////////////////////////////////////////////////////////////
/// \brief Update the whole texture from an array of pixels
///
/// The \a pixel array is assumed to have the same size as
/// the \a area rectangle, and to contain 32-bits RGBA pixels.
///
/// No additional check is performed on the size of the pixel
/// array, passing invalid arguments will lead to an undefined
/// behavior.
///
/// This function does nothing if \a pixels is null or if the
/// texture was not previously created.
///
/// \param pixels Array of pixels to copy to the texture
///
////////////////////////////////////////////////////////////
void update(const Uint8* pixels);
////////////////////////////////////////////////////////////
/// \brief Update a part of the texture from an array of pixels
///
/// The size of the \a pixel array must match the \a width and
/// \a height arguments, and it must contain 32-bits RGBA pixels.
///
/// No additional check is performed on the size of the pixel
/// array or the bounds of the area to update, passing invalid
/// arguments will lead to an undefined behavior.
///
/// This function does nothing if \a pixels is null or if the
/// texture was not previously created.
///
/// \param pixels Array of pixels to copy to the texture
/// \param width Width of the pixel region contained in \a pixels
/// \param height Height of the pixel region contained in \a pixels
/// \param x X offset in the texture where to copy the source pixels
/// \param y Y offset in the texture where to copy the source pixels
///
////////////////////////////////////////////////////////////
void update(const Uint8* pixels, unsigned int width, unsigned int height, unsigned int x, unsigned int y);
////////////////////////////////////////////////////////////
/// \brief Update a part of this texture from another texture
///
/// Although the source texture can be smaller than this texture,
/// this function is usually used for updating the whole texture.
/// The other overload, which has (x, y) additional arguments,
/// is more convenient for updating a sub-area of this texture.
///
/// No additional check is performed on the size of the passed
/// texture, passing a texture bigger than this texture
/// will lead to an undefined behavior.
///
/// This function does nothing if either texture was not
/// previously created.
///
/// \param texture Source texture to copy to this texture
///
////////////////////////////////////////////////////////////
void update(const Texture& texture);
////////////////////////////////////////////////////////////
/// \brief Update a part of this texture from another texture
///
/// No additional check is performed on the size of the texture,
/// passing an invalid combination of texture size and offset
/// will lead to an undefined behavior.
///
/// This function does nothing if either texture was not
/// previously created.
///
/// \param texture Source texture to copy to this texture
/// \param x X offset in this texture where to copy the source texture
/// \param y Y offset in this texture where to copy the source texture
///
////////////////////////////////////////////////////////////
void update(const Texture& texture, unsigned int x, unsigned int y);
////////////////////////////////////////////////////////////
/// \brief Update the texture from an image
///
/// Although the source image can be smaller than the texture,
/// this function is usually used for updating the whole texture.
/// The other overload, which has (x, y) additional arguments,
/// is more convenient for updating a sub-area of the texture.
///
/// No additional check is performed on the size of the image,
/// passing an image bigger than the texture will lead to an
/// undefined behavior.
///
/// This function does nothing if the texture was not
/// previously created.
///
/// \param image Image to copy to the texture
///
////////////////////////////////////////////////////////////
void update(const Image& image);
////////////////////////////////////////////////////////////
/// \brief Update a part of the texture from an image
///
/// No additional check is performed on the size of the image,
/// passing an invalid combination of image size and offset
/// will lead to an undefined behavior.
///
/// This function does nothing if the texture was not
/// previously created.
///
/// \param image Image to copy to the texture
/// \param x X offset in the texture where to copy the source image
/// \param y Y offset in the texture where to copy the source image
///
////////////////////////////////////////////////////////////
void update(const Image& image, unsigned int x, unsigned int y);
////////////////////////////////////////////////////////////
/// \brief Update the texture from the contents of a window
///
/// Although the source window can be smaller than the texture,
/// this function is usually used for updating the whole texture.
/// The other overload, which has (x, y) additional arguments,
/// is more convenient for updating a sub-area of the texture.
///
/// No additional check is performed on the size of the window,
/// passing a window bigger than the texture will lead to an
/// undefined behavior.
///
/// This function does nothing if either the texture or the window
/// was not previously created.
///
/// \param window Window to copy to the texture
///
////////////////////////////////////////////////////////////
void update(const Window& window);
////////////////////////////////////////////////////////////
/// \brief Update a part of the texture from the contents of a window
///
/// No additional check is performed on the size of the window,
/// passing an invalid combination of window size and offset
/// will lead to an undefined behavior.
///
/// This function does nothing if either the texture or the window
/// was not previously created.
///
/// \param window Window to copy to the texture
/// \param x X offset in the texture where to copy the source window
/// \param y Y offset in the texture where to copy the source window
///
////////////////////////////////////////////////////////////
void update(const Window& window, unsigned int x, unsigned int y);
////////////////////////////////////////////////////////////
/// \brief Enable or disable the smooth filter
///
/// When the filter is activated, the texture appears smoother
/// so that pixels are less noticeable. However if you want
/// the texture to look exactly the same as its source file,
/// you should leave it disabled.
/// The smooth filter is disabled by default.
///
/// \param smooth True to enable smoothing, false to disable it
///
/// \see isSmooth
///
////////////////////////////////////////////////////////////
void setSmooth(bool smooth);
////////////////////////////////////////////////////////////
/// \brief Tell whether the smooth filter is enabled or not
///
/// \return True if smoothing is enabled, false if it is disabled
///
/// \see setSmooth
///
////////////////////////////////////////////////////////////
bool isSmooth() const;
////////////////////////////////////////////////////////////
/// \brief Enable or disable conversion from sRGB
///
/// When providing texture data from an image file or memory, it can
/// either be stored in a linear color space or an sRGB color space.
/// Most digital images account for gamma correction already, so they
/// would need to be "uncorrected" back to linear color space before
/// being processed by the hardware. The hardware can automatically
/// convert it from the sRGB color space to a linear color space when
/// it gets sampled. When the rendered image gets output to the final
/// framebuffer, it gets converted back to sRGB.
///
/// After enabling or disabling sRGB conversion, make sure to reload
/// the texture data in order for the setting to take effect.
///
/// This option is only useful in conjunction with an sRGB capable
/// framebuffer. This can be requested during window creation.
///
/// \param sRgb True to enable sRGB conversion, false to disable it
///
/// \see isSrgb
///
////////////////////////////////////////////////////////////
void setSrgb(bool sRgb);
////////////////////////////////////////////////////////////
/// \brief Tell whether the texture source is converted from sRGB or not
///
/// \return True if the texture source is converted from sRGB, false if not
///
/// \see setSrgb
///
////////////////////////////////////////////////////////////
bool isSrgb() const;
////////////////////////////////////////////////////////////
/// \brief Enable or disable repeating
///
/// Repeating is involved when using texture coordinates
/// outside the texture rectangle [0, 0, width, height].
/// In this case, if repeat mode is enabled, the whole texture
/// will be repeated as many times as needed to reach the
/// coordinate (for example, if the X texture coordinate is
/// 3 * width, the texture will be repeated 3 times).
/// If repeat mode is disabled, the "extra space" will instead
/// be filled with border pixels.
/// Warning: on very old graphics cards, white pixels may appear
/// when the texture is repeated. With such cards, repeat mode
/// can be used reliably only if the texture has power-of-two
/// dimensions (such as 256x128).
/// Repeating is disabled by default.
///
/// \param repeated True to repeat the texture, false to disable repeating
///
/// \see isRepeated
///
////////////////////////////////////////////////////////////
void setRepeated(bool repeated);
////////////////////////////////////////////////////////////
/// \brief Tell whether the texture is repeated or not
///
/// \return True if repeat mode is enabled, false if it is disabled
///
/// \see setRepeated
///
////////////////////////////////////////////////////////////
bool isRepeated() const;
////////////////////////////////////////////////////////////
/// \brief Generate a mipmap using the current texture data
///
/// Mipmaps are pre-computed chains of optimized textures. Each
/// level of texture in a mipmap is generated by halving each of
/// the previous level's dimensions. This is done until the final
/// level has the size of 1x1. The textures generated in this process may
/// make use of more advanced filters which might improve the visual quality
/// of textures when they are applied to objects much smaller than they are.
/// This is known as minification. Because fewer texels (texture elements)
/// have to be sampled from when heavily minified, usage of mipmaps
/// can also improve rendering performance in certain scenarios.
///
/// Mipmap generation relies on the necessary OpenGL extension being
/// available. If it is unavailable or generation fails due to another
/// reason, this function will return false. Mipmap data is only valid from
/// the time it is generated until the next time the base level image is
/// modified, at which point this function will have to be called again to
/// regenerate it.
///
/// \return True if mipmap generation was successful, false if unsuccessful
///
////////////////////////////////////////////////////////////
bool generateMipmap();
////////////////////////////////////////////////////////////
/// \brief Overload of assignment operator
///
/// \param right Instance to assign
///
/// \return Reference to self
///
////////////////////////////////////////////////////////////
Texture& operator =(const Texture& right);
////////////////////////////////////////////////////////////
/// \brief Swap the contents of this texture with those of another
///
/// \param right Instance to swap with
///
////////////////////////////////////////////////////////////
void swap(Texture& right);
////////////////////////////////////////////////////////////
/// \brief Get the underlying OpenGL handle of the texture.
///
/// You shouldn't need to use this function, unless you have
/// very specific stuff to implement that SFML doesn't support,
/// or implement a temporary workaround until a bug is fixed.
///
/// \return OpenGL handle of the texture or 0 if not yet created
///
////////////////////////////////////////////////////////////
unsigned int getNativeHandle() const;
////////////////////////////////////////////////////////////
/// \brief Bind a texture for rendering
///
/// This function is not part of the graphics API, it mustn't be
/// used when drawing SFML entities. It must be used only if you
/// mix sf::Texture with OpenGL code.
///
/// \code
/// sf::Texture t1, t2;
/// ...
/// sf::Texture::bind(&t1);
/// // draw OpenGL stuff that use t1...
/// sf::Texture::bind(&t2);
/// // draw OpenGL stuff that use t2...
/// sf::Texture::bind(NULL);
/// // draw OpenGL stuff that use no texture...
/// \endcode
///
/// The \a coordinateType argument controls how texture
/// coordinates will be interpreted. If Normalized (the default), they
/// must be in range [0 .. 1], which is the default way of handling
/// texture coordinates with OpenGL. If Pixels, they must be given
/// in pixels (range [0 .. size]). This mode is used internally by
/// the graphics classes of SFML, it makes the definition of texture
/// coordinates more intuitive for the high-level API, users don't need
/// to compute normalized values.
///
/// \param texture Pointer to the texture to bind, can be null to use no texture
/// \param coordinateType Type of texture coordinates to use
///
////////////////////////////////////////////////////////////
static void bind(const Texture* texture, CoordinateType coordinateType = Normalized);
////////////////////////////////////////////////////////////
/// \brief Get the maximum texture size allowed
///
/// This maximum size is defined by the graphics driver.
/// You can expect a value of 512 pixels for low-end graphics
/// card, and up to 8192 pixels or more for newer hardware.
///
/// \return Maximum size allowed for textures, in pixels
///
////////////////////////////////////////////////////////////
static unsigned int getMaximumSize();
private:
friend class Text;
friend class RenderTexture;
friend class RenderTarget;
////////////////////////////////////////////////////////////
/// \brief Get a valid image size according to hardware support
///
/// This function checks whether the graphics driver supports
/// non power of two sizes or not, and adjusts the size
/// accordingly.
/// The returned size is greater than or equal to the original size.
///
/// \param size size to convert
///
/// \return Valid nearest size (greater than or equal to specified size)
///
////////////////////////////////////////////////////////////
static unsigned int getValidSize(unsigned int size);
////////////////////////////////////////////////////////////
/// \brief Invalidate the mipmap if one exists
///
/// This also resets the texture's minifying function.
/// This function is mainly for internal use by RenderTexture.
///
////////////////////////////////////////////////////////////
void invalidateMipmap();
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
Vector2u m_size; ///< Public texture size
Vector2u m_actualSize; ///< Actual texture size (can be greater than public size because of padding)
unsigned int m_texture; ///< Internal texture identifier
bool m_isSmooth; ///< Status of the smooth filter
bool m_sRgb; ///< Should the texture source be converted from sRGB?
bool m_isRepeated; ///< Is the texture in repeat mode?
mutable bool m_pixelsFlipped; ///< To work around the inconsistency in Y orientation
bool m_fboAttachment; ///< Is this texture owned by a framebuffer object?
bool m_hasMipmap; ///< Has the mipmap been generated?
Uint64 m_cacheId; ///< Unique number that identifies the texture to the render target's cache
};
} // namespace sf
#endif // SFML_TEXTURE_HPP
////////////////////////////////////////////////////////////
/// \class sf::Texture
/// \ingroup graphics
///
/// sf::Texture stores pixels that can be drawn, with a sprite
/// for example. A texture lives in the graphics card memory,
/// therefore it is very fast to draw a texture to a render target,
/// or copy a render target to a texture (the graphics card can
/// access both directly).
///
/// Being stored in the graphics card memory has some drawbacks.
/// A texture cannot be manipulated as freely as a sf::Image,
/// you need to prepare the pixels first and then upload them
/// to the texture in a single operation (see Texture::update).
///
/// sf::Texture makes it easy to convert from/to sf::Image, but
/// keep in mind that these calls require transfers between
/// the graphics card and the central memory, therefore they are
/// slow operations.
///
/// A texture can be loaded from an image, but also directly
/// from a file/memory/stream. The necessary shortcuts are defined
/// so that you don't need an image first for the most common cases.
/// However, if you want to perform some modifications on the pixels
/// before creating the final texture, you can load your file to a
/// sf::Image, do whatever you need with the pixels, and then call
/// Texture::loadFromImage.
///
/// Since they live in the graphics card memory, the pixels of a texture
/// cannot be accessed without a slow copy first. And they cannot be
/// accessed individually. Therefore, if you need to read the texture's
/// pixels (like for pixel-perfect collisions), it is recommended to
/// store the collision information separately, for example in an array
/// of booleans.
///
/// Like sf::Image, sf::Texture can handle a unique internal
/// representation of pixels, which is RGBA 32 bits. This means
/// that a pixel must be composed of 8 bits red, green, blue and
/// alpha channels -- just like a sf::Color.
///
/// Usage example:
/// \code
/// // This example shows the most common use of sf::Texture:
/// // drawing a sprite
///
/// // Load a texture from a file
/// sf::Texture texture;
/// if (!texture.loadFromFile("texture.png"))
/// return -1;
///
/// // Assign it to a sprite
/// sf::Sprite sprite;
/// sprite.setTexture(texture);
///
/// // Draw the textured sprite
/// window.draw(sprite);
/// \endcode
///
/// \code
/// // This example shows another common use of sf::Texture:
/// // streaming real-time data, like video frames
///
/// // Create an empty texture
/// sf::Texture texture;
/// if (!texture.create(640, 480))
/// return -1;
///
/// // Create a sprite that will display the texture
/// sf::Sprite sprite(texture);
///
/// while (...) // the main loop
/// {
/// ...
///
/// // update the texture
/// sf::Uint8* pixels = ...; // get a fresh chunk of pixels (the next frame of a movie, for example)
/// texture.update(pixels);
///
/// // draw it
/// window.draw(sprite);
///
/// ...
/// }
///
/// \endcode
///
/// Like sf::Shader that can be used as a raw OpenGL shader,
/// sf::Texture can also be used directly as a raw texture for
/// custom OpenGL geometry.
/// \code
/// sf::Texture::bind(&texture);
/// ... render OpenGL geometry ...
/// sf::Texture::bind(NULL);
/// \endcode
///
/// \see sf::Sprite, sf::Image, sf::RenderTexture
///
////////////////////////////////////////////////////////////