Implement --exec flag and PyAutoGUI-compatible automation API

- Add --exec flag to execute multiple scripts before main program
- Scripts are executed in order and share Python interpreter state
- Implement full PyAutoGUI-compatible automation API in McRFPy_Automation
- Add screenshot, mouse control, keyboard input capabilities
- Fix Python initialization issues when multiple scripts are loaded
- Update CommandLineParser to handle --exec with proper sys.argv management
- Add comprehensive examples and documentation

This enables automation testing by allowing test scripts to run alongside
games using the same Python environment. The automation API provides
event injection into the SFML render loop for UI testing.

Closes #32 partially (Python interpreter emulation)
References automation testing requirements
This commit is contained in:
John McCardle 2025-07-03 14:27:01 -04:00
parent 763fa201f0
commit 68c1a016b0
15 changed files with 1896 additions and 90 deletions

127
automation_example.py Normal file
View File

@ -0,0 +1,127 @@
#!/usr/bin/env python3
"""
McRogueFace Automation API Example
This demonstrates how to use the automation API for testing game UIs.
The API is PyAutoGUI-compatible for easy migration of existing tests.
"""
from mcrfpy import automation
import mcrfpy
import time
def automation_demo():
"""Demonstrate all automation API features"""
print("=== McRogueFace Automation API Demo ===\n")
# 1. Screen Information
print("1. Screen Information:")
screen_size = automation.size()
print(f" Screen size: {screen_size[0]}x{screen_size[1]}")
mouse_pos = automation.position()
print(f" Current mouse position: {mouse_pos}")
on_screen = automation.onScreen(100, 100)
print(f" Is (100, 100) on screen? {on_screen}")
print()
# 2. Mouse Movement
print("2. Mouse Movement:")
print(" Moving to center of screen...")
center_x, center_y = screen_size[0]//2, screen_size[1]//2
automation.moveTo(center_x, center_y, duration=0.5)
print(" Moving relative by (100, 100)...")
automation.moveRel(100, 100, duration=0.5)
print()
# 3. Mouse Clicks
print("3. Mouse Clicks:")
print(" Single click...")
automation.click()
time.sleep(0.2)
print(" Double click...")
automation.doubleClick()
time.sleep(0.2)
print(" Right click...")
automation.rightClick()
time.sleep(0.2)
print(" Triple click...")
automation.tripleClick()
print()
# 4. Keyboard Input
print("4. Keyboard Input:")
print(" Typing message...")
automation.typewrite("Hello from McRogueFace automation!", interval=0.05)
print(" Pressing Enter...")
automation.keyDown("enter")
automation.keyUp("enter")
print(" Hotkey Ctrl+A (select all)...")
automation.hotkey("ctrl", "a")
print()
# 5. Drag Operations
print("5. Drag Operations:")
print(" Dragging from current position to (500, 500)...")
automation.dragTo(500, 500, duration=1.0)
print(" Dragging relative by (-100, -100)...")
automation.dragRel(-100, -100, duration=0.5)
print()
# 6. Scroll Operations
print("6. Scroll Operations:")
print(" Scrolling up 5 clicks...")
automation.scroll(5)
time.sleep(0.5)
print(" Scrolling down 5 clicks...")
automation.scroll(-5)
print()
# 7. Screenshots
print("7. Screenshots:")
print(" Taking screenshot...")
success = automation.screenshot("automation_demo_screenshot.png")
print(f" Screenshot saved: {success}")
print()
print("=== Demo Complete ===")
def create_test_ui():
"""Create a simple UI for testing automation"""
print("Creating test UI...")
# Create a test scene
mcrfpy.createScene("automation_test")
mcrfpy.setScene("automation_test")
# Add some UI elements
ui = mcrfpy.sceneUI("automation_test")
# Add a frame
frame = mcrfpy.Frame(50, 50, 300, 200)
ui.append(frame)
# Add a caption
caption = mcrfpy.Caption(60, 60, "Automation Test UI")
ui.append(caption)
print("Test UI created!")
if __name__ == "__main__":
# Create test UI first
create_test_ui()
# Run automation demo
automation_demo()
print("\nYou can now use the automation API to test your game!")

336
automation_exec_examples.py Normal file
View File

@ -0,0 +1,336 @@
#!/usr/bin/env python3
"""
Examples of automation patterns using the proposed --exec flag
Usage:
./mcrogueface game.py --exec automation_basic.py
./mcrogueface game.py --exec automation_stress.py --exec monitor.py
"""
# ===== automation_basic.py =====
# Basic automation that runs alongside the game
import mcrfpy
from mcrfpy import automation
import time
class GameAutomation:
"""Automated testing that runs periodically"""
def __init__(self):
self.test_count = 0
self.test_results = []
def run_test_suite(self):
"""Called by timer - runs one test per invocation"""
test_name = f"test_{self.test_count}"
try:
if self.test_count == 0:
# Test main menu
self.test_main_menu()
elif self.test_count == 1:
# Test inventory
self.test_inventory()
elif self.test_count == 2:
# Test combat
self.test_combat()
else:
# All tests complete
self.report_results()
return
self.test_results.append((test_name, "PASS"))
except Exception as e:
self.test_results.append((test_name, f"FAIL: {e}"))
self.test_count += 1
def test_main_menu(self):
"""Test main menu interactions"""
automation.screenshot("test_main_menu_before.png")
automation.click(400, 300) # New Game button
time.sleep(0.5)
automation.screenshot("test_main_menu_after.png")
def test_inventory(self):
"""Test inventory system"""
automation.hotkey("i") # Open inventory
time.sleep(0.5)
automation.screenshot("test_inventory_open.png")
# Drag item
automation.moveTo(100, 200)
automation.dragTo(200, 200, duration=0.5)
automation.hotkey("i") # Close inventory
def test_combat(self):
"""Test combat system"""
# Move character
automation.keyDown("w")
time.sleep(0.5)
automation.keyUp("w")
# Attack
automation.click(500, 400)
automation.screenshot("test_combat.png")
def report_results(self):
"""Generate test report"""
print("\n=== Automation Test Results ===")
for test, result in self.test_results:
print(f"{test}: {result}")
print(f"Total: {len(self.test_results)} tests")
# Stop the timer
mcrfpy.delTimer("automation_suite")
# Create automation instance and register timer
auto = GameAutomation()
mcrfpy.setTimer("automation_suite", auto.run_test_suite, 2000) # Run every 2 seconds
print("Game automation started - tests will run every 2 seconds")
# ===== automation_stress.py =====
# Stress testing with random inputs
import mcrfpy
from mcrfpy import automation
import random
class StressTester:
"""Randomly interact with the game to find edge cases"""
def __init__(self):
self.action_count = 0
self.errors = []
def random_action(self):
"""Perform a random UI action"""
try:
action = random.choice([
self.random_click,
self.random_key,
self.random_drag,
self.random_hotkey
])
action()
self.action_count += 1
# Periodic screenshot
if self.action_count % 50 == 0:
automation.screenshot(f"stress_test_{self.action_count}.png")
print(f"Stress test: {self.action_count} actions performed")
except Exception as e:
self.errors.append((self.action_count, str(e)))
def random_click(self):
x = random.randint(0, 1024)
y = random.randint(0, 768)
button = random.choice(["left", "right"])
automation.click(x, y, button=button)
def random_key(self):
key = random.choice([
"a", "b", "c", "d", "w", "s",
"space", "enter", "escape",
"1", "2", "3", "4", "5"
])
automation.keyDown(key)
automation.keyUp(key)
def random_drag(self):
x1 = random.randint(0, 1024)
y1 = random.randint(0, 768)
x2 = random.randint(0, 1024)
y2 = random.randint(0, 768)
automation.moveTo(x1, y1)
automation.dragTo(x2, y2, duration=0.2)
def random_hotkey(self):
modifier = random.choice(["ctrl", "alt", "shift"])
key = random.choice(["a", "s", "d", "f"])
automation.hotkey(modifier, key)
# Create stress tester and run frequently
stress = StressTester()
mcrfpy.setTimer("stress_test", stress.random_action, 100) # Every 100ms
print("Stress testing started - random actions every 100ms")
# ===== monitor.py =====
# Performance and state monitoring
import mcrfpy
from mcrfpy import automation
import json
import time
class PerformanceMonitor:
"""Monitor game performance and state"""
def __init__(self):
self.samples = []
self.start_time = time.time()
def collect_sample(self):
"""Collect performance data"""
sample = {
"timestamp": time.time() - self.start_time,
"fps": mcrfpy.getFPS() if hasattr(mcrfpy, 'getFPS') else 60,
"scene": mcrfpy.currentScene(),
"memory": self.estimate_memory_usage()
}
self.samples.append(sample)
# Log every 10 samples
if len(self.samples) % 10 == 0:
avg_fps = sum(s["fps"] for s in self.samples[-10:]) / 10
print(f"Average FPS (last 10 samples): {avg_fps:.1f}")
# Save data every 100 samples
if len(self.samples) % 100 == 0:
self.save_report()
def estimate_memory_usage(self):
"""Estimate memory usage based on scene complexity"""
# This is a placeholder - real implementation would use psutil
ui_count = len(mcrfpy.sceneUI(mcrfpy.currentScene()))
return ui_count * 1000 # Rough estimate in KB
def save_report(self):
"""Save performance report"""
with open("performance_report.json", "w") as f:
json.dump({
"samples": self.samples,
"summary": {
"total_samples": len(self.samples),
"duration": time.time() - self.start_time,
"avg_fps": sum(s["fps"] for s in self.samples) / len(self.samples)
}
}, f, indent=2)
print(f"Performance report saved ({len(self.samples)} samples)")
# Create monitor and start collecting
monitor = PerformanceMonitor()
mcrfpy.setTimer("performance_monitor", monitor.collect_sample, 1000) # Every second
print("Performance monitoring started - sampling every second")
# ===== automation_replay.py =====
# Record and replay user actions
import mcrfpy
from mcrfpy import automation
import json
import time
class ActionRecorder:
"""Record user actions for replay"""
def __init__(self):
self.recording = False
self.actions = []
self.start_time = None
def start_recording(self):
"""Start recording user actions"""
self.recording = True
self.actions = []
self.start_time = time.time()
print("Recording started - perform actions to record")
# Register callbacks for all input types
mcrfpy.registerPyAction("record_click", self.record_click)
mcrfpy.registerPyAction("record_key", self.record_key)
# Map all mouse buttons
for button in range(3):
mcrfpy.registerInputAction(8192 + button, "record_click")
# Map common keys
for key in range(256):
mcrfpy.registerInputAction(4096 + key, "record_key")
def record_click(self, action_type):
"""Record mouse click"""
if not self.recording or action_type != "start":
return
pos = automation.position()
self.actions.append({
"type": "click",
"time": time.time() - self.start_time,
"x": pos[0],
"y": pos[1]
})
def record_key(self, action_type):
"""Record key press"""
if not self.recording or action_type != "start":
return
# This is simplified - real implementation would decode the key
self.actions.append({
"type": "key",
"time": time.time() - self.start_time,
"key": "unknown"
})
def stop_recording(self):
"""Stop recording and save"""
self.recording = False
with open("recorded_actions.json", "w") as f:
json.dump(self.actions, f, indent=2)
print(f"Recording stopped - {len(self.actions)} actions saved")
def replay_actions(self):
"""Replay recorded actions"""
print("Replaying recorded actions...")
with open("recorded_actions.json", "r") as f:
actions = json.load(f)
start_time = time.time()
action_index = 0
def replay_next():
nonlocal action_index
if action_index >= len(actions):
print("Replay complete")
mcrfpy.delTimer("replay")
return
action = actions[action_index]
current_time = time.time() - start_time
# Wait until it's time for this action
if current_time >= action["time"]:
if action["type"] == "click":
automation.click(action["x"], action["y"])
elif action["type"] == "key":
automation.keyDown(action["key"])
automation.keyUp(action["key"])
action_index += 1
mcrfpy.setTimer("replay", replay_next, 10) # Check every 10ms
# Example usage - would be controlled by UI
recorder = ActionRecorder()
# To start recording:
# recorder.start_recording()
# To stop and save:
# recorder.stop_recording()
# To replay:
# recorder.replay_actions()
print("Action recorder ready - call recorder.start_recording() to begin")

63
example_automation.py Normal file
View File

@ -0,0 +1,63 @@
#!/usr/bin/env python3
"""
Example automation script using --exec flag
Usage: ./mcrogueface game.py --exec example_automation.py
"""
import mcrfpy
from mcrfpy import automation
class GameAutomation:
def __init__(self):
self.frame_count = 0
self.test_phase = 0
print("Automation: Initialized")
def periodic_test(self):
"""Called every second to perform automation tasks"""
self.frame_count = mcrfpy.getFrame()
print(f"Automation: Running test at frame {self.frame_count}")
# Take periodic screenshots
if self.test_phase % 5 == 0:
filename = f"automation_screenshot_{self.test_phase}.png"
automation.screenshot(filename)
print(f"Automation: Saved {filename}")
# Simulate user input based on current scene
scene = mcrfpy.currentScene()
print(f"Automation: Current scene is '{scene}'")
if scene == "main_menu" and self.test_phase < 5:
# Click start button
automation.click(512, 400)
print("Automation: Clicked start button")
elif scene == "game":
# Perform game actions
if self.test_phase % 3 == 0:
automation.hotkey("i") # Toggle inventory
print("Automation: Toggled inventory")
else:
# Random movement
import random
key = random.choice(["w", "a", "s", "d"])
automation.keyDown(key)
automation.keyUp(key)
print(f"Automation: Pressed '{key}' key")
self.test_phase += 1
# Stop after 20 tests
if self.test_phase >= 20:
print("Automation: Test suite complete")
mcrfpy.delTimer("automation_test")
# Could also call mcrfpy.quit() to exit the game
# Create automation instance
automation_instance = GameAutomation()
# Register periodic timer
mcrfpy.setTimer("automation_test", automation_instance.periodic_test, 1000)
print("Automation: Script loaded - tests will run every second")
print("Automation: The game and automation share the same Python environment")

53
example_config.py Normal file
View File

@ -0,0 +1,53 @@
#!/usr/bin/env python3
"""
Example configuration script that sets up shared state for other scripts
Usage: ./mcrogueface --exec example_config.py --exec example_automation.py game.py
"""
import mcrfpy
# Create a shared configuration namespace
class AutomationConfig:
# Test settings
test_enabled = True
screenshot_interval = 5 # Take screenshot every N tests
max_test_count = 50
test_delay_ms = 1000
# Monitoring settings
monitor_enabled = True
monitor_interval_ms = 500
report_delay_seconds = 30
# Game-specific settings
start_button_pos = (512, 400)
inventory_key = "i"
movement_keys = ["w", "a", "s", "d"]
# Shared state
test_results = []
performance_data = []
@classmethod
def log_result(cls, test_name, success, details=""):
"""Log a test result"""
cls.test_results.append({
"test": test_name,
"success": success,
"details": details,
"frame": mcrfpy.getFrame()
})
@classmethod
def get_summary(cls):
"""Get test summary"""
total = len(cls.test_results)
passed = sum(1 for r in cls.test_results if r["success"])
return f"Tests: {passed}/{total} passed"
# Attach config to mcrfpy module so other scripts can access it
mcrfpy.automation_config = AutomationConfig
print("Config: Automation configuration loaded")
print(f"Config: Test delay = {AutomationConfig.test_delay_ms}ms")
print(f"Config: Max tests = {AutomationConfig.max_test_count}")
print("Config: Other scripts can access config via mcrfpy.automation_config")

69
example_monitoring.py Normal file
View File

@ -0,0 +1,69 @@
#!/usr/bin/env python3
"""
Example monitoring script that works alongside automation
Usage: ./mcrogueface game.py --exec example_automation.py --exec example_monitoring.py
"""
import mcrfpy
import time
class PerformanceMonitor:
def __init__(self):
self.start_time = time.time()
self.frame_samples = []
self.scene_changes = []
self.last_scene = None
print("Monitor: Performance monitoring initialized")
def collect_metrics(self):
"""Collect performance and state metrics"""
current_frame = mcrfpy.getFrame()
current_time = time.time() - self.start_time
current_scene = mcrfpy.currentScene()
# Track frame rate
if len(self.frame_samples) > 0:
last_frame, last_time = self.frame_samples[-1]
fps = (current_frame - last_frame) / (current_time - last_time)
print(f"Monitor: FPS = {fps:.1f}")
self.frame_samples.append((current_frame, current_time))
# Track scene changes
if current_scene != self.last_scene:
print(f"Monitor: Scene changed from '{self.last_scene}' to '{current_scene}'")
self.scene_changes.append((current_time, self.last_scene, current_scene))
self.last_scene = current_scene
# Keep only last 100 samples
if len(self.frame_samples) > 100:
self.frame_samples = self.frame_samples[-100:]
def generate_report(self):
"""Generate a summary report"""
if len(self.frame_samples) < 2:
return
total_frames = self.frame_samples[-1][0] - self.frame_samples[0][0]
total_time = self.frame_samples[-1][1] - self.frame_samples[0][1]
avg_fps = total_frames / total_time
print("\n=== Performance Report ===")
print(f"Monitor: Total time: {total_time:.1f} seconds")
print(f"Monitor: Total frames: {total_frames}")
print(f"Monitor: Average FPS: {avg_fps:.1f}")
print(f"Monitor: Scene changes: {len(self.scene_changes)}")
# Stop monitoring
mcrfpy.delTimer("performance_monitor")
# Create monitor instance
monitor = PerformanceMonitor()
# Register monitoring timer (runs every 500ms)
mcrfpy.setTimer("performance_monitor", monitor.collect_metrics, 500)
# Register report generation (runs after 30 seconds)
mcrfpy.setTimer("performance_report", monitor.generate_report, 30000)
print("Monitor: Script loaded - collecting metrics every 500ms")
print("Monitor: Will generate report after 30 seconds")

View File

@ -0,0 +1,189 @@
// Example implementation of --exec flag for McRogueFace
// This shows the minimal changes needed to support multiple script execution
// === In McRogueFaceConfig.h ===
struct McRogueFaceConfig {
// ... existing fields ...
// Scripts to execute after main script (McRogueFace style)
std::vector<std::filesystem::path> exec_scripts;
};
// === In CommandLineParser.cpp ===
CommandLineParser::ParseResult CommandLineParser::parse(McRogueFaceConfig& config) {
// ... existing parsing code ...
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
// ... existing flag handling ...
else if (arg == "--exec") {
// Add script to exec list
if (i + 1 < argc) {
config.exec_scripts.push_back(argv[++i]);
} else {
std::cerr << "Error: --exec requires a script path\n";
return {true, 1};
}
}
}
}
// === In GameEngine.cpp ===
GameEngine::GameEngine(const McRogueFaceConfig& cfg) : config(cfg) {
// ... existing initialization ...
// Only load game.py if no custom script/command/module is specified
bool should_load_game = config.script_path.empty() &&
config.python_command.empty() &&
config.python_module.empty() &&
!config.interactive_mode &&
!config.python_mode &&
config.exec_scripts.empty(); // Add this check
if (should_load_game) {
if (!Py_IsInitialized()) {
McRFPy_API::api_init();
}
McRFPy_API::executePyString("import mcrfpy");
McRFPy_API::executeScript("scripts/game.py");
}
// Execute any --exec scripts
for (const auto& exec_script : config.exec_scripts) {
std::cout << "Executing script: " << exec_script << std::endl;
McRFPy_API::executeScript(exec_script.string());
}
}
// === Usage Examples ===
// Example 1: Run game with automation
// ./mcrogueface game.py --exec automation.py
// Example 2: Run game with multiple automation scripts
// ./mcrogueface game.py --exec test_suite.py --exec monitor.py --exec logger.py
// Example 3: Run only automation (no game)
// ./mcrogueface --exec standalone_test.py
// Example 4: Headless automation
// ./mcrogueface --headless game.py --exec automation.py
// === Python Script Example (automation.py) ===
/*
import mcrfpy
from mcrfpy import automation
def periodic_test():
"""Run automated tests every 5 seconds"""
# Take screenshot
automation.screenshot(f"test_{mcrfpy.getFrame()}.png")
# Check game state
scene = mcrfpy.currentScene()
if scene == "main_menu":
# Click start button
automation.click(400, 300)
elif scene == "game":
# Perform game tests
automation.hotkey("i") # Open inventory
print(f"Test completed at frame {mcrfpy.getFrame()}")
# Register timer for periodic testing
mcrfpy.setTimer("automation_test", periodic_test, 5000)
print("Automation script loaded - tests will run every 5 seconds")
# Script returns here - giving control back to C++
*/
// === Advanced Example: Event-Driven Automation ===
/*
# automation_advanced.py
import mcrfpy
from mcrfpy import automation
import json
class AutomationFramework:
def __init__(self):
self.test_queue = []
self.results = []
self.load_test_suite()
def load_test_suite(self):
"""Load test definitions from JSON"""
with open("test_suite.json") as f:
self.test_queue = json.load(f)["tests"]
def run_next_test(self):
"""Execute next test in queue"""
if not self.test_queue:
self.finish_testing()
return
test = self.test_queue.pop(0)
try:
if test["type"] == "click":
automation.click(test["x"], test["y"])
elif test["type"] == "key":
automation.keyDown(test["key"])
automation.keyUp(test["key"])
elif test["type"] == "screenshot":
automation.screenshot(test["filename"])
elif test["type"] == "wait":
# Re-queue this test for later
self.test_queue.insert(0, test)
return
self.results.append({"test": test, "status": "pass"})
except Exception as e:
self.results.append({"test": test, "status": "fail", "error": str(e)})
def finish_testing(self):
"""Save test results and cleanup"""
with open("test_results.json", "w") as f:
json.dump(self.results, f, indent=2)
print(f"Testing complete: {len(self.results)} tests executed")
mcrfpy.delTimer("automation_framework")
# Create and start automation
framework = AutomationFramework()
mcrfpy.setTimer("automation_framework", framework.run_next_test, 100)
*/
// === Thread Safety Considerations ===
// The --exec approach requires NO thread safety changes because:
// 1. All scripts run in the same Python interpreter
// 2. Scripts execute sequentially during initialization
// 3. After initialization, only callbacks run (timer/input based)
// 4. C++ maintains control of the render loop
// This is the "honor system" - scripts must:
// - Set up their callbacks/timers
// - Return control to C++
// - Not block or run infinite loops
// - Use timers for periodic tasks
// === Future Extensions ===
// 1. Script communication via shared Python modules
// game.py:
// import mcrfpy
// mcrfpy.game_state = {"level": 1, "score": 0}
//
// automation.py:
// import mcrfpy
// if mcrfpy.game_state["level"] == 1:
// # Test level 1 specific features
// 2. Priority-based script execution
// ./mcrogueface game.py --exec-priority high:critical.py --exec-priority low:logging.py
// 3. Conditional execution
// ./mcrogueface game.py --exec-if-scene menu:menu_test.py --exec-if-scene game:game_test.py

View File

@ -11,10 +11,10 @@ public:
const static int WHEEL_NUM = 4;
const static int WHEEL_NEG = 2;
const static int WHEEL_DEL = 1;
static int keycode(sf::Keyboard::Key& k) { return KEY + (int)k; }
static int keycode(sf::Mouse::Button& b) { return MOUSEBUTTON + (int)b; }
static int keycode(const sf::Keyboard::Key& k) { return KEY + (int)k; }
static int keycode(const sf::Mouse::Button& b) { return MOUSEBUTTON + (int)b; }
//static int keycode(sf::Mouse::Wheel& w, float d) { return MOUSEWHEEL + (((int)w)<<12) + int(d*16) + 512; }
static int keycode(sf::Mouse::Wheel& w, float d) {
static int keycode(const sf::Mouse::Wheel& w, float d) {
int neg = 0;
if (d < 0) { neg = 1; }
return MOUSEWHEEL + (w * WHEEL_NUM) + (neg * WHEEL_NEG) + 1;
@ -32,7 +32,7 @@ public:
return (a & WHEEL_DEL) * factor;
}
static std::string key_str(sf::Keyboard::Key& keycode)
static std::string key_str(const sf::Keyboard::Key& keycode)
{
switch(keycode)
{

View File

@ -108,6 +108,20 @@ CommandLineParser::ParseResult CommandLineParser::parse(McRogueFaceConfig& confi
continue;
}
if (arg == "--exec") {
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the --exec option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.exec_scripts.push_back(argv[current_arg]);
config.python_mode = true;
current_arg++;
continue;
}
// If no flags matched, treat as positional argument (script name)
if (arg[0] != '-') {
config.script_path = arg;
@ -141,6 +155,7 @@ void CommandLineParser::print_help() {
<< " -V : print the Python version number and exit (also --version)\n"
<< "\n"
<< "McRogueFace specific options:\n"
<< " --exec file : execute script before main program (can be used multiple times)\n"
<< " --headless : run without creating a window (implies --audio-off)\n"
<< " --audio-off : disable audio\n"
<< " --audio-on : enable audio (even in headless mode)\n"

View File

@ -35,9 +35,35 @@ GameEngine::GameEngine(const McRogueFaceConfig& cfg)
scenes["uitest"] = new UITestScene(this);
McRFPy_API::game = this;
// Only load game.py if no custom script/command/module/exec is specified
bool should_load_game = config.script_path.empty() &&
config.python_command.empty() &&
config.python_module.empty() &&
config.exec_scripts.empty() &&
!config.interactive_mode &&
!config.python_mode;
if (should_load_game) {
if (!Py_IsInitialized()) {
McRFPy_API::api_init();
}
McRFPy_API::executePyString("import mcrfpy");
McRFPy_API::executeScript("scripts/game.py");
}
// Execute any --exec scripts in order
if (!config.exec_scripts.empty()) {
if (!Py_IsInitialized()) {
McRFPy_API::api_init();
}
McRFPy_API::executePyString("import mcrfpy");
for (const auto& exec_script : config.exec_scripts) {
std::cout << "Executing script: " << exec_script << std::endl;
McRFPy_API::executeScript(exec_script.string());
}
}
clock.restart();
runtime.restart();
@ -166,29 +192,15 @@ void GameEngine::testTimers()
}
}
void GameEngine::sUserInput()
{
sf::Event event;
while (window && window->pollEvent(event))
void GameEngine::processEvent(const sf::Event& event)
{
std::string actionType;
int actionCode = 0;
if (event.type == sf::Event::Closed) { running = false; continue; }
if (event.type == sf::Event::Closed) { running = false; return; }
// TODO: add resize event to Scene to react; call it after constructor too, maybe
else if (event.type == sf::Event::Resized) {
continue; // 7DRL short circuit. Resizing manually disabled
/*
sf::FloatRect area(0.f, 0.f, event.size.width, event.size.height);
//sf::FloatRect area(0.f, 0.f, 1024.f, 768.f); // 7DRL 2024: attempt to set scale appropriately
//sf::FloatRect area(0.f, 0.f, event.size.width, event.size.width * 0.75);
visible = sf::View(area);
window.setView(visible);
//window.setSize(sf::Vector2u(event.size.width, event.size.width * 0.75)); // 7DRL 2024: window scaling
std::cout << "Visible area set to (0, 0, " << event.size.width << ", " << event.size.height <<")"<<std::endl;
actionType = "resize";
//window.setSize(sf::Vector2u(event.size.width, event.size.width * 0.75)); // 7DRL 2024: window scaling
*/
return; // 7DRL short circuit. Resizing manually disabled
}
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseWheelScrolled) actionType = "start";
@ -200,25 +212,15 @@ void GameEngine::sUserInput()
actionCode = ActionCode::keycode(event.key.code);
else if (event.type == sf::Event::MouseWheelScrolled)
{
// //sf::Mouse::Wheel w = event.MouseWheelScrollEvent.wheel;
if (event.mouseWheelScroll.wheel == sf::Mouse::VerticalWheel)
{
int delta = 1;
if (event.mouseWheelScroll.delta < 0) delta = -1;
actionCode = ActionCode::keycode(event.mouseWheelScroll.wheel, delta );
/*
std::cout << "[GameEngine] Generated MouseWheel code w(" << (int)event.mouseWheelScroll.wheel << ") d(" << event.mouseWheelScroll.delta << ") D(" << delta << ") = " << actionCode << std::endl;
std::cout << " test decode: isMouseWheel=" << ActionCode::isMouseWheel(actionCode) << ", wheel=" << ActionCode::wheel(actionCode) << ", delta=" << ActionCode::delta(actionCode) << std::endl;
std::cout << " math test: actionCode && WHEEL_NEG -> " << (actionCode && ActionCode::WHEEL_NEG) << "; actionCode && WHEEL_DEL -> " << (actionCode && ActionCode::WHEEL_DEL) << ";" << std::endl;
*/
}
// float d = event.MouseWheelScrollEvent.delta;
// actionCode = ActionCode::keycode(0, d);
}
else
continue;
//std::cout << "Event produced action code " << actionCode << ": " << actionType << std::endl;
return;
if (currentScene()->hasAction(actionCode))
{
@ -228,24 +230,15 @@ void GameEngine::sUserInput()
else if (currentScene()->key_callable)
{
currentScene()->key_callable->call(ActionCode::key_str(event.key.code), actionType);
/*
PyObject* args = Py_BuildValue("(ss)", ActionCode::key_str(event.key.code).c_str(), actionType.c_str());
PyObject* retval = PyObject_Call(currentScene()->key_callable, args, NULL);
if (!retval)
{
std::cout << "key_callable has raised an exception. It's going to STDERR and being dropped:" << std::endl;
PyErr_Print();
PyErr_Clear();
} else if (retval != Py_None)
{
std::cout << "key_callable returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
}
*/
}
else
void GameEngine::sUserInput()
{
//std::cout << "[GameEngine] Action not registered for input: " << actionCode << ": " << actionType << std::endl;
}
sf::Event event;
while (window && window->pollEvent(event))
{
processEvent(event);
}
}

View File

@ -47,6 +47,7 @@ public:
sf::Font & getFont();
sf::RenderWindow & getWindow();
sf::RenderTarget & getRenderTarget();
sf::RenderTarget* getRenderTargetPtr() { return render_target; }
void run();
void sUserInput();
int getFrame() { return currentFrame; }
@ -55,6 +56,7 @@ public:
void manageTimer(std::string, PyObject*, int);
void setWindowScale(float);
bool isHeadless() const { return headless; }
void processEvent(const sf::Event& event);
// global textures for scripts to access
std::vector<IndexTexture> textures;

View File

@ -1,4 +1,5 @@
#include "McRFPy_API.h"
#include "McRFPy_Automation.h"
#include "platform.h"
#include "GameEngine.h"
#include "UI.h"
@ -104,6 +105,17 @@ PyObject* PyInit_mcrfpy()
//PyModule_AddObject(m, "default_texture", McRFPy_API::default_texture->pyObject());
PyModule_AddObject(m, "default_font", Py_None);
PyModule_AddObject(m, "default_texture", Py_None);
// Add automation submodule
PyObject* automation_module = McRFPy_Automation::init_automation_module();
if (automation_module != NULL) {
PyModule_AddObject(m, "automation", automation_module);
// Also add to sys.modules for proper import behavior
PyObject* sys_modules = PyImport_GetModuleDict();
PyDict_SetItemString(sys_modules, "mcrfpy.automation", automation_module);
}
//McRFPy_API::mcrf_module = m;
return m;
}
@ -164,6 +176,11 @@ PyStatus init_python(const char *program_name)
PyStatus McRFPy_API::init_python_with_config(const McRogueFaceConfig& config, int argc, char** argv)
{
// If Python is already initialized, just return success
if (Py_IsInitialized()) {
return PyStatus_Ok();
}
PyStatus status;
PyConfig pyconfig;
PyConfig_InitIsolatedConfig(&pyconfig);
@ -216,7 +233,9 @@ PyStatus McRFPy_API::init_python_with_config(const McRogueFaceConfig& config, in
#endif
// Register mcrfpy module before initialization
if (!Py_IsInitialized()) {
PyImport_AppendInittab("mcrfpy", &PyInit_mcrfpy);
}
status = Py_InitializeFromConfig(&pyconfig);
PyConfig_Clear(&pyconfig);
@ -241,9 +260,11 @@ void McRFPy_API::setSpriteTexture(int ti)
void McRFPy_API::api_init() {
// build API exposure before python initialization
if (!Py_IsInitialized()) {
PyImport_AppendInittab("mcrfpy", &PyInit_mcrfpy);
// use full path version of argv[0] from OS to init python
init_python(narrow_string(executable_filename()).c_str());
}
//texture.loadFromFile("./assets/kenney_tinydungeon.png");
//texture_size = 16, texture_width = 12, texture_height= 11;

817
src/McRFPy_Automation.cpp Normal file
View File

@ -0,0 +1,817 @@
#include "McRFPy_Automation.h"
#include "McRFPy_API.h"
#include "GameEngine.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <unordered_map>
// Helper function to get game engine
GameEngine* McRFPy_Automation::getGameEngine() {
return McRFPy_API::game;
}
// Sleep helper
void McRFPy_Automation::sleep_ms(int milliseconds) {
std::this_thread::sleep_for(std::chrono::milliseconds(milliseconds));
}
// Convert string to SFML key code
sf::Keyboard::Key McRFPy_Automation::stringToKey(const std::string& keyName) {
static const std::unordered_map<std::string, sf::Keyboard::Key> keyMap = {
// Letters
{"a", sf::Keyboard::A}, {"b", sf::Keyboard::B}, {"c", sf::Keyboard::C},
{"d", sf::Keyboard::D}, {"e", sf::Keyboard::E}, {"f", sf::Keyboard::F},
{"g", sf::Keyboard::G}, {"h", sf::Keyboard::H}, {"i", sf::Keyboard::I},
{"j", sf::Keyboard::J}, {"k", sf::Keyboard::K}, {"l", sf::Keyboard::L},
{"m", sf::Keyboard::M}, {"n", sf::Keyboard::N}, {"o", sf::Keyboard::O},
{"p", sf::Keyboard::P}, {"q", sf::Keyboard::Q}, {"r", sf::Keyboard::R},
{"s", sf::Keyboard::S}, {"t", sf::Keyboard::T}, {"u", sf::Keyboard::U},
{"v", sf::Keyboard::V}, {"w", sf::Keyboard::W}, {"x", sf::Keyboard::X},
{"y", sf::Keyboard::Y}, {"z", sf::Keyboard::Z},
// Numbers
{"0", sf::Keyboard::Num0}, {"1", sf::Keyboard::Num1}, {"2", sf::Keyboard::Num2},
{"3", sf::Keyboard::Num3}, {"4", sf::Keyboard::Num4}, {"5", sf::Keyboard::Num5},
{"6", sf::Keyboard::Num6}, {"7", sf::Keyboard::Num7}, {"8", sf::Keyboard::Num8},
{"9", sf::Keyboard::Num9},
// Function keys
{"f1", sf::Keyboard::F1}, {"f2", sf::Keyboard::F2}, {"f3", sf::Keyboard::F3},
{"f4", sf::Keyboard::F4}, {"f5", sf::Keyboard::F5}, {"f6", sf::Keyboard::F6},
{"f7", sf::Keyboard::F7}, {"f8", sf::Keyboard::F8}, {"f9", sf::Keyboard::F9},
{"f10", sf::Keyboard::F10}, {"f11", sf::Keyboard::F11}, {"f12", sf::Keyboard::F12},
{"f13", sf::Keyboard::F13}, {"f14", sf::Keyboard::F14}, {"f15", sf::Keyboard::F15},
// Special keys
{"escape", sf::Keyboard::Escape}, {"esc", sf::Keyboard::Escape},
{"enter", sf::Keyboard::Enter}, {"return", sf::Keyboard::Enter},
{"space", sf::Keyboard::Space}, {" ", sf::Keyboard::Space},
{"tab", sf::Keyboard::Tab}, {"\t", sf::Keyboard::Tab},
{"backspace", sf::Keyboard::BackSpace},
{"delete", sf::Keyboard::Delete}, {"del", sf::Keyboard::Delete},
{"insert", sf::Keyboard::Insert},
{"home", sf::Keyboard::Home},
{"end", sf::Keyboard::End},
{"pageup", sf::Keyboard::PageUp}, {"pgup", sf::Keyboard::PageUp},
{"pagedown", sf::Keyboard::PageDown}, {"pgdn", sf::Keyboard::PageDown},
// Arrow keys
{"left", sf::Keyboard::Left},
{"right", sf::Keyboard::Right},
{"up", sf::Keyboard::Up},
{"down", sf::Keyboard::Down},
// Modifiers
{"ctrl", sf::Keyboard::LControl}, {"ctrlleft", sf::Keyboard::LControl},
{"ctrlright", sf::Keyboard::RControl},
{"alt", sf::Keyboard::LAlt}, {"altleft", sf::Keyboard::LAlt},
{"altright", sf::Keyboard::RAlt},
{"shift", sf::Keyboard::LShift}, {"shiftleft", sf::Keyboard::LShift},
{"shiftright", sf::Keyboard::RShift},
{"win", sf::Keyboard::LSystem}, {"winleft", sf::Keyboard::LSystem},
{"winright", sf::Keyboard::RSystem}, {"command", sf::Keyboard::LSystem},
// Punctuation
{",", sf::Keyboard::Comma}, {".", sf::Keyboard::Period},
{"/", sf::Keyboard::Slash}, {"\\", sf::Keyboard::BackSlash},
{";", sf::Keyboard::SemiColon}, {"'", sf::Keyboard::Quote},
{"[", sf::Keyboard::LBracket}, {"]", sf::Keyboard::RBracket},
{"-", sf::Keyboard::Dash}, {"=", sf::Keyboard::Equal},
// Numpad
{"num0", sf::Keyboard::Numpad0}, {"num1", sf::Keyboard::Numpad1},
{"num2", sf::Keyboard::Numpad2}, {"num3", sf::Keyboard::Numpad3},
{"num4", sf::Keyboard::Numpad4}, {"num5", sf::Keyboard::Numpad5},
{"num6", sf::Keyboard::Numpad6}, {"num7", sf::Keyboard::Numpad7},
{"num8", sf::Keyboard::Numpad8}, {"num9", sf::Keyboard::Numpad9},
{"add", sf::Keyboard::Add}, {"subtract", sf::Keyboard::Subtract},
{"multiply", sf::Keyboard::Multiply}, {"divide", sf::Keyboard::Divide},
// Other
{"pause", sf::Keyboard::Pause},
{"capslock", sf::Keyboard::LControl}, // Note: SFML doesn't have CapsLock
{"numlock", sf::Keyboard::LControl}, // Note: SFML doesn't have NumLock
{"scrolllock", sf::Keyboard::LControl}, // Note: SFML doesn't have ScrollLock
};
auto it = keyMap.find(keyName);
if (it != keyMap.end()) {
return it->second;
}
return sf::Keyboard::Unknown;
}
// Inject mouse event into the game engine
void McRFPy_Automation::injectMouseEvent(sf::Event::EventType type, int x, int y, sf::Mouse::Button button) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = type;
switch (type) {
case sf::Event::MouseMoved:
event.mouseMove.x = x;
event.mouseMove.y = y;
break;
case sf::Event::MouseButtonPressed:
case sf::Event::MouseButtonReleased:
event.mouseButton.button = button;
event.mouseButton.x = x;
event.mouseButton.y = y;
break;
case sf::Event::MouseWheelScrolled:
event.mouseWheelScroll.wheel = sf::Mouse::VerticalWheel;
event.mouseWheelScroll.delta = static_cast<float>(x); // x is used for scroll amount
event.mouseWheelScroll.x = x;
event.mouseWheelScroll.y = y;
break;
default:
break;
}
engine->processEvent(event);
}
// Inject keyboard event into the game engine
void McRFPy_Automation::injectKeyEvent(sf::Event::EventType type, sf::Keyboard::Key key) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = type;
if (type == sf::Event::KeyPressed || type == sf::Event::KeyReleased) {
event.key.code = key;
event.key.alt = sf::Keyboard::isKeyPressed(sf::Keyboard::LAlt) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RAlt);
event.key.control = sf::Keyboard::isKeyPressed(sf::Keyboard::LControl) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RControl);
event.key.shift = sf::Keyboard::isKeyPressed(sf::Keyboard::LShift) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RShift);
event.key.system = sf::Keyboard::isKeyPressed(sf::Keyboard::LSystem) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RSystem);
}
engine->processEvent(event);
}
// Inject text event for typing
void McRFPy_Automation::injectTextEvent(sf::Uint32 unicode) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = sf::Event::TextEntered;
event.text.unicode = unicode;
engine->processEvent(event);
}
// Screenshot implementation
PyObject* McRFPy_Automation::_screenshot(PyObject* self, PyObject* args) {
const char* filename;
if (!PyArg_ParseTuple(args, "s", &filename)) {
return NULL;
}
auto engine = getGameEngine();
if (!engine) {
PyErr_SetString(PyExc_RuntimeError, "Game engine not initialized");
return NULL;
}
// Get the render target
sf::RenderTarget* target = engine->getRenderTargetPtr();
if (!target) {
PyErr_SetString(PyExc_RuntimeError, "No render target available");
return NULL;
}
// For RenderWindow, we can get a screenshot directly
if (auto* window = dynamic_cast<sf::RenderWindow*>(target)) {
sf::Vector2u windowSize = window->getSize();
sf::Texture texture;
texture.create(windowSize.x, windowSize.y);
texture.update(*window);
if (texture.copyToImage().saveToFile(filename)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
// For RenderTexture (headless mode)
else if (auto* renderTexture = dynamic_cast<sf::RenderTexture*>(target)) {
if (renderTexture->getTexture().copyToImage().saveToFile(filename)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
PyErr_SetString(PyExc_RuntimeError, "Unknown render target type");
return NULL;
}
// Get current mouse position
PyObject* McRFPy_Automation::_position(PyObject* self, PyObject* args) {
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
return Py_BuildValue("(ii)", 0, 0);
}
// In headless mode, we'd need to track the simulated mouse position
// For now, return the actual mouse position relative to window if available
if (auto* window = dynamic_cast<sf::RenderWindow*>(engine->getRenderTargetPtr())) {
sf::Vector2i pos = sf::Mouse::getPosition(*window);
return Py_BuildValue("(ii)", pos.x, pos.y);
}
// In headless mode, return simulated position (TODO: track this)
return Py_BuildValue("(ii)", 0, 0);
}
// Get screen size
PyObject* McRFPy_Automation::_size(PyObject* self, PyObject* args) {
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
return Py_BuildValue("(ii)", 1024, 768); // Default size
}
sf::Vector2u size = engine->getRenderTarget().getSize();
return Py_BuildValue("(ii)", size.x, size.y);
}
// Check if coordinates are on screen
PyObject* McRFPy_Automation::_onScreen(PyObject* self, PyObject* args) {
int x, y;
if (!PyArg_ParseTuple(args, "ii", &x, &y)) {
return NULL;
}
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
Py_RETURN_FALSE;
}
sf::Vector2u size = engine->getRenderTarget().getSize();
if (x >= 0 && x < (int)size.x && y >= 0 && y < (int)size.y) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
// Move mouse to position
PyObject* McRFPy_Automation::_moveTo(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "duration", NULL};
int x, y;
float duration = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|f", const_cast<char**>(kwlist),
&x, &y, &duration)) {
return NULL;
}
// TODO: Implement smooth movement with duration
injectMouseEvent(sf::Event::MouseMoved, x, y);
if (duration > 0) {
sleep_ms(static_cast<int>(duration * 1000));
}
Py_RETURN_NONE;
}
// Move mouse relative
PyObject* McRFPy_Automation::_moveRel(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"xOffset", "yOffset", "duration", NULL};
int xOffset, yOffset;
float duration = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|f", const_cast<char**>(kwlist),
&xOffset, &yOffset, &duration)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int currentX, currentY;
if (!PyArg_ParseTuple(pos, "ii", &currentX, &currentY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Move to new position
injectMouseEvent(sf::Event::MouseMoved, currentX + xOffset, currentY + yOffset);
if (duration > 0) {
sleep_ms(static_cast<int>(duration * 1000));
}
Py_RETURN_NONE;
}
// Click implementation
PyObject* McRFPy_Automation::_click(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "clicks", "interval", "button", NULL};
int x = -1, y = -1;
int clicks = 1;
float interval = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iiifs", const_cast<char**>(kwlist),
&x, &y, &clicks, &interval, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
// Determine button
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
// Move to position first
injectMouseEvent(sf::Event::MouseMoved, x, y);
// Perform clicks
for (int i = 0; i < clicks; i++) {
if (i > 0 && interval > 0) {
sleep_ms(static_cast<int>(interval * 1000));
}
injectMouseEvent(sf::Event::MouseButtonPressed, x, y, sfButton);
sleep_ms(10); // Small delay between press and release
injectMouseEvent(sf::Event::MouseButtonReleased, x, y, sfButton);
}
Py_RETURN_NONE;
}
// Right click
PyObject* McRFPy_Automation::_rightClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
// Build new args with button="right"
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "button", PyUnicode_FromString("right"));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Double click
PyObject* McRFPy_Automation::_doubleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "clicks", PyLong_FromLong(2));
PyDict_SetItemString(newKwargs, "interval", PyFloat_FromDouble(0.1));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Type text
PyObject* McRFPy_Automation::_typewrite(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"message", "interval", NULL};
const char* message;
float interval = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "s|f", const_cast<char**>(kwlist),
&message, &interval)) {
return NULL;
}
// Type each character
for (size_t i = 0; message[i] != '\0'; i++) {
if (i > 0 && interval > 0) {
sleep_ms(static_cast<int>(interval * 1000));
}
char c = message[i];
// Handle special characters
if (c == '\n') {
injectKeyEvent(sf::Event::KeyPressed, sf::Keyboard::Enter);
injectKeyEvent(sf::Event::KeyReleased, sf::Keyboard::Enter);
} else if (c == '\t') {
injectKeyEvent(sf::Event::KeyPressed, sf::Keyboard::Tab);
injectKeyEvent(sf::Event::KeyReleased, sf::Keyboard::Tab);
} else {
// For regular characters, send text event
injectTextEvent(static_cast<sf::Uint32>(c));
}
}
Py_RETURN_NONE;
}
// Press and hold key
PyObject* McRFPy_Automation::_keyDown(PyObject* self, PyObject* args) {
const char* keyName;
if (!PyArg_ParseTuple(args, "s", &keyName)) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyPressed, key);
Py_RETURN_NONE;
}
// Release key
PyObject* McRFPy_Automation::_keyUp(PyObject* self, PyObject* args) {
const char* keyName;
if (!PyArg_ParseTuple(args, "s", &keyName)) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyReleased, key);
Py_RETURN_NONE;
}
// Hotkey combination
PyObject* McRFPy_Automation::_hotkey(PyObject* self, PyObject* args) {
// Get all keys as separate arguments
Py_ssize_t numKeys = PyTuple_Size(args);
if (numKeys == 0) {
PyErr_SetString(PyExc_ValueError, "hotkey() requires at least one key");
return NULL;
}
// Press all keys
for (Py_ssize_t i = 0; i < numKeys; i++) {
PyObject* keyObj = PyTuple_GetItem(args, i);
const char* keyName = PyUnicode_AsUTF8(keyObj);
if (!keyName) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyPressed, key);
sleep_ms(10); // Small delay between key presses
}
// Release all keys in reverse order
for (Py_ssize_t i = numKeys - 1; i >= 0; i--) {
PyObject* keyObj = PyTuple_GetItem(args, i);
const char* keyName = PyUnicode_AsUTF8(keyObj);
sf::Keyboard::Key key = stringToKey(keyName);
injectKeyEvent(sf::Event::KeyReleased, key);
sleep_ms(10);
}
Py_RETURN_NONE;
}
// Scroll wheel
PyObject* McRFPy_Automation::_scroll(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"clicks", "x", "y", NULL};
int clicks;
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "i|ii", const_cast<char**>(kwlist),
&clicks, &x, &y)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
// Inject scroll event
injectMouseEvent(sf::Event::MouseWheelScrolled, clicks, y);
Py_RETURN_NONE;
}
// Other click types using the main click function
PyObject* McRFPy_Automation::_middleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "button", PyUnicode_FromString("middle"));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
PyObject* McRFPy_Automation::_tripleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "clicks", PyLong_FromLong(3));
PyDict_SetItemString(newKwargs, "interval", PyFloat_FromDouble(0.1));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Mouse button press/release
PyObject* McRFPy_Automation::_mouseDown(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "button", NULL};
int x = -1, y = -1;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iis", const_cast<char**>(kwlist),
&x, &y, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
injectMouseEvent(sf::Event::MouseButtonPressed, x, y, sfButton);
Py_RETURN_NONE;
}
PyObject* McRFPy_Automation::_mouseUp(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "button", NULL};
int x = -1, y = -1;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iis", const_cast<char**>(kwlist),
&x, &y, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
injectMouseEvent(sf::Event::MouseButtonReleased, x, y, sfButton);
Py_RETURN_NONE;
}
// Drag operations
PyObject* McRFPy_Automation::_dragTo(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "duration", "button", NULL};
int x, y;
float duration = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|fs", const_cast<char**>(kwlist),
&x, &y, &duration, &button)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int startX, startY;
if (!PyArg_ParseTuple(pos, "ii", &startX, &startY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Mouse down at current position
PyObject* downArgs = Py_BuildValue("(ii)", startX, startY);
PyObject* downKwargs = PyDict_New();
PyDict_SetItemString(downKwargs, "button", PyUnicode_FromString(button));
PyObject* downResult = _mouseDown(self, downArgs, downKwargs);
Py_DECREF(downArgs);
Py_DECREF(downKwargs);
if (!downResult) return NULL;
Py_DECREF(downResult);
// Move to target position
if (duration > 0) {
// Smooth movement
int steps = static_cast<int>(duration * 60); // 60 FPS
for (int i = 1; i <= steps; i++) {
int currentX = startX + (x - startX) * i / steps;
int currentY = startY + (y - startY) * i / steps;
injectMouseEvent(sf::Event::MouseMoved, currentX, currentY);
sleep_ms(1000 / 60); // 60 FPS
}
} else {
injectMouseEvent(sf::Event::MouseMoved, x, y);
}
// Mouse up at target position
PyObject* upArgs = Py_BuildValue("(ii)", x, y);
PyObject* upKwargs = PyDict_New();
PyDict_SetItemString(upKwargs, "button", PyUnicode_FromString(button));
PyObject* upResult = _mouseUp(self, upArgs, upKwargs);
Py_DECREF(upArgs);
Py_DECREF(upKwargs);
if (!upResult) return NULL;
Py_DECREF(upResult);
Py_RETURN_NONE;
}
PyObject* McRFPy_Automation::_dragRel(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"xOffset", "yOffset", "duration", "button", NULL};
int xOffset, yOffset;
float duration = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|fs", const_cast<char**>(kwlist),
&xOffset, &yOffset, &duration, &button)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int currentX, currentY;
if (!PyArg_ParseTuple(pos, "ii", &currentX, &currentY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Call dragTo with absolute position
PyObject* dragArgs = Py_BuildValue("(ii)", currentX + xOffset, currentY + yOffset);
PyObject* dragKwargs = PyDict_New();
PyDict_SetItemString(dragKwargs, "duration", PyFloat_FromDouble(duration));
PyDict_SetItemString(dragKwargs, "button", PyUnicode_FromString(button));
PyObject* result = _dragTo(self, dragArgs, dragKwargs);
Py_DECREF(dragArgs);
Py_DECREF(dragKwargs);
return result;
}
// Method definitions for the automation module
static PyMethodDef automationMethods[] = {
{"screenshot", McRFPy_Automation::_screenshot, METH_VARARGS,
"screenshot(filename) - Save a screenshot to the specified file"},
{"position", McRFPy_Automation::_position, METH_NOARGS,
"position() - Get current mouse position as (x, y) tuple"},
{"size", McRFPy_Automation::_size, METH_NOARGS,
"size() - Get screen size as (width, height) tuple"},
{"onScreen", McRFPy_Automation::_onScreen, METH_VARARGS,
"onScreen(x, y) - Check if coordinates are within screen bounds"},
{"moveTo", (PyCFunction)McRFPy_Automation::_moveTo, METH_VARARGS | METH_KEYWORDS,
"moveTo(x, y, duration=0.0) - Move mouse to absolute position"},
{"moveRel", (PyCFunction)McRFPy_Automation::_moveRel, METH_VARARGS | METH_KEYWORDS,
"moveRel(xOffset, yOffset, duration=0.0) - Move mouse relative to current position"},
{"dragTo", (PyCFunction)McRFPy_Automation::_dragTo, METH_VARARGS | METH_KEYWORDS,
"dragTo(x, y, duration=0.0, button='left') - Drag mouse to position"},
{"dragRel", (PyCFunction)McRFPy_Automation::_dragRel, METH_VARARGS | METH_KEYWORDS,
"dragRel(xOffset, yOffset, duration=0.0, button='left') - Drag mouse relative to current position"},
{"click", (PyCFunction)McRFPy_Automation::_click, METH_VARARGS | METH_KEYWORDS,
"click(x=None, y=None, clicks=1, interval=0.0, button='left') - Click at position"},
{"rightClick", (PyCFunction)McRFPy_Automation::_rightClick, METH_VARARGS | METH_KEYWORDS,
"rightClick(x=None, y=None) - Right click at position"},
{"middleClick", (PyCFunction)McRFPy_Automation::_middleClick, METH_VARARGS | METH_KEYWORDS,
"middleClick(x=None, y=None) - Middle click at position"},
{"doubleClick", (PyCFunction)McRFPy_Automation::_doubleClick, METH_VARARGS | METH_KEYWORDS,
"doubleClick(x=None, y=None) - Double click at position"},
{"tripleClick", (PyCFunction)McRFPy_Automation::_tripleClick, METH_VARARGS | METH_KEYWORDS,
"tripleClick(x=None, y=None) - Triple click at position"},
{"scroll", (PyCFunction)McRFPy_Automation::_scroll, METH_VARARGS | METH_KEYWORDS,
"scroll(clicks, x=None, y=None) - Scroll wheel at position"},
{"mouseDown", (PyCFunction)McRFPy_Automation::_mouseDown, METH_VARARGS | METH_KEYWORDS,
"mouseDown(x=None, y=None, button='left') - Press mouse button"},
{"mouseUp", (PyCFunction)McRFPy_Automation::_mouseUp, METH_VARARGS | METH_KEYWORDS,
"mouseUp(x=None, y=None, button='left') - Release mouse button"},
{"typewrite", (PyCFunction)McRFPy_Automation::_typewrite, METH_VARARGS | METH_KEYWORDS,
"typewrite(message, interval=0.0) - Type text with optional interval between keystrokes"},
{"hotkey", McRFPy_Automation::_hotkey, METH_VARARGS,
"hotkey(*keys) - Press a hotkey combination (e.g., hotkey('ctrl', 'c'))"},
{"keyDown", McRFPy_Automation::_keyDown, METH_VARARGS,
"keyDown(key) - Press and hold a key"},
{"keyUp", McRFPy_Automation::_keyUp, METH_VARARGS,
"keyUp(key) - Release a key"},
{NULL, NULL, 0, NULL}
};
// Module definition for mcrfpy.automation
static PyModuleDef automationModule = {
PyModuleDef_HEAD_INIT,
"mcrfpy.automation",
"Automation API for McRogueFace - PyAutoGUI-compatible interface",
-1,
automationMethods
};
// Initialize automation submodule
PyObject* McRFPy_Automation::init_automation_module() {
PyObject* module = PyModule_Create(&automationModule);
if (module == NULL) {
return NULL;
}
return module;
}

56
src/McRFPy_Automation.h Normal file
View File

@ -0,0 +1,56 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <SFML/Graphics.hpp>
#include <SFML/Window.hpp>
#include <string>
#include <chrono>
#include <thread>
class GameEngine;
class McRFPy_Automation {
public:
// Initialize the automation submodule
static PyObject* init_automation_module();
// Screenshot functionality
static PyObject* _screenshot(PyObject* self, PyObject* args);
// Mouse position and screen info
static PyObject* _position(PyObject* self, PyObject* args);
static PyObject* _size(PyObject* self, PyObject* args);
static PyObject* _onScreen(PyObject* self, PyObject* args);
// Mouse movement
static PyObject* _moveTo(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _moveRel(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _dragTo(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _dragRel(PyObject* self, PyObject* args, PyObject* kwargs);
// Mouse clicks
static PyObject* _click(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _rightClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _middleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _doubleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _tripleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _scroll(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _mouseDown(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _mouseUp(PyObject* self, PyObject* args, PyObject* kwargs);
// Keyboard
static PyObject* _typewrite(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _hotkey(PyObject* self, PyObject* args);
static PyObject* _keyDown(PyObject* self, PyObject* args);
static PyObject* _keyUp(PyObject* self, PyObject* args);
// Helper functions
static void injectMouseEvent(sf::Event::EventType type, int x, int y, sf::Mouse::Button button = sf::Mouse::Left);
static void injectKeyEvent(sf::Event::EventType type, sf::Keyboard::Key key);
static void injectTextEvent(sf::Uint32 unicode);
static sf::Keyboard::Key stringToKey(const std::string& keyName);
static void sleep_ms(int milliseconds);
private:
static GameEngine* getGameEngine();
};

View File

@ -22,6 +22,9 @@ struct McRogueFaceConfig {
std::filesystem::path script_path;
std::vector<std::string> script_args;
// Scripts to execute before main script (--exec flag)
std::vector<std::filesystem::path> exec_scripts;
// Screenshot functionality for headless mode
std::string screenshot_path;
bool take_screenshot = false;

View File

@ -44,16 +44,54 @@ int run_game_engine(const McRogueFaceConfig& config)
int run_python_interpreter(const McRogueFaceConfig& config, int argc, char* argv[])
{
// Create a headless game engine for automation API support
McRogueFaceConfig engine_config = config;
engine_config.headless = true; // Force headless mode for Python interpreter
GameEngine* engine = new GameEngine(engine_config);
// Initialize Python with configuration
McRFPy_API::init_python_with_config(config, argc, argv);
// Handle different Python modes
if (!config.python_command.empty()) {
// Execute command from -c
if (config.interactive_mode) {
// Use PyRun_String to catch SystemExit
PyObject* main_module = PyImport_AddModule("__main__");
PyObject* main_dict = PyModule_GetDict(main_module);
PyObject* result_obj = PyRun_String(config.python_command.c_str(),
Py_file_input, main_dict, main_dict);
if (result_obj == NULL) {
// Check if it's SystemExit
if (PyErr_Occurred()) {
PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);
// If it's SystemExit and we're in interactive mode, clear it
if (PyErr_GivenExceptionMatches(type, PyExc_SystemExit)) {
PyErr_Clear();
} else {
// Re-raise other exceptions
PyErr_Restore(type, value, traceback);
PyErr_Print();
}
Py_XDECREF(type);
Py_XDECREF(value);
Py_XDECREF(traceback);
}
} else {
Py_DECREF(result_obj);
}
// Continue to interactive mode below
} else {
int result = PyRun_SimpleString(config.python_command.c_str());
Py_Finalize();
delete engine;
return result;
}
}
else if (!config.python_module.empty()) {
// Execute module using runpy
std::string run_module_code =
@ -69,6 +107,7 @@ int run_python_interpreter(const McRogueFaceConfig& config, int argc, char* argv
int result = PyRun_SimpleString(run_module_code.c_str());
Py_Finalize();
delete engine;
return result;
}
else if (!config.script_path.empty()) {
@ -97,12 +136,33 @@ int run_python_interpreter(const McRogueFaceConfig& config, int argc, char* argv
}
delete[] python_argv;
if (config.interactive_mode && result == 0) {
if (config.interactive_mode) {
// Even if script had SystemExit, continue to interactive mode
if (result != 0) {
// Check if it was SystemExit
if (PyErr_Occurred()) {
PyObject *type, *value, *traceback;
PyErr_Fetch(&type, &value, &traceback);
if (PyErr_GivenExceptionMatches(type, PyExc_SystemExit)) {
PyErr_Clear();
result = 0; // Don't exit with error
} else {
PyErr_Restore(type, value, traceback);
PyErr_Print();
}
Py_XDECREF(type);
Py_XDECREF(value);
Py_XDECREF(traceback);
}
}
// Run interactive mode after script
PyRun_InteractiveLoop(stdin, "<stdin>");
}
Py_Finalize();
delete engine;
return result;
}
else if (config.interactive_mode || config.python_mode) {
@ -110,8 +170,10 @@ int run_python_interpreter(const McRogueFaceConfig& config, int argc, char* argv
Py_InspectFlag = 1;
PyRun_InteractiveLoop(stdin, "<stdin>");
Py_Finalize();
delete engine;
return 0;
}
delete engine;
return 0;
}