feat: Add geometry module for orbital mechanics and spatial calculations

Implements issue #130 with:
- Basic utilities: distance, angle_between, normalize_angle, lerp, clamp
- Grid algorithms: bresenham_circle, bresenham_line, filled_circle
- OrbitalBody class with recursive positioning (star -> planet -> moon)
- OrbitingShip class for relative ship positioning on orbit rings
- Pathfinding helpers: nearest_orbit_entry, optimal_exit_heading,
  is_viable_waypoint, line_of_sight_blocked
- Comprehensive test suite (25+ tests)

Designed for Pinships turn-based space roguelike with:
- Discrete time steps (planets move in whole grid squares)
- Deterministic position projection
- Free orbital movement while in orbit
- Support for nested orbits (moons of moons)

closes #130

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
John McCardle 2025-11-26 00:26:14 -05:00
parent e5e796bad9
commit bc95cb1f0b
2 changed files with 1184 additions and 0 deletions

580
src/scripts/geometry.py Normal file
View File

@ -0,0 +1,580 @@
"""
Geometry module for turn-based games with orbital mechanics.
Designed for Pinships but reusable for any game needing:
- Circular orbit calculations
- Grid-aligned geometric primitives
- Recursive celestial body positioning
- Pathfinding helpers for orbital navigation
Philosophy: "C++ every frame, Python every game step"
This module handles game logic, not rendering.
"""
from __future__ import annotations
import math
from typing import Optional, List, Tuple, Set
from dataclasses import dataclass, field
# =============================================================================
# Basic Utility Functions
# =============================================================================
def distance(p1: Tuple[float, float], p2: Tuple[float, float]) -> float:
"""Euclidean distance between two points."""
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
return math.sqrt(dx * dx + dy * dy)
def distance_squared(p1: Tuple[float, float], p2: Tuple[float, float]) -> float:
"""Squared distance (avoids sqrt, useful for comparisons)."""
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
return dx * dx + dy * dy
def angle_between(p1: Tuple[float, float], p2: Tuple[float, float]) -> float:
"""
Angle from p1 to p2 in degrees (0-360).
0 degrees = east (+x), 90 = north (+y in screen coords, or south in math coords).
"""
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
angle = math.degrees(math.atan2(dy, dx))
return normalize_angle(angle)
def normalize_angle(angle: float) -> float:
"""Normalize angle to 0-360 range."""
angle = angle % 360
if angle < 0:
angle += 360
return angle
def angle_difference(a1: float, a2: float) -> float:
"""
Shortest angular distance between two angles (signed, -180 to 180).
Positive = counterclockwise from a1 to a2.
"""
diff = normalize_angle(a2) - normalize_angle(a1)
if diff > 180:
diff -= 360
elif diff < -180:
diff += 360
return diff
def lerp(a: float, b: float, t: float) -> float:
"""Linear interpolation from a to b by factor t (0-1)."""
return a + (b - a) * t
def clamp(value: float, min_val: float, max_val: float) -> float:
"""Clamp value to range [min_val, max_val]."""
return max(min_val, min(max_val, value))
def point_on_circle(
center: Tuple[float, float],
radius: float,
angle_degrees: float
) -> Tuple[float, float]:
"""Get point on circle at given angle (degrees)."""
angle_rad = math.radians(angle_degrees)
x = center[0] + radius * math.cos(angle_rad)
y = center[1] + radius * math.sin(angle_rad)
return (x, y)
def rotate_point(
point: Tuple[float, float],
center: Tuple[float, float],
angle_degrees: float
) -> Tuple[float, float]:
"""Rotate point around center by angle (degrees)."""
angle_rad = math.radians(angle_degrees)
cos_a = math.cos(angle_rad)
sin_a = math.sin(angle_rad)
# Translate to origin
px = point[0] - center[0]
py = point[1] - center[1]
# Rotate
rx = px * cos_a - py * sin_a
ry = px * sin_a + py * cos_a
# Translate back
return (rx + center[0], ry + center[1])
# =============================================================================
# Grid-Aligned Geometry (Bresenham algorithms)
# =============================================================================
def bresenham_circle(
center: Tuple[int, int],
radius: int
) -> List[Tuple[int, int]]:
"""
Generate all grid cells on a circle's perimeter using Bresenham's algorithm.
Returns cells in no particular order (use sort_circle_cells for ordering).
"""
if radius <= 0:
return [center]
cx, cy = center
cells: Set[Tuple[int, int]] = set()
x = 0
y = radius
d = 3 - 2 * radius
def add_circle_points(cx: int, cy: int, x: int, y: int):
"""Add all 8 symmetric points."""
cells.add((cx + x, cy + y))
cells.add((cx - x, cy + y))
cells.add((cx + x, cy - y))
cells.add((cx - x, cy - y))
cells.add((cx + y, cy + x))
cells.add((cx - y, cy + x))
cells.add((cx + y, cy - x))
cells.add((cx - y, cy - x))
add_circle_points(cx, cy, x, y)
while y >= x:
x += 1
if d > 0:
y -= 1
d = d + 4 * (x - y) + 10
else:
d = d + 4 * x + 6
add_circle_points(cx, cy, x, y)
return list(cells)
def sort_circle_cells(
cells: List[Tuple[int, int]],
center: Tuple[int, int]
) -> List[Tuple[int, int]]:
"""Sort circle cells by angle from center (for ordered traversal)."""
return sorted(cells, key=lambda p: angle_between(center, p))
def bresenham_line(
p1: Tuple[int, int],
p2: Tuple[int, int]
) -> List[Tuple[int, int]]:
"""Generate all grid cells on a line using Bresenham's algorithm."""
cells = []
x1, y1 = p1
x2, y2 = p2
dx = abs(x2 - x1)
dy = abs(y2 - y1)
sx = 1 if x1 < x2 else -1
sy = 1 if y1 < y2 else -1
err = dx - dy
while True:
cells.append((x1, y1))
if x1 == x2 and y1 == y2:
break
e2 = 2 * err
if e2 > -dy:
err -= dy
x1 += sx
if e2 < dx:
err += dx
y1 += sy
return cells
def filled_circle(
center: Tuple[int, int],
radius: int
) -> List[Tuple[int, int]]:
"""Generate all grid cells within a filled circle."""
if radius <= 0:
return [center]
cx, cy = center
cells = []
r_sq = radius * radius
for y in range(cy - radius, cy + radius + 1):
for x in range(cx - radius, cx + radius + 1):
if (x - cx) ** 2 + (y - cy) ** 2 <= r_sq:
cells.append((x, y))
return cells
# =============================================================================
# Orbital Body System
# =============================================================================
@dataclass
class OrbitalBody:
"""
A celestial body that may orbit another body.
Supports recursive orbits: star -> planet -> moon -> moon-of-moon
Position is calculated by walking up the parent chain.
"""
name: str
surface_radius: int # Physical size of the body
orbit_ring_radius: int # Distance from center where ships can orbit
# Orbital parameters (ignored if parent is None)
parent: Optional[OrbitalBody] = None
orbital_radius: float = 0.0 # Distance from parent's center
angular_velocity: float = 0.0 # Degrees per turn
initial_angle: float = 0.0 # Angle at t=0
# Base position (only used if parent is None, i.e., the star)
base_position: Tuple[int, int] = (0, 0)
def center_at_time(self, t: int) -> Tuple[float, float]:
"""
Get continuous (float) position at time t.
Recursively calculates position through parent chain.
"""
if self.parent is None:
# Stationary body (star)
return (float(self.base_position[0]), float(self.base_position[1]))
# Get parent's position at this time
parent_pos = self.parent.center_at_time(t)
# Calculate our angle at time t
angle = self.initial_angle + self.angular_velocity * t
# Calculate offset from parent
offset = point_on_circle((0, 0), self.orbital_radius, angle)
return (parent_pos[0] + offset[0], parent_pos[1] + offset[1])
def grid_position_at_time(self, t: int) -> Tuple[int, int]:
"""
Get snapped grid position at time t.
This is where the body appears on the discrete game grid.
"""
cx, cy = self.center_at_time(t)
return (round(cx), round(cy))
def surface_cells(self, t: int) -> List[Tuple[int, int]]:
"""Get all grid cells occupied by this body's surface at time t."""
return filled_circle(self.grid_position_at_time(t), self.surface_radius)
def orbit_ring_cells(self, t: int) -> List[Tuple[int, int]]:
"""
Get all grid cells forming the orbit ring at time t.
Ships can occupy these cells while orbiting this body.
"""
return bresenham_circle(self.grid_position_at_time(t), self.orbit_ring_radius)
def orbit_ring_cells_sorted(self, t: int) -> List[Tuple[int, int]]:
"""Get orbit ring cells sorted by angle (for ordered traversal)."""
center = self.grid_position_at_time(t)
cells = bresenham_circle(center, self.orbit_ring_radius)
return sort_circle_cells(cells, center)
def position_in_orbit(self, t: int, angle: float) -> Tuple[int, int]:
"""
Get the grid position for a ship orbiting this body at given angle.
The ship moves with the body - this returns absolute grid coords.
"""
center = self.grid_position_at_time(t)
pos = point_on_circle(center, self.orbit_ring_radius, angle)
return (round(pos[0]), round(pos[1]))
def is_inside_surface(self, point: Tuple[int, int], t: int) -> bool:
"""Check if a grid point is inside this body's surface."""
center = self.grid_position_at_time(t)
return distance_squared(center, point) <= self.surface_radius ** 2
def is_on_orbit_ring(self, point: Tuple[int, int], t: int) -> bool:
"""Check if a grid point is on this body's orbit ring."""
return point in self.orbit_ring_cells(t)
def nearest_orbit_angle(self, point: Tuple[float, float], t: int) -> float:
"""
Get the angle on the orbit ring closest to the given point.
Useful for determining where a ship would enter orbit.
"""
center = self.grid_position_at_time(t)
return angle_between(center, point)
def turns_until_position_changes(self, current_t: int) -> int:
"""
Calculate how many turns until this body's grid position changes.
Returns 0 if it changes next turn, -1 if it never moves (star).
"""
if self.parent is None:
return -1 # Stars don't move
current_pos = self.grid_position_at_time(current_t)
# Check future turns (reasonable limit to avoid infinite loop)
for dt in range(1, 1000):
future_pos = self.grid_position_at_time(current_t + dt)
if future_pos != current_pos:
return dt
return -1 # Essentially stationary (very slow orbit)
@dataclass
class OrbitingShip:
"""
A ship that is currently in orbit around a body.
When orbiting, position is relative to the body, not absolute grid coords.
The ship moves with the body automatically.
"""
body: OrbitalBody
orbital_angle: float # Position on orbit ring (degrees)
def grid_position_at_time(self, t: int) -> Tuple[int, int]:
"""Get absolute grid position at time t."""
return self.body.position_in_orbit(t, self.orbital_angle)
def move_along_orbit(self, angle_delta: float) -> None:
"""Move ship along the orbit ring (free movement while orbiting)."""
self.orbital_angle = normalize_angle(self.orbital_angle + angle_delta)
def set_orbit_angle(self, angle: float) -> None:
"""Set ship to specific angle on orbit ring."""
self.orbital_angle = normalize_angle(angle)
# =============================================================================
# Pathfinding Helpers
# =============================================================================
def nearest_orbit_entry(
ship_pos: Tuple[float, float],
body: OrbitalBody,
t: int
) -> Tuple[Tuple[int, int], float]:
"""
Find the nearest point on a body's orbit ring to enter.
Returns:
(grid_position, angle): Entry point and the orbital angle
"""
angle = body.nearest_orbit_angle(ship_pos, t)
entry_pos = body.position_in_orbit(t, angle)
return (entry_pos, angle)
def optimal_exit_heading(
body: OrbitalBody,
target: Tuple[float, float],
t: int
) -> Tuple[float, Tuple[int, int]]:
"""
Find the best angle to exit an orbit when heading toward a target.
Returns:
(exit_angle, exit_position): Best exit angle and grid position
"""
center = body.grid_position_at_time(t)
exit_angle = angle_between(center, target)
exit_pos = body.position_in_orbit(t, exit_angle)
return (exit_angle, exit_pos)
def is_viable_waypoint(
ship_pos: Tuple[float, float],
body: OrbitalBody,
target: Tuple[float, float],
t: int,
angle_threshold: float = 90.0
) -> bool:
"""
Check if an orbital body is a useful waypoint toward a target.
A body is viable if it's roughly "on the way" - the angle from
ship to body to target isn't too sharp (would be backtracking).
Args:
ship_pos: Ship's current position
body: Potential waypoint body
target: Final destination
t: Current time
angle_threshold: Maximum deflection angle (degrees)
Returns:
True if using this body's orbit could help reach target
"""
body_pos = body.grid_position_at_time(t)
# Angle from ship to body
angle_to_body = angle_between(ship_pos, body_pos)
# Angle from ship to target
angle_to_target = angle_between(ship_pos, target)
# How much would we deviate from direct path?
deviation = abs(angle_difference(angle_to_target, angle_to_body))
return deviation <= angle_threshold
def project_body_positions(
body: OrbitalBody,
start_t: int,
num_turns: int
) -> List[Tuple[int, Tuple[int, int]]]:
"""
Project a body's grid positions over future turns.
Returns:
List of (turn, grid_position) tuples
"""
positions = []
for dt in range(num_turns):
t = start_t + dt
pos = body.grid_position_at_time(t)
positions.append((t, pos))
return positions
def find_intercept_turn(
ship_pos: Tuple[float, float],
ship_speed: float,
body: OrbitalBody,
start_t: int,
max_turns: int = 100
) -> Optional[Tuple[int, Tuple[int, int]]]:
"""
Find when a ship could intercept a moving body's orbit.
Simple approach: check each future turn to see if ship could
reach the body's orbit ring by then.
Args:
ship_pos: Ship's starting position
ship_speed: Ship's movement per turn (grid units)
body: Target body to intercept
start_t: Current turn
max_turns: Maximum turns to search
Returns:
(turn, intercept_position) or None if no intercept found
"""
for dt in range(1, max_turns + 1):
t = start_t + dt
body_center = body.grid_position_at_time(t)
# Distance ship could travel
max_travel = ship_speed * dt
# Distance to body's orbit ring
dist_to_center = distance(ship_pos, body_center)
dist_to_orbit = abs(dist_to_center - body.orbit_ring_radius)
if dist_to_orbit <= max_travel:
# Ship could reach orbit this turn
entry_pos, _ = nearest_orbit_entry(ship_pos, body, t)
return (t, entry_pos)
return None
def line_of_sight_blocked(
p1: Tuple[int, int],
p2: Tuple[int, int],
bodies: List[OrbitalBody],
t: int
) -> Optional[OrbitalBody]:
"""
Check if line of sight between two points is blocked by any body's surface.
Returns:
The blocking body, or None if LOS is clear
"""
line_cells = set(bresenham_line(p1, p2))
for body in bodies:
surface = set(body.surface_cells(t))
if line_cells & surface: # Intersection
return body
return None
# =============================================================================
# Convenience Functions
# =============================================================================
def create_solar_system(
grid_width: int,
grid_height: int,
star_radius: int = 10,
star_orbit_radius: int = 15
) -> OrbitalBody:
"""
Create a star at the center of the grid.
Returns the star body (other bodies should use it as parent).
"""
return OrbitalBody(
name="Star",
surface_radius=star_radius,
orbit_ring_radius=star_orbit_radius,
parent=None,
base_position=(grid_width // 2, grid_height // 2)
)
def create_planet(
name: str,
star: OrbitalBody,
orbital_radius: float,
surface_radius: int,
orbit_ring_radius: int,
angular_velocity: float,
initial_angle: float = 0.0
) -> OrbitalBody:
"""Create a planet orbiting a star."""
return OrbitalBody(
name=name,
surface_radius=surface_radius,
orbit_ring_radius=orbit_ring_radius,
parent=star,
orbital_radius=orbital_radius,
angular_velocity=angular_velocity,
initial_angle=initial_angle
)
def create_moon(
name: str,
planet: OrbitalBody,
orbital_radius: float,
surface_radius: int,
orbit_ring_radius: int,
angular_velocity: float,
initial_angle: float = 0.0
) -> OrbitalBody:
"""Create a moon orbiting a planet (or another moon)."""
return OrbitalBody(
name=name,
surface_radius=surface_radius,
orbit_ring_radius=orbit_ring_radius,
parent=planet,
orbital_radius=orbital_radius,
angular_velocity=angular_velocity,
initial_angle=initial_angle
)

604
tests/unit/test_geometry.py Normal file
View File

@ -0,0 +1,604 @@
"""
Unit tests for the geometry module (Pinships orbital mechanics).
Tests cover:
- Basic utility functions (distance, angle, etc.)
- Bresenham circle/line algorithms
- OrbitalBody recursive positioning
- Pathfinding helpers
"""
import sys
import math
# Import the geometry module
sys.path.insert(0, '/home/john/Development/McRogueFace/src/scripts')
from geometry import (
# Utilities
distance, distance_squared, angle_between, normalize_angle,
angle_difference, lerp, clamp, point_on_circle, rotate_point,
# Grid algorithms
bresenham_circle, bresenham_line, filled_circle, sort_circle_cells,
# Orbital system
OrbitalBody, OrbitingShip,
# Pathfinding
nearest_orbit_entry, optimal_exit_heading, is_viable_waypoint,
project_body_positions, line_of_sight_blocked,
# Convenience
create_solar_system, create_planet, create_moon
)
EPSILON = 0.0001 # Float comparison tolerance
def approx_equal(a, b, eps=EPSILON):
"""Check if two floats are approximately equal."""
return abs(a - b) < eps
def test_distance():
"""Test distance calculations."""
assert approx_equal(distance((0, 0), (3, 4)), 5.0)
assert approx_equal(distance((0, 0), (0, 0)), 0.0)
assert approx_equal(distance((1, 1), (4, 5)), 5.0)
assert approx_equal(distance((-3, -4), (0, 0)), 5.0)
print(" distance: PASS")
def test_distance_squared():
"""Test squared distance (no sqrt)."""
assert distance_squared((0, 0), (3, 4)) == 25
assert distance_squared((0, 0), (0, 0)) == 0
print(" distance_squared: PASS")
def test_angle_between():
"""Test angle calculations."""
# East = 0 degrees
assert approx_equal(angle_between((0, 0), (1, 0)), 0.0)
# North = 90 degrees (in screen coordinates, +y is down, but atan2 treats +y as up)
assert approx_equal(angle_between((0, 0), (0, 1)), 90.0)
# West = 180 degrees
assert approx_equal(angle_between((0, 0), (-1, 0)), 180.0)
# South = 270 degrees
assert approx_equal(angle_between((0, 0), (0, -1)), 270.0)
# Diagonal
assert approx_equal(angle_between((0, 0), (1, 1)), 45.0)
print(" angle_between: PASS")
def test_normalize_angle():
"""Test angle normalization to 0-360."""
assert approx_equal(normalize_angle(0), 0.0)
assert approx_equal(normalize_angle(360), 0.0)
assert approx_equal(normalize_angle(720), 0.0)
assert approx_equal(normalize_angle(-90), 270.0)
assert approx_equal(normalize_angle(-360), 0.0)
assert approx_equal(normalize_angle(450), 90.0)
print(" normalize_angle: PASS")
def test_angle_difference():
"""Test shortest angular distance."""
assert approx_equal(angle_difference(0, 90), 90.0)
assert approx_equal(angle_difference(90, 0), -90.0)
assert approx_equal(angle_difference(350, 10), 20.0) # Wrap around
assert approx_equal(angle_difference(10, 350), -20.0)
assert approx_equal(angle_difference(0, 180), 180.0)
print(" angle_difference: PASS")
def test_lerp():
"""Test linear interpolation."""
assert approx_equal(lerp(0, 10, 0.0), 0.0)
assert approx_equal(lerp(0, 10, 1.0), 10.0)
assert approx_equal(lerp(0, 10, 0.5), 5.0)
assert approx_equal(lerp(-5, 5, 0.5), 0.0)
print(" lerp: PASS")
def test_clamp():
"""Test value clamping."""
assert clamp(5, 0, 10) == 5
assert clamp(-5, 0, 10) == 0
assert clamp(15, 0, 10) == 10
assert clamp(0, 0, 10) == 0
assert clamp(10, 0, 10) == 10
print(" clamp: PASS")
def test_point_on_circle():
"""Test point calculation on circle."""
center = (100, 100)
radius = 50
# East (0 degrees)
p = point_on_circle(center, radius, 0)
assert approx_equal(p[0], 150.0)
assert approx_equal(p[1], 100.0)
# North (90 degrees)
p = point_on_circle(center, radius, 90)
assert approx_equal(p[0], 100.0)
assert approx_equal(p[1], 150.0)
# West (180 degrees)
p = point_on_circle(center, radius, 180)
assert approx_equal(p[0], 50.0)
assert approx_equal(p[1], 100.0)
print(" point_on_circle: PASS")
def test_rotate_point():
"""Test point rotation around center."""
center = (0, 0)
point = (1, 0)
# Rotate 90 degrees
p = rotate_point(point, center, 90)
assert approx_equal(p[0], 0.0)
assert approx_equal(p[1], 1.0)
# Rotate 180 degrees
p = rotate_point(point, center, 180)
assert approx_equal(p[0], -1.0)
assert approx_equal(p[1], 0.0)
print(" rotate_point: PASS")
def test_bresenham_circle():
"""Test Bresenham circle generation."""
# Radius 0 = just the center
cells = bresenham_circle((5, 5), 0)
assert cells == [(5, 5)]
# Radius 3 should give a circle-ish shape
cells = bresenham_circle((10, 10), 3)
assert len(cells) > 0
# All cells should be roughly radius distance from center
for x, y in cells:
dist = math.sqrt((x - 10) ** 2 + (y - 10) ** 2)
assert 2.5 <= dist <= 3.5, f"Cell ({x},{y}) has distance {dist}"
# Should be symmetric
cells_set = set(cells)
for x, y in cells:
# Check all 4 quadrant reflections exist
dx, dy = x - 10, y - 10
assert (10 + dx, 10 + dy) in cells_set
assert (10 - dx, 10 + dy) in cells_set
assert (10 + dx, 10 - dy) in cells_set
assert (10 - dx, 10 - dy) in cells_set
print(" bresenham_circle: PASS")
def test_bresenham_line():
"""Test Bresenham line generation."""
# Horizontal line
cells = bresenham_line((0, 0), (5, 0))
assert cells == [(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0)]
# Vertical line
cells = bresenham_line((0, 0), (0, 3))
assert cells == [(0, 0), (0, 1), (0, 2), (0, 3)]
# Diagonal line
cells = bresenham_line((0, 0), (3, 3))
assert (0, 0) in cells
assert (3, 3) in cells
assert len(cells) == 4 # Should hit 4 cells for 45-degree line
# Start and end should be included
cells = bresenham_line((10, 20), (15, 22))
assert (10, 20) in cells
assert (15, 22) in cells
print(" bresenham_line: PASS")
def test_filled_circle():
"""Test filled circle generation."""
cells = filled_circle((5, 5), 2)
# Center should be included
assert (5, 5) in cells
# Edges should be included
assert (5, 3) in cells # top
assert (5, 7) in cells # bottom
assert (3, 5) in cells # left
assert (7, 5) in cells # right
# Corners (at distance sqrt(8) ≈ 2.83) should NOT be included for radius 2
assert (3, 3) not in cells
print(" filled_circle: PASS")
def test_orbital_body_stationary():
"""Test stationary body (star) positioning."""
star = OrbitalBody(
name="Star",
surface_radius=10,
orbit_ring_radius=15,
parent=None,
base_position=(500, 500)
)
# Position should never change
assert star.grid_position_at_time(0) == (500, 500)
assert star.grid_position_at_time(100) == (500, 500)
assert star.grid_position_at_time(9999) == (500, 500)
# Continuous position should match
assert star.center_at_time(0) == (500.0, 500.0)
print(" orbital_body_stationary: PASS")
def test_orbital_body_simple_orbit():
"""Test planet orbiting a star."""
star = OrbitalBody(
name="Star",
surface_radius=10,
orbit_ring_radius=15,
parent=None,
base_position=(500, 500)
)
planet = OrbitalBody(
name="Planet",
surface_radius=5,
orbit_ring_radius=10,
parent=star,
orbital_radius=100, # 100 units from star
angular_velocity=90, # 90 degrees per turn (quarter orbit)
initial_angle=0 # Start to the east
)
# t=0: Planet should be east of star
pos0 = planet.center_at_time(0)
assert approx_equal(pos0[0], 600.0) # 500 + 100
assert approx_equal(pos0[1], 500.0)
# t=1: Planet should be north of star (rotated 90 degrees)
pos1 = planet.center_at_time(1)
assert approx_equal(pos1[0], 500.0)
assert approx_equal(pos1[1], 600.0) # 500 + 100
# t=2: Planet should be west of star
pos2 = planet.center_at_time(2)
assert approx_equal(pos2[0], 400.0) # 500 - 100
assert approx_equal(pos2[1], 500.0)
# t=4: Back to start (full orbit)
pos4 = planet.center_at_time(4)
assert approx_equal(pos4[0], 600.0)
assert approx_equal(pos4[1], 500.0)
print(" orbital_body_simple_orbit: PASS")
def test_orbital_body_nested_orbit():
"""Test moon orbiting a planet orbiting a star."""
star = OrbitalBody(
name="Star",
surface_radius=10,
orbit_ring_radius=15,
parent=None,
base_position=(500, 500)
)
planet = OrbitalBody(
name="Planet",
surface_radius=5,
orbit_ring_radius=10,
parent=star,
orbital_radius=100,
angular_velocity=90, # Quarter orbit per turn
initial_angle=0
)
moon = OrbitalBody(
name="Moon",
surface_radius=2,
orbit_ring_radius=5,
parent=planet,
orbital_radius=20, # 20 units from planet
angular_velocity=180, # Half orbit per turn (faster than planet)
initial_angle=0
)
# t=0: Moon should be east of planet, which is east of star
moon_pos0 = moon.center_at_time(0)
# Planet at (600, 500), moon 20 units east = (620, 500)
assert approx_equal(moon_pos0[0], 620.0)
assert approx_equal(moon_pos0[1], 500.0)
# t=1: Planet moved north (500, 600), moon rotated 180 degrees (west of planet)
moon_pos1 = moon.center_at_time(1)
# Planet at (500, 600), moon 20 units west = (480, 600)
assert approx_equal(moon_pos1[0], 480.0)
assert approx_equal(moon_pos1[1], 600.0)
print(" orbital_body_nested_orbit: PASS")
def test_orbiting_ship():
"""Test ship orbiting a body."""
star = OrbitalBody(
name="Star",
surface_radius=10,
orbit_ring_radius=50,
parent=None,
base_position=(500, 500)
)
ship = OrbitingShip(body=star, orbital_angle=0)
# Ship at angle 0 should be east of star
pos = ship.grid_position_at_time(0)
assert pos == (550, 500) # 500 + 50
# Move ship along orbit
ship.move_along_orbit(90)
pos = ship.grid_position_at_time(0)
assert pos == (500, 550) # North of star
# Set specific angle
ship.set_orbit_angle(180)
pos = ship.grid_position_at_time(0)
assert pos == (450, 500) # West of star
print(" orbiting_ship: PASS")
def test_orbit_ring_cells():
"""Test orbit ring cell generation."""
body = OrbitalBody(
name="Planet",
surface_radius=5,
orbit_ring_radius=10,
parent=None,
base_position=(100, 100)
)
cells = body.orbit_ring_cells(0)
# Should have cells on the ring
assert len(cells) > 0
# All cells should be approximately orbit_ring_radius from center
for x, y in cells:
dist = math.sqrt((x - 100) ** 2 + (y - 100) ** 2)
assert 9.0 <= dist <= 11.0, f"Cell ({x},{y}) has distance {dist}"
print(" orbit_ring_cells: PASS")
def test_surface_cells():
"""Test surface cell generation."""
body = OrbitalBody(
name="Planet",
surface_radius=3,
orbit_ring_radius=10,
parent=None,
base_position=(50, 50)
)
cells = body.surface_cells(0)
# Center should be included
assert (50, 50) in cells
# All cells should be within surface_radius
for x, y in cells:
dist = math.sqrt((x - 50) ** 2 + (y - 50) ** 2)
assert dist <= 3.5, f"Cell ({x},{y}) has distance {dist}"
print(" surface_cells: PASS")
def test_nearest_orbit_entry():
"""Test finding nearest orbit entry point."""
body = OrbitalBody(
name="Planet",
surface_radius=5,
orbit_ring_radius=20,
parent=None,
base_position=(100, 100)
)
# Ship approaching from east
ship_pos = (150, 100)
entry_pos, angle = nearest_orbit_entry(ship_pos, body, 0)
# Entry should be on the east side of orbit ring
assert approx_equal(angle, 0.0)
assert entry_pos == (120, 100) # 100 + 20
# Ship approaching from north-east
ship_pos = (150, 150)
entry_pos, angle = nearest_orbit_entry(ship_pos, body, 0)
assert approx_equal(angle, 45.0)
print(" nearest_orbit_entry: PASS")
def test_optimal_exit_heading():
"""Test finding optimal orbit exit toward target."""
body = OrbitalBody(
name="Planet",
surface_radius=5,
orbit_ring_radius=20,
parent=None,
base_position=(100, 100)
)
# Target to the west
target = (0, 100)
exit_angle, exit_pos = optimal_exit_heading(body, target, 0)
assert approx_equal(exit_angle, 180.0)
assert exit_pos == (80, 100) # 100 - 20
print(" optimal_exit_heading: PASS")
def test_is_viable_waypoint():
"""Test waypoint viability check."""
body = OrbitalBody(
name="Planet",
surface_radius=5,
orbit_ring_radius=10,
parent=None,
base_position=(100, 100)
)
ship_pos = (50, 100) # West of body
target_east = (200, 100) # Far east
target_west = (0, 100) # Far west
# Body is between ship and eastern target - viable
assert is_viable_waypoint(ship_pos, body, target_east, 0, angle_threshold=90)
# Body is NOT between ship and western target - not viable
assert not is_viable_waypoint(ship_pos, body, target_west, 0, angle_threshold=45)
print(" is_viable_waypoint: PASS")
def test_line_of_sight_blocked():
"""Test line of sight blocking by bodies."""
blocker = OrbitalBody(
name="Planet",
surface_radius=10,
orbit_ring_radius=20,
parent=None,
base_position=(100, 100)
)
# LOS through the planet should be blocked
p1 = (50, 100)
p2 = (150, 100)
result = line_of_sight_blocked(p1, p2, [blocker], 0)
assert result == blocker
# LOS around the planet should be clear
p1 = (50, 50)
p2 = (150, 50)
result = line_of_sight_blocked(p1, p2, [blocker], 0)
assert result is None
print(" line_of_sight_blocked: PASS")
def test_convenience_functions():
"""Test solar system creation helpers."""
star = create_solar_system(1000, 1000, star_radius=15, star_orbit_radius=25)
assert star.name == "Star"
assert star.base_position == (500, 500)
assert star.surface_radius == 15
assert star.orbit_ring_radius == 25
assert star.parent is None
planet = create_planet(
name="Terra",
star=star,
orbital_radius=200,
surface_radius=10,
orbit_ring_radius=20,
angular_velocity=10,
initial_angle=45
)
assert planet.name == "Terra"
assert planet.parent == star
assert planet.orbital_radius == 200
moon = create_moon(
name="Luna",
planet=planet,
orbital_radius=30,
surface_radius=3,
orbit_ring_radius=8,
angular_velocity=30
)
assert moon.name == "Luna"
assert moon.parent == planet
print(" convenience_functions: PASS")
def test_discrete_movement():
"""Test that grid positions change at discrete thresholds."""
star = OrbitalBody(
name="Star",
surface_radius=10,
orbit_ring_radius=15,
parent=None,
base_position=(500, 500)
)
# Planet with moderate angular velocity
planet = OrbitalBody(
name="Planet",
surface_radius=5,
orbit_ring_radius=10,
parent=star,
orbital_radius=100,
angular_velocity=1.0, # 1 degree per turn
initial_angle=0
)
# Positions should be deterministic
pos0 = planet.grid_position_at_time(0)
pos10 = planet.grid_position_at_time(10)
pos10_again = planet.grid_position_at_time(10)
# Same time = same position (deterministic)
assert pos10 == pos10_again
# Position should change over time
assert pos0 != pos10
# Full orbit (360 degrees / 1 deg per turn = 360 turns) should return to start
pos360 = planet.grid_position_at_time(360)
assert pos0 == pos360
# Check the turns_until_position_changes function
turns = planet.turns_until_position_changes(0)
assert turns >= 1 # Should eventually change
# Verify it actually changes at that turn
pos_before = planet.grid_position_at_time(0)
pos_after = planet.grid_position_at_time(turns)
assert pos_before != pos_after
print(" discrete_movement: PASS")
def run_all_tests():
"""Run all geometry tests."""
print("Running geometry module tests...\n")
print("Utility functions:")
test_distance()
test_distance_squared()
test_angle_between()
test_normalize_angle()
test_angle_difference()
test_lerp()
test_clamp()
test_point_on_circle()
test_rotate_point()
print("\nGrid algorithms:")
test_bresenham_circle()
test_bresenham_line()
test_filled_circle()
print("\nOrbital body system:")
test_orbital_body_stationary()
test_orbital_body_simple_orbit()
test_orbital_body_nested_orbit()
test_orbiting_ship()
test_orbit_ring_cells()
test_surface_cells()
test_discrete_movement()
print("\nPathfinding helpers:")
test_nearest_orbit_entry()
test_optimal_exit_heading()
test_is_viable_waypoint()
test_line_of_sight_blocked()
print("\nConvenience functions:")
test_convenience_functions()
print("\n" + "=" * 50)
print("All geometry tests PASSED!")
print("=" * 50)
if __name__ == "__main__":
run_all_tests()