Compare commits
2 Commits
0938a53c4a
...
1149111f2d
Author | SHA1 | Date |
---|---|---|
|
1149111f2d | |
|
002c3d3382 |
|
@ -0,0 +1,645 @@
|
|||
"""
|
||||
McRogueFace Tutorial - Part 6: Turn-based enemy movement
|
||||
|
||||
This tutorial builds on Part 5 by adding:
|
||||
- Turn cycles where enemies move after the player
|
||||
- Enemy AI that pursues or wanders
|
||||
- Shared collision detection for all entities
|
||||
"""
|
||||
import mcrfpy
|
||||
import random
|
||||
|
||||
# Create and activate a new scene
|
||||
mcrfpy.createScene("tutorial")
|
||||
mcrfpy.setScene("tutorial")
|
||||
|
||||
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
|
||||
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
|
||||
|
||||
# Load the hero sprite texture
|
||||
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
|
||||
|
||||
# Create a grid of tiles
|
||||
grid_width, grid_height = 40, 30
|
||||
|
||||
# Calculate the size in pixels
|
||||
zoom = 2.0
|
||||
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
|
||||
|
||||
# Calculate the position to center the grid on the screen
|
||||
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
|
||||
|
||||
# Create the grid with a TCODMap for pathfinding/FOV
|
||||
grid = mcrfpy.Grid(
|
||||
pos=grid_position,
|
||||
grid_size=(grid_width, grid_height),
|
||||
texture=texture,
|
||||
size=grid_size,
|
||||
)
|
||||
|
||||
grid.zoom = zoom
|
||||
|
||||
# Define tile types
|
||||
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
|
||||
WALL_TILES = [3, 7, 11]
|
||||
|
||||
# Room class for BSP
|
||||
class Room:
|
||||
def __init__(self, x, y, w, h):
|
||||
self.x1 = x
|
||||
self.y1 = y
|
||||
self.x2 = x + w
|
||||
self.y2 = y + h
|
||||
self.w = w
|
||||
self.h = h
|
||||
|
||||
def center(self):
|
||||
center_x = (self.x1 + self.x2) // 2
|
||||
center_y = (self.y1 + self.y2) // 2
|
||||
return (center_x, center_y)
|
||||
|
||||
def intersects(self, other):
|
||||
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
|
||||
self.y1 <= other.y2 and self.y2 >= other.y1)
|
||||
|
||||
# Dungeon generation functions (from Part 3)
|
||||
def carve_room(room):
|
||||
for x in range(room.x1, room.x2):
|
||||
for y in range(room.y1, room.y2):
|
||||
if 0 <= x < grid_width and 0 <= y < grid_height:
|
||||
point = grid.at(x, y)
|
||||
if point:
|
||||
point.tilesprite = random.choice(FLOOR_TILES)
|
||||
point.walkable = True
|
||||
point.transparent = True
|
||||
|
||||
def carve_hallway(x1, y1, x2, y2):
|
||||
#points = mcrfpy.libtcod.line(x1, y1, x2, y2)
|
||||
points = []
|
||||
if random.choice([True, False]):
|
||||
# x1,y1 -> x2,y1 -> x2,y2
|
||||
points.extend(mcrfpy.libtcod.line(x1, y1, x2, y1))
|
||||
points.extend(mcrfpy.libtcod.line(x2, y1, x2, y2))
|
||||
else:
|
||||
# x1,y1 -> x1,y2 -> x2,y2
|
||||
points.extend(mcrfpy.libtcod.line(x1, y1, x1, y2))
|
||||
points.extend(mcrfpy.libtcod.line(x1, y2, x2, y2))
|
||||
|
||||
for x, y in points:
|
||||
if 0 <= x < grid_width and 0 <= y < grid_height:
|
||||
point = grid.at(x, y)
|
||||
if point:
|
||||
point.tilesprite = random.choice(FLOOR_TILES)
|
||||
point.walkable = True
|
||||
point.transparent = True
|
||||
|
||||
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
|
||||
rooms = []
|
||||
|
||||
# Fill with walls
|
||||
for y in range(grid_height):
|
||||
for x in range(grid_width):
|
||||
point = grid.at(x, y)
|
||||
if point:
|
||||
point.tilesprite = random.choice(WALL_TILES)
|
||||
point.walkable = False
|
||||
point.transparent = False
|
||||
|
||||
# Generate rooms
|
||||
for _ in range(max_rooms):
|
||||
w = random.randint(room_min_size, room_max_size)
|
||||
h = random.randint(room_min_size, room_max_size)
|
||||
x = random.randint(1, grid_width - w - 1)
|
||||
y = random.randint(1, grid_height - h - 1)
|
||||
|
||||
new_room = Room(x, y, w, h)
|
||||
|
||||
failed = False
|
||||
for other_room in rooms:
|
||||
if new_room.intersects(other_room):
|
||||
failed = True
|
||||
break
|
||||
|
||||
if not failed:
|
||||
carve_room(new_room)
|
||||
|
||||
if rooms:
|
||||
prev_x, prev_y = rooms[-1].center()
|
||||
new_x, new_y = new_room.center()
|
||||
carve_hallway(prev_x, prev_y, new_x, new_y)
|
||||
|
||||
rooms.append(new_room)
|
||||
|
||||
return rooms
|
||||
|
||||
# Generate the dungeon
|
||||
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
|
||||
|
||||
# Add the grid to the scene
|
||||
mcrfpy.sceneUI("tutorial").append(grid)
|
||||
|
||||
# Spawn player in the first room
|
||||
if rooms:
|
||||
spawn_x, spawn_y = rooms[0].center()
|
||||
else:
|
||||
spawn_x, spawn_y = 4, 4
|
||||
|
||||
class GameEntity(mcrfpy.Entity):
|
||||
"""An entity whose default behavior is to prevent others from moving into its tile."""
|
||||
|
||||
def __init__(self, x, y, walkable=False, **kwargs):
|
||||
super().__init__(x=x, y=y, **kwargs)
|
||||
self.walkable = walkable
|
||||
self.dest_x = x
|
||||
self.dest_y = y
|
||||
self.is_moving = False
|
||||
|
||||
def get_position(self):
|
||||
"""Get logical position (destination if moving, otherwise current)"""
|
||||
if self.is_moving:
|
||||
return (self.dest_x, self.dest_y)
|
||||
return (int(self.x), int(self.y))
|
||||
|
||||
def on_bump(self, other):
|
||||
return self.walkable # allow other's motion to proceed if entity is walkable
|
||||
|
||||
def __repr__(self):
|
||||
return f"<{self.__class__.__name__} x={self.x}, y={self.y}, sprite_index={self.sprite_index}>"
|
||||
|
||||
class CombatEntity(GameEntity):
|
||||
def __init__(self, x, y, hp=10, damage=(1,3), **kwargs):
|
||||
super().__init__(x=x, y=y, **kwargs)
|
||||
self.hp = hp
|
||||
self.damage = damage
|
||||
|
||||
def is_dead(self):
|
||||
return self.hp <= 0
|
||||
|
||||
def start_move(self, new_x, new_y, duration=0.2, callback=None):
|
||||
"""Start animating movement to new position"""
|
||||
self.dest_x = new_x
|
||||
self.dest_y = new_y
|
||||
self.is_moving = True
|
||||
|
||||
# Define completion callback that resets is_moving
|
||||
def movement_done(anim, entity):
|
||||
self.is_moving = False
|
||||
if callback:
|
||||
callback(anim, entity)
|
||||
|
||||
# Create animations for smooth movement
|
||||
anim_x = mcrfpy.Animation("x", float(new_x), duration, "easeInOutQuad", callback=movement_done)
|
||||
anim_y = mcrfpy.Animation("y", float(new_y), duration, "easeInOutQuad")
|
||||
|
||||
anim_x.start(self)
|
||||
anim_y.start(self)
|
||||
|
||||
def can_see(self, target_x, target_y):
|
||||
"""Check if this entity can see the target position"""
|
||||
mx, my = self.get_position()
|
||||
|
||||
# Simple distance check first
|
||||
dist = abs(target_x - mx) + abs(target_y - my)
|
||||
if dist > 6:
|
||||
return False
|
||||
|
||||
# Line of sight check
|
||||
line = list(mcrfpy.libtcod.line(mx, my, target_x, target_y))
|
||||
for x, y in line[1:-1]: # Skip start and end
|
||||
cell = grid.at(x, y)
|
||||
if cell and not cell.transparent:
|
||||
return False
|
||||
return True
|
||||
|
||||
def ai_turn(self, player_pos):
|
||||
"""Decide next move"""
|
||||
mx, my = self.get_position()
|
||||
px, py = player_pos
|
||||
|
||||
# Simple AI: move toward player if visible
|
||||
if self.can_see(px, py):
|
||||
# Calculate direction toward player
|
||||
dx = 0
|
||||
dy = 0
|
||||
if px > mx:
|
||||
dx = 1
|
||||
elif px < mx:
|
||||
dx = -1
|
||||
if py > my:
|
||||
dy = 1
|
||||
elif py < my:
|
||||
dy = -1
|
||||
|
||||
# Prefer cardinal movement
|
||||
if dx != 0 and dy != 0:
|
||||
# Pick horizontal or vertical based on greater distance
|
||||
if abs(px - mx) > abs(py - my):
|
||||
dy = 0
|
||||
else:
|
||||
dx = 0
|
||||
|
||||
return (mx + dx, my + dy)
|
||||
else:
|
||||
# Random wander
|
||||
dx, dy = random.choice([(0,1), (0,-1), (1,0), (-1,0)])
|
||||
return (mx + dx, my + dy)
|
||||
|
||||
def ai_turn_dijkstra(self):
|
||||
"""Decide next move using precomputed Dijkstra map"""
|
||||
mx, my = self.get_position()
|
||||
|
||||
# Get current distance to player
|
||||
current_dist = grid.get_dijkstra_distance(mx, my)
|
||||
if current_dist is None or current_dist > 20:
|
||||
# Too far or unreachable - random wander
|
||||
dx, dy = random.choice([(0,1), (0,-1), (1,0), (-1,0)])
|
||||
return (mx + dx, my + dy)
|
||||
|
||||
# Check all adjacent cells for best move
|
||||
best_moves = []
|
||||
for dx, dy in [(0,1), (0,-1), (1,0), (-1,0)]:
|
||||
nx, ny = mx + dx, my + dy
|
||||
|
||||
# Skip if out of bounds
|
||||
if nx < 0 or nx >= grid_width or ny < 0 or ny >= grid_height:
|
||||
continue
|
||||
|
||||
# Skip if not walkable
|
||||
cell = grid.at(nx, ny)
|
||||
if not cell or not cell.walkable:
|
||||
continue
|
||||
|
||||
# Get distance from this cell
|
||||
dist = grid.get_dijkstra_distance(nx, ny)
|
||||
if dist is not None:
|
||||
best_moves.append((dist, nx, ny))
|
||||
|
||||
if best_moves:
|
||||
# Sort by distance
|
||||
best_moves.sort()
|
||||
|
||||
# If multiple moves have the same best distance, pick randomly
|
||||
best_dist = best_moves[0][0]
|
||||
equal_moves = [(nx, ny) for dist, nx, ny in best_moves if dist == best_dist]
|
||||
|
||||
if len(equal_moves) > 1:
|
||||
# Random choice among equally good moves
|
||||
nx, ny = random.choice(equal_moves)
|
||||
else:
|
||||
_, nx, ny = best_moves[0]
|
||||
|
||||
return (nx, ny)
|
||||
else:
|
||||
# No valid moves
|
||||
return (mx, my)
|
||||
|
||||
# Create a player entity
|
||||
player = CombatEntity(
|
||||
spawn_x, spawn_y,
|
||||
texture=hero_texture,
|
||||
sprite_index=0
|
||||
)
|
||||
|
||||
# Add the player entity to the grid
|
||||
grid.entities.append(player)
|
||||
|
||||
# Track all enemies
|
||||
enemies = []
|
||||
|
||||
# Spawn enemies in other rooms
|
||||
for i, room in enumerate(rooms[1:], 1): # Skip first room (player spawn)
|
||||
if i <= 3: # Limit to 3 enemies for now
|
||||
enemy_x, enemy_y = room.center()
|
||||
enemy = CombatEntity(
|
||||
enemy_x, enemy_y,
|
||||
texture=hero_texture,
|
||||
sprite_index=0 # Enemy sprite (borrow player's)
|
||||
)
|
||||
grid.entities.append(enemy)
|
||||
enemies.append(enemy)
|
||||
|
||||
# Set the grid perspective to the player by default
|
||||
# Note: The new perspective system uses entity references directly
|
||||
grid.perspective = player
|
||||
|
||||
# Initial FOV computation
|
||||
def update_fov():
|
||||
"""Update field of view from current perspective"""
|
||||
if grid.perspective == player:
|
||||
grid.compute_fov(int(player.x), int(player.y), radius=8, algorithm=0)
|
||||
player.update_visibility()
|
||||
|
||||
# Perform initial FOV calculation
|
||||
update_fov()
|
||||
|
||||
# Center grid on current perspective
|
||||
def center_on_perspective():
|
||||
if grid.perspective == player:
|
||||
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
|
||||
|
||||
center_on_perspective()
|
||||
|
||||
# Movement state tracking (from Part 3)
|
||||
#is_moving = False # make it an entity property
|
||||
move_queue = []
|
||||
current_destination = None
|
||||
current_move = None
|
||||
|
||||
# Store animation references
|
||||
player_anim_x = None
|
||||
player_anim_y = None
|
||||
grid_anim_x = None
|
||||
grid_anim_y = None
|
||||
|
||||
def movement_complete(anim, target):
|
||||
"""Called when movement animation completes"""
|
||||
global move_queue, current_destination, current_move
|
||||
global player_anim_x, player_anim_y, is_player_turn
|
||||
|
||||
player.is_moving = False
|
||||
current_move = None
|
||||
current_destination = None
|
||||
player_anim_x = None
|
||||
player_anim_y = None
|
||||
|
||||
# Update FOV after movement
|
||||
update_fov()
|
||||
center_on_perspective()
|
||||
|
||||
# Player turn complete, start enemy turns and queued player move simultaneously
|
||||
is_player_turn = False
|
||||
process_enemy_turns_and_player_queue()
|
||||
|
||||
motion_speed = 0.20
|
||||
is_player_turn = True # Track whose turn it is
|
||||
|
||||
def get_blocking_entity_at(x, y):
|
||||
"""Get blocking entity at position"""
|
||||
for e in grid.entities:
|
||||
if not e.walkable and (x, y) == e.get_position():
|
||||
return e
|
||||
return None
|
||||
|
||||
def can_move_to(x, y, mover=None):
|
||||
"""Check if a position is valid for movement"""
|
||||
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
|
||||
return False
|
||||
|
||||
point = grid.at(x, y)
|
||||
if not point or not point.walkable:
|
||||
return False
|
||||
|
||||
# Check for blocking entities
|
||||
blocker = get_blocking_entity_at(x, y)
|
||||
if blocker and blocker != mover:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def process_enemy_turns_and_player_queue():
|
||||
"""Process all enemy AI decisions and player's queued move simultaneously"""
|
||||
global is_player_turn, move_queue
|
||||
|
||||
# Compute Dijkstra map once for all enemies (if using Dijkstra)
|
||||
if USE_DIJKSTRA:
|
||||
px, py = player.get_position()
|
||||
grid.compute_dijkstra(px, py, diagonal_cost=1.41)
|
||||
|
||||
enemies_to_move = []
|
||||
claimed_positions = set() # Track where enemies plan to move
|
||||
|
||||
# Collect all enemy moves
|
||||
for i, enemy in enumerate(enemies):
|
||||
if enemy.is_dead():
|
||||
continue
|
||||
|
||||
# AI decides next move
|
||||
if USE_DIJKSTRA:
|
||||
target_x, target_y = enemy.ai_turn_dijkstra()
|
||||
else:
|
||||
target_x, target_y = enemy.ai_turn(player.get_position())
|
||||
|
||||
# Check if move is valid and not claimed by another enemy
|
||||
if can_move_to(target_x, target_y, enemy) and (target_x, target_y) not in claimed_positions:
|
||||
enemies_to_move.append((enemy, target_x, target_y))
|
||||
claimed_positions.add((target_x, target_y))
|
||||
|
||||
# Start all enemy animations simultaneously
|
||||
any_enemy_moved = False
|
||||
if enemies_to_move:
|
||||
for enemy, tx, ty in enemies_to_move:
|
||||
enemy.start_move(tx, ty, duration=motion_speed)
|
||||
any_enemy_moved = True
|
||||
|
||||
# Process player's queued move at the same time
|
||||
if move_queue:
|
||||
next_move = move_queue.pop(0)
|
||||
process_player_queued_move(next_move)
|
||||
else:
|
||||
# No queued move, set up callback to return control when animations finish
|
||||
if any_enemy_moved:
|
||||
# Wait for animations to complete
|
||||
mcrfpy.setTimer("turn_complete", check_turn_complete, int(motion_speed * 1000) + 50)
|
||||
else:
|
||||
# No animations, return control immediately
|
||||
is_player_turn = True
|
||||
|
||||
def process_player_queued_move(key):
|
||||
"""Process player's queued move during enemy turn"""
|
||||
global current_move, current_destination
|
||||
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
|
||||
|
||||
px, py = int(player.x), int(player.y)
|
||||
new_x, new_y = px, py
|
||||
|
||||
if key == "W" or key == "Up":
|
||||
new_y -= 1
|
||||
elif key == "S" or key == "Down":
|
||||
new_y += 1
|
||||
elif key == "A" or key == "Left":
|
||||
new_x -= 1
|
||||
elif key == "D" or key == "Right":
|
||||
new_x += 1
|
||||
|
||||
if new_x != px or new_y != py:
|
||||
# Check destination at animation end time (considering enemy destinations)
|
||||
future_blocker = get_future_blocking_entity_at(new_x, new_y)
|
||||
|
||||
if future_blocker:
|
||||
# Will bump at destination
|
||||
# Schedule bump for when animations complete
|
||||
mcrfpy.setTimer("delayed_bump", lambda t: handle_delayed_bump(future_blocker), int(motion_speed * 1000))
|
||||
elif can_move_to(new_x, new_y, player):
|
||||
# Valid move, start animation
|
||||
player.is_moving = True
|
||||
current_move = key
|
||||
current_destination = (new_x, new_y)
|
||||
player.dest_x = new_x
|
||||
player.dest_y = new_y
|
||||
|
||||
# Player animation with callback
|
||||
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=player_queued_move_complete)
|
||||
player_anim_x.start(player)
|
||||
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
|
||||
player_anim_y.start(player)
|
||||
|
||||
# Move camera with player
|
||||
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
|
||||
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
|
||||
grid_anim_x.start(grid)
|
||||
grid_anim_y.start(grid)
|
||||
else:
|
||||
# Blocked by wall, wait for turn to complete
|
||||
mcrfpy.setTimer("turn_complete", check_turn_complete, int(motion_speed * 1000) + 50)
|
||||
|
||||
def get_future_blocking_entity_at(x, y):
|
||||
"""Get entity that will be blocking at position after current animations"""
|
||||
for e in grid.entities:
|
||||
if not e.walkable and (x, y) == (e.dest_x, e.dest_y):
|
||||
return e
|
||||
return None
|
||||
|
||||
def handle_delayed_bump(entity):
|
||||
"""Handle bump after animations complete"""
|
||||
global is_player_turn
|
||||
entity.on_bump(player)
|
||||
is_player_turn = True
|
||||
|
||||
def player_queued_move_complete(anim, target):
|
||||
"""Called when player's queued movement completes"""
|
||||
global is_player_turn
|
||||
player.is_moving = False
|
||||
update_fov()
|
||||
center_on_perspective()
|
||||
is_player_turn = True
|
||||
|
||||
def check_turn_complete(timer_name):
|
||||
"""Check if all animations are complete"""
|
||||
global is_player_turn
|
||||
|
||||
# Check if any entity is still moving
|
||||
if player.is_moving:
|
||||
mcrfpy.setTimer("turn_complete", check_turn_complete, 50)
|
||||
return
|
||||
|
||||
for enemy in enemies:
|
||||
if enemy.is_moving:
|
||||
mcrfpy.setTimer("turn_complete", check_turn_complete, 50)
|
||||
return
|
||||
|
||||
# All done
|
||||
is_player_turn = True
|
||||
|
||||
def process_move(key):
|
||||
"""Process a move based on the key"""
|
||||
global current_move, current_destination, move_queue
|
||||
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y, is_player_turn
|
||||
|
||||
# Only allow player movement on player's turn
|
||||
if not is_player_turn:
|
||||
return
|
||||
|
||||
# Only allow player movement when in player perspective
|
||||
if grid.perspective != player:
|
||||
return
|
||||
|
||||
if player.is_moving:
|
||||
move_queue.clear()
|
||||
move_queue.append(key)
|
||||
return
|
||||
|
||||
px, py = int(player.x), int(player.y)
|
||||
new_x, new_y = px, py
|
||||
|
||||
if key == "W" or key == "Up":
|
||||
new_y -= 1
|
||||
elif key == "S" or key == "Down":
|
||||
new_y += 1
|
||||
elif key == "A" or key == "Left":
|
||||
new_x -= 1
|
||||
elif key == "D" or key == "Right":
|
||||
new_x += 1
|
||||
|
||||
if new_x != px or new_y != py:
|
||||
# Check what's at destination
|
||||
blocker = get_blocking_entity_at(new_x, new_y)
|
||||
|
||||
if blocker:
|
||||
# Bump interaction (combat will go here later)
|
||||
blocker.on_bump(player)
|
||||
# Still counts as a turn
|
||||
is_player_turn = False
|
||||
process_enemy_turns_and_player_queue()
|
||||
elif can_move_to(new_x, new_y, player):
|
||||
player.is_moving = True
|
||||
current_move = key
|
||||
current_destination = (new_x, new_y)
|
||||
player.dest_x = new_x
|
||||
player.dest_y = new_y
|
||||
|
||||
# Start player move animation
|
||||
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
|
||||
player_anim_x.start(player)
|
||||
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
|
||||
player_anim_y.start(player)
|
||||
|
||||
# Move camera with player
|
||||
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
|
||||
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
|
||||
grid_anim_x.start(grid)
|
||||
grid_anim_y.start(grid)
|
||||
|
||||
def handle_keys(key, state):
|
||||
"""Handle keyboard input"""
|
||||
if state == "start":
|
||||
# Movement keys
|
||||
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
|
||||
process_move(key)
|
||||
|
||||
# Register the keyboard handler
|
||||
mcrfpy.keypressScene(handle_keys)
|
||||
|
||||
# Add UI elements
|
||||
title = mcrfpy.Caption((320, 10),
|
||||
text="McRogueFace Tutorial - Part 6: Turn-based Movement",
|
||||
)
|
||||
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
|
||||
mcrfpy.sceneUI("tutorial").append(title)
|
||||
|
||||
instructions = mcrfpy.Caption((150, 720),
|
||||
text="Use WASD/Arrows to move. Enemies move after you!",
|
||||
)
|
||||
instructions.font_size = 18
|
||||
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
|
||||
mcrfpy.sceneUI("tutorial").append(instructions)
|
||||
|
||||
# Debug info
|
||||
debug_caption = mcrfpy.Caption((10, 40),
|
||||
text=f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Enemies: {len(enemies)}",
|
||||
)
|
||||
debug_caption.font_size = 16
|
||||
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
|
||||
mcrfpy.sceneUI("tutorial").append(debug_caption)
|
||||
|
||||
# Update function for turn display
|
||||
def update_turn_display():
|
||||
turn_text = "Player" if is_player_turn else "Enemy"
|
||||
alive_enemies = sum(1 for e in enemies if not e.is_dead())
|
||||
debug_caption.text = f"Grid: {grid_width}x{grid_height} | Turn: {turn_text} | Enemies: {alive_enemies}/{len(enemies)}"
|
||||
|
||||
# Configuration toggle
|
||||
USE_DIJKSTRA = True # Set to False to use old line-of-sight AI
|
||||
|
||||
# Timer to update display
|
||||
def update_display(runtime):
|
||||
update_turn_display()
|
||||
|
||||
mcrfpy.setTimer("display_update", update_display, 100)
|
||||
|
||||
print("Tutorial Part 6 loaded!")
|
||||
print("Turn-based movement system active!")
|
||||
print(f"Using {'Dijkstra' if USE_DIJKSTRA else 'Line-of-sight'} AI pathfinding")
|
||||
print("- Enemies move after the player")
|
||||
print("- Enemies pursue when they can see you" if not USE_DIJKSTRA else "- Enemies use optimal pathfinding")
|
||||
print("- Enemies wander when they can't" if not USE_DIJKSTRA else "- All enemies share one pathfinding map")
|
||||
print("Use WASD or Arrow keys to move!")
|
Loading…
Reference in New Issue