Compare commits

..

No commits in common. "0938a53c4a250bbbe9d9f9e0c4963405b8817da7" and "bd6407db29aee1b7d6993b9353653668855d9458" have entirely different histories.

6 changed files with 81 additions and 1265 deletions

View File

@ -1,313 +0,0 @@
"""
McRogueFace Tutorial - Part 3: Procedural Dungeon Generation
This tutorial builds on Part 2 by adding:
- Binary Space Partition (BSP) dungeon generation
- Rooms connected by hallways using libtcod.line()
- Walkable/non-walkable terrain
- Player spawning in a valid location
- Wall tiles that block movement
Key code references:
- src/scripts/cos_level.py (lines 7-15, 184-217, 218-224) - BSP algorithm
- mcrfpy.libtcod.line() for smooth hallway generation
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30 # Larger grid for dungeon
# Calculate the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# Calculate the position to center the grid on the screen
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid with a TCODMap for pathfinding/FOV
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Room class for BSP
class Room:
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.w = w
self.h = h
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return (center_x, center_y)
def intersects(self, other):
"""Return True if this room overlaps with another"""
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
# Dungeon generation functions
def carve_room(room):
"""Carve out a room in the grid - referenced from cos_level.py lines 117-120"""
# Using individual updates for now (batch updates would be more efficient)
for x in range(room.x1, room.x2):
for y in range(room.y1, room.y2):
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def carve_hallway(x1, y1, x2, y2):
"""Carve a hallway between two points using libtcod.line()
Referenced from cos_level.py lines 184-217, improved with libtcod.line()
"""
# Get all points along the line
# Simple solution: works if your characters have diagonal movement
#points = mcrfpy.libtcod.line(x1, y1, x2, y2)
# We don't, so we're going to carve a path with an elbow in it
points = []
if random.choice([True, False]):
# x1,y1 -> x2,y1 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x2, y1))
points.extend(mcrfpy.libtcod.line(x2, y1, x2, y2))
else:
# x1,y1 -> x1,y2 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x1, y2))
points.extend(mcrfpy.libtcod.line(x1, y2, x2, y2))
# Carve out each point
for x, y in points:
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
"""Generate a dungeon using simplified BSP approach
Referenced from cos_level.py lines 218-224
"""
rooms = []
# First, fill everything with walls
for y in range(grid_height):
for x in range(grid_width):
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(WALL_TILES)
point.walkable = False
point.transparent = False
# Generate rooms
for _ in range(max_rooms):
# Random room size
w = random.randint(room_min_size, room_max_size)
h = random.randint(room_min_size, room_max_size)
# Random position (with margin from edges)
x = random.randint(1, grid_width - w - 1)
y = random.randint(1, grid_height - h - 1)
new_room = Room(x, y, w, h)
# Check if it overlaps with existing rooms
failed = False
for other_room in rooms:
if new_room.intersects(other_room):
failed = True
break
if not failed:
# Carve out the room
carve_room(new_room)
# If not the first room, connect to previous room
if rooms:
# Get centers
prev_x, prev_y = rooms[-1].center()
new_x, new_y = new_room.center()
# Carve hallway using libtcod.line()
carve_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
return rooms
# Generate the dungeon
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Spawn player in the first room
if rooms:
spawn_x, spawn_y = rooms[0].center()
else:
# Fallback spawn position
spawn_x, spawn_y = 4, 4
# Create a player entity at the spawn position
player = mcrfpy.Entity(
(spawn_x, spawn_y),
texture=hero_texture,
sprite_index=0
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
# Movement state tracking (from Part 2)
is_moving = False
move_queue = []
current_destination = None
current_move = None
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
def movement_complete(anim, target):
"""Called when movement animation completes"""
global is_moving, move_queue, current_destination, current_move
global player_anim_x, player_anim_y
is_moving = False
current_move = None
current_destination = None
player_anim_x = None
player_anim_y = None
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
if move_queue:
next_move = move_queue.pop(0)
process_move(next_move)
motion_speed = 0.20 # Slightly faster for dungeon exploration
def can_move_to(x, y):
"""Check if a position is valid for movement"""
# Boundary check
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
# Walkability check
point = grid.at(x, y)
if point and point.walkable:
return True
return False
def process_move(key):
"""Process a move based on the key"""
global is_moving, current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
if is_moving:
move_queue.clear()
move_queue.append(key)
return
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# Check if we can move to the new position
if new_x != px or new_y != py:
if can_move_to(new_x, new_y):
is_moving = True
current_move = key
current_destination = (new_x, new_y)
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
else:
# Play a "bump" sound or visual feedback here
print(f"Can't move to ({new_x}, {new_y}) - blocked!")
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start":
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add UI elements
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 3: Dungeon Generation",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
instructions = mcrfpy.Caption((150, 750),
text=f"Procedural dungeon with {len(rooms)} rooms connected by hallways!",
)
instructions.font_size = 18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
# Debug info
debug_caption = mcrfpy.Caption((10, 40),
text=f"Grid: {grid_width}x{grid_height} | Player spawned at ({spawn_x}, {spawn_y})",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
print("Tutorial Part 3 loaded!")
print(f"Generated dungeon with {len(rooms)} rooms")
print(f"Player spawned at ({spawn_x}, {spawn_y})")
print("Walls now block movement!")
print("Use WASD or Arrow keys to explore the dungeon!")

View File

@ -1,366 +0,0 @@
"""
McRogueFace Tutorial - Part 4: Field of View
This tutorial builds on Part 3 by adding:
- Field of view calculation using grid.compute_fov()
- Entity perspective rendering with grid.perspective
- Three visibility states: unexplored (black), explored (dark), visible (lit)
- Memory of previously seen areas
- Enemy entity to demonstrate perspective switching
Key code references:
- tests/unit/test_tcod_fov_entities.py (lines 89-118) - FOV with multiple entities
- ROADMAP.md (lines 216-229) - FOV system implementation details
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30
# Calculate the size in pixels
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# Calculate the position to center the grid on the screen
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid with a TCODMap for pathfinding/FOV
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Room class for BSP
class Room:
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.w = w
self.h = h
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return (center_x, center_y)
def intersects(self, other):
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
# Dungeon generation functions (from Part 3)
def carve_room(room):
for x in range(room.x1, room.x2):
for y in range(room.y1, room.y2):
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def carve_hallway(x1, y1, x2, y2):
#points = mcrfpy.libtcod.line(x1, y1, x2, y2)
points = []
if random.choice([True, False]):
# x1,y1 -> x2,y1 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x2, y1))
points.extend(mcrfpy.libtcod.line(x2, y1, x2, y2))
else:
# x1,y1 -> x1,y2 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x1, y2))
points.extend(mcrfpy.libtcod.line(x1, y2, x2, y2))
for x, y in points:
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
rooms = []
# Fill with walls
for y in range(grid_height):
for x in range(grid_width):
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(WALL_TILES)
point.walkable = False
point.transparent = False
# Generate rooms
for _ in range(max_rooms):
w = random.randint(room_min_size, room_max_size)
h = random.randint(room_min_size, room_max_size)
x = random.randint(1, grid_width - w - 1)
y = random.randint(1, grid_height - h - 1)
new_room = Room(x, y, w, h)
failed = False
for other_room in rooms:
if new_room.intersects(other_room):
failed = True
break
if not failed:
carve_room(new_room)
if rooms:
prev_x, prev_y = rooms[-1].center()
new_x, new_y = new_room.center()
carve_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
return rooms
# Generate the dungeon
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Spawn player in the first room
if rooms:
spawn_x, spawn_y = rooms[0].center()
else:
spawn_x, spawn_y = 4, 4
# Create a player entity
player = mcrfpy.Entity(
(spawn_x, spawn_y),
texture=hero_texture,
sprite_index=0
)
# Add the player entity to the grid
grid.entities.append(player)
# Create an enemy entity in another room (to demonstrate perspective switching)
enemy = None
if len(rooms) > 1:
enemy_x, enemy_y = rooms[1].center()
enemy = mcrfpy.Entity(
(enemy_x, enemy_y),
texture=hero_texture,
sprite_index=0 # Enemy sprite
)
grid.entities.append(enemy)
# Set the grid perspective to the player by default
# Note: The new perspective system uses entity references directly
grid.perspective = player
# Initial FOV computation
def update_fov():
"""Update field of view from current perspective
Referenced from test_tcod_fov_entities.py lines 89-118
"""
if grid.perspective == player:
grid.compute_fov(int(player.x), int(player.y), radius=8, algorithm=0)
player.update_visibility()
elif enemy and grid.perspective == enemy:
grid.compute_fov(int(enemy.x), int(enemy.y), radius=6, algorithm=0)
enemy.update_visibility()
# Perform initial FOV calculation
update_fov()
# Center grid on current perspective
def center_on_perspective():
if grid.perspective == player:
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
elif enemy and grid.perspective == enemy:
grid.center = (enemy.x + 0.5) * 16, (enemy.y + 0.5) * 16
center_on_perspective()
# Movement state tracking (from Part 3)
is_moving = False
move_queue = []
current_destination = None
current_move = None
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
def movement_complete(anim, target):
"""Called when movement animation completes"""
global is_moving, move_queue, current_destination, current_move
global player_anim_x, player_anim_y
is_moving = False
current_move = None
current_destination = None
player_anim_x = None
player_anim_y = None
# Update FOV after movement
update_fov()
center_on_perspective()
if move_queue:
next_move = move_queue.pop(0)
process_move(next_move)
motion_speed = 0.20
def can_move_to(x, y):
"""Check if a position is valid for movement"""
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
point = grid.at(x, y)
if point and point.walkable:
return True
return False
def process_move(key):
"""Process a move based on the key"""
global is_moving, current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
# Only allow player movement when in player perspective
if grid.perspective != player:
return
if is_moving:
move_queue.clear()
move_queue.append(key)
return
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
if new_x != px or new_y != py:
if can_move_to(new_x, new_y):
is_moving = True
current_move = key
current_destination = (new_x, new_y)
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
def handle_keys(key, state):
"""Handle keyboard input"""
if state == "start":
# Movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_move(key)
# Perspective switching
elif key == "Tab":
# Switch perspective between player and enemy
if enemy:
if grid.perspective == player:
grid.perspective = enemy
print("Switched to enemy perspective")
else:
grid.perspective = player
print("Switched to player perspective")
# Update FOV and camera for new perspective
update_fov()
center_on_perspective()
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add UI elements
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 4: Field of View",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
instructions = mcrfpy.Caption((150, 720),
text="Use WASD/Arrows to move. Press Tab to switch perspective!",
)
instructions.font_size = 18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
# FOV info
fov_caption = mcrfpy.Caption((150, 745),
text="FOV: Player (radius 8) | Enemy visible in other room",
)
fov_caption.font_size = 16
fov_caption.fill_color = mcrfpy.Color(100, 200, 255, 255)
mcrfpy.sceneUI("tutorial").append(fov_caption)
# Debug info
debug_caption = mcrfpy.Caption((10, 40),
text=f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Perspective: Player",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
# Update function for perspective display
def update_perspective_display():
current_perspective = "Player" if grid.perspective == player else "Enemy"
debug_caption.text = f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Perspective: {current_perspective}"
if grid.perspective == player:
fov_caption.text = "FOV: Player (radius 8) | Tab to switch perspective"
else:
fov_caption.text = "FOV: Enemy (radius 6) | Tab to switch perspective"
# Timer to update display
def update_display(runtime):
update_perspective_display()
mcrfpy.setTimer("display_update", update_display, 100)
print("Tutorial Part 4 loaded!")
print("Field of View system active!")
print("- Unexplored areas are black")
print("- Previously seen areas are dark")
print("- Currently visible areas are lit")
print("Press Tab to switch between player and enemy perspective!")
print("Use WASD or Arrow keys to move!")

View File

@ -1,363 +0,0 @@
"""
McRogueFace Tutorial - Part 5: Interacting with other entities
This tutorial builds on Part 4 by adding:
- Subclassing mcrfpy.Entity
- Non-blocking movement animations with destination tracking
- Bump interactions (combat, pushing)
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30
# Calculate the size in pixels
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# Calculate the position to center the grid on the screen
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid with a TCODMap for pathfinding/FOV
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Room class for BSP
class Room:
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.w = w
self.h = h
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return (center_x, center_y)
def intersects(self, other):
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
# Dungeon generation functions (from Part 3)
def carve_room(room):
for x in range(room.x1, room.x2):
for y in range(room.y1, room.y2):
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def carve_hallway(x1, y1, x2, y2):
#points = mcrfpy.libtcod.line(x1, y1, x2, y2)
points = []
if random.choice([True, False]):
# x1,y1 -> x2,y1 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x2, y1))
points.extend(mcrfpy.libtcod.line(x2, y1, x2, y2))
else:
# x1,y1 -> x1,y2 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x1, y2))
points.extend(mcrfpy.libtcod.line(x1, y2, x2, y2))
for x, y in points:
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
rooms = []
# Fill with walls
for y in range(grid_height):
for x in range(grid_width):
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(WALL_TILES)
point.walkable = False
point.transparent = False
# Generate rooms
for _ in range(max_rooms):
w = random.randint(room_min_size, room_max_size)
h = random.randint(room_min_size, room_max_size)
x = random.randint(1, grid_width - w - 1)
y = random.randint(1, grid_height - h - 1)
new_room = Room(x, y, w, h)
failed = False
for other_room in rooms:
if new_room.intersects(other_room):
failed = True
break
if not failed:
carve_room(new_room)
if rooms:
prev_x, prev_y = rooms[-1].center()
new_x, new_y = new_room.center()
carve_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
return rooms
# Generate the dungeon
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Spawn player in the first room
if rooms:
spawn_x, spawn_y = rooms[0].center()
else:
spawn_x, spawn_y = 4, 4
class GameEntity(mcrfpy.Entity):
"""An entity whose default behavior is to prevent others from moving into its tile."""
def __init__(self, x, y, walkable=False, **kwargs):
super().__init__(x=x, y=y, **kwargs)
self.walkable = walkable
self.dest_x = x
self.dest_y = y
self.is_moving = False
def get_position(self):
"""Get logical position (destination if moving, otherwise current)"""
if self.is_moving:
return (self.dest_x, self.dest_y)
return (int(self.x), int(self.y))
def on_bump(self, other):
return self.walkable # allow other's motion to proceed if entity is walkable
def __repr__(self):
return f"<{self.__class__.__name__} x={self.x}, y={self.y}, sprite_index={self.sprite_index}>"
class BumpableEntity(GameEntity):
def __init__(self, x, y, **kwargs):
super().__init__(x, y, **kwargs)
def on_bump(self, other):
print(f"Watch it, {other}! You bumped into {self}!")
return False
# Create a player entity
player = GameEntity(
spawn_x, spawn_y,
texture=hero_texture,
sprite_index=0
)
# Add the player entity to the grid
grid.entities.append(player)
for r in rooms:
enemy_x, enemy_y = r.center()
enemy = BumpableEntity(
enemy_x, enemy_y,
grid=grid,
texture=hero_texture,
sprite_index=0 # Enemy sprite
)
# Set the grid perspective to the player by default
# Note: The new perspective system uses entity references directly
grid.perspective = player
# Initial FOV computation
def update_fov():
"""Update field of view from current perspective
Referenced from test_tcod_fov_entities.py lines 89-118
"""
if grid.perspective == player:
grid.compute_fov(int(player.x), int(player.y), radius=8, algorithm=0)
player.update_visibility()
elif enemy and grid.perspective == enemy:
grid.compute_fov(int(enemy.x), int(enemy.y), radius=6, algorithm=0)
enemy.update_visibility()
# Perform initial FOV calculation
update_fov()
# Center grid on current perspective
def center_on_perspective():
if grid.perspective == player:
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
elif enemy and grid.perspective == enemy:
grid.center = (enemy.x + 0.5) * 16, (enemy.y + 0.5) * 16
center_on_perspective()
# Movement state tracking (from Part 3)
#is_moving = False # make it an entity property
move_queue = []
current_destination = None
current_move = None
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
def movement_complete(anim, target):
"""Called when movement animation completes"""
global move_queue, current_destination, current_move
global player_anim_x, player_anim_y
player.is_moving = False
current_move = None
current_destination = None
player_anim_x = None
player_anim_y = None
# Update FOV after movement
update_fov()
center_on_perspective()
if move_queue:
next_move = move_queue.pop(0)
process_move(next_move)
motion_speed = 0.20
def can_move_to(x, y):
"""Check if a position is valid for movement"""
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
point = grid.at(x, y)
if point and point.walkable:
for e in grid.entities:
if not e.walkable and (x, y) == e.get_position(): # blocking the way
e.on_bump(player)
return False
return True # all checks passed, no collision
return False
def process_move(key):
"""Process a move based on the key"""
global current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
# Only allow player movement when in player perspective
if grid.perspective != player:
return
if player.is_moving:
move_queue.clear()
move_queue.append(key)
return
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
if new_x != px or new_y != py:
if can_move_to(new_x, new_y):
player.is_moving = True
current_move = key
current_destination = (new_x, new_y)
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
def handle_keys(key, state):
"""Handle keyboard input"""
if state == "start":
# Movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add UI elements
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 5: Entity Collision",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
instructions = mcrfpy.Caption((150, 720),
text="Use WASD/Arrows to move. Try to bump into the other entity!",
)
instructions.font_size = 18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
# Debug info
debug_caption = mcrfpy.Caption((10, 40),
text=f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Perspective: Player",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
# Update function for perspective display
def update_perspective_display():
current_perspective = "Player" if grid.perspective == player else "Enemy"
debug_caption.text = f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Perspective: {current_perspective}"
# Timer to update display
def update_display(runtime):
update_perspective_display()
mcrfpy.setTimer("display_update", update_display, 100)
print("Tutorial Part 4 loaded!")
print("Field of View system active!")
print("- Unexplored areas are black")
print("- Previously seen areas are dark")
print("- Currently visible areas are lit")
print("Press Tab to switch between player and enemy perspective!")
print("Use WASD or Arrow keys to move!")

View File

@ -138,67 +138,47 @@ PyObject* PyAnimation::start(PyAnimationObject* self, PyObject* args) {
return NULL; return NULL;
} }
// Get type objects from the module to ensure they're initialized // Check type by comparing type names
PyObject* frame_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame"); const char* type_name = Py_TYPE(target_obj)->tp_name;
PyObject* caption_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption");
PyObject* sprite_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite");
PyObject* grid_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid");
PyObject* entity_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Entity");
bool handled = false; if (strcmp(type_name, "mcrfpy.Frame") == 0) {
// Use PyObject_IsInstance to support inheritance
if (frame_type && PyObject_IsInstance(target_obj, frame_type)) {
PyUIFrameObject* frame = (PyUIFrameObject*)target_obj; PyUIFrameObject* frame = (PyUIFrameObject*)target_obj;
if (frame->data) { if (frame->data) {
self->data->start(frame->data); self->data->start(frame->data);
AnimationManager::getInstance().addAnimation(self->data); AnimationManager::getInstance().addAnimation(self->data);
handled = true;
} }
} }
else if (caption_type && PyObject_IsInstance(target_obj, caption_type)) { else if (strcmp(type_name, "mcrfpy.Caption") == 0) {
PyUICaptionObject* caption = (PyUICaptionObject*)target_obj; PyUICaptionObject* caption = (PyUICaptionObject*)target_obj;
if (caption->data) { if (caption->data) {
self->data->start(caption->data); self->data->start(caption->data);
AnimationManager::getInstance().addAnimation(self->data); AnimationManager::getInstance().addAnimation(self->data);
handled = true;
} }
} }
else if (sprite_type && PyObject_IsInstance(target_obj, sprite_type)) { else if (strcmp(type_name, "mcrfpy.Sprite") == 0) {
PyUISpriteObject* sprite = (PyUISpriteObject*)target_obj; PyUISpriteObject* sprite = (PyUISpriteObject*)target_obj;
if (sprite->data) { if (sprite->data) {
self->data->start(sprite->data); self->data->start(sprite->data);
AnimationManager::getInstance().addAnimation(self->data); AnimationManager::getInstance().addAnimation(self->data);
handled = true;
} }
} }
else if (grid_type && PyObject_IsInstance(target_obj, grid_type)) { else if (strcmp(type_name, "mcrfpy.Grid") == 0) {
PyUIGridObject* grid = (PyUIGridObject*)target_obj; PyUIGridObject* grid = (PyUIGridObject*)target_obj;
if (grid->data) { if (grid->data) {
self->data->start(grid->data); self->data->start(grid->data);
AnimationManager::getInstance().addAnimation(self->data); AnimationManager::getInstance().addAnimation(self->data);
handled = true;
} }
} }
else if (entity_type && PyObject_IsInstance(target_obj, entity_type)) { else if (strcmp(type_name, "mcrfpy.Entity") == 0) {
// Special handling for Entity since it doesn't inherit from UIDrawable // Special handling for Entity since it doesn't inherit from UIDrawable
PyUIEntityObject* entity = (PyUIEntityObject*)target_obj; PyUIEntityObject* entity = (PyUIEntityObject*)target_obj;
if (entity->data) { if (entity->data) {
self->data->startEntity(entity->data); self->data->startEntity(entity->data);
AnimationManager::getInstance().addAnimation(self->data); AnimationManager::getInstance().addAnimation(self->data);
handled = true;
} }
} }
else {
// Clean up references PyErr_SetString(PyExc_TypeError, "Target must be a Frame, Caption, Sprite, Grid, or Entity");
Py_XDECREF(frame_type);
Py_XDECREF(caption_type);
Py_XDECREF(sprite_type);
Py_XDECREF(grid_type);
Py_XDECREF(entity_type);
if (!handled) {
PyErr_SetString(PyExc_TypeError, "Target must be a Frame, Caption, Sprite, Grid, or Entity (or a subclass of these)");
return NULL; return NULL;
} }

View File

@ -2,14 +2,13 @@
#include "GameEngine.h" #include "GameEngine.h"
#include "McRFPy_API.h" #include "McRFPy_API.h"
#include "PythonObjectCache.h" #include "PythonObjectCache.h"
#include "UIEntity.h"
#include <algorithm> #include <algorithm>
// UIDrawable methods now in UIBase.h // UIDrawable methods now in UIBase.h
UIGrid::UIGrid() UIGrid::UIGrid()
: grid_x(0), grid_y(0), zoom(1.0f), center_x(0.0f), center_y(0.0f), ptex(nullptr), : grid_x(0), grid_y(0), zoom(1.0f), center_x(0.0f), center_y(0.0f), ptex(nullptr),
fill_color(8, 8, 8, 255), tcod_map(nullptr), tcod_dijkstra(nullptr), tcod_path(nullptr), fill_color(8, 8, 8, 255), tcod_map(nullptr), tcod_dijkstra(nullptr), tcod_path(nullptr),
perspective_enabled(false) // Default to omniscient view perspective(-1) // Default to omniscient view
{ {
// Initialize entities list // Initialize entities list
entities = std::make_shared<std::list<std::shared_ptr<UIEntity>>>(); entities = std::make_shared<std::list<std::shared_ptr<UIEntity>>>();
@ -37,7 +36,7 @@ UIGrid::UIGrid(int gx, int gy, std::shared_ptr<PyTexture> _ptex, sf::Vector2f _x
zoom(1.0f), zoom(1.0f),
ptex(_ptex), points(gx * gy), ptex(_ptex), points(gx * gy),
fill_color(8, 8, 8, 255), tcod_map(nullptr), tcod_dijkstra(nullptr), tcod_path(nullptr), fill_color(8, 8, 8, 255), tcod_map(nullptr), tcod_dijkstra(nullptr), tcod_path(nullptr),
perspective_enabled(false) // Default to omniscient view perspective(-1) // Default to omniscient view
{ {
// Use texture dimensions if available, otherwise use defaults // Use texture dimensions if available, otherwise use defaults
int cell_width = _ptex ? _ptex->sprite_width : DEFAULT_CELL_WIDTH; int cell_width = _ptex ? _ptex->sprite_width : DEFAULT_CELL_WIDTH;
@ -190,78 +189,54 @@ void UIGrid::render(sf::Vector2f offset, sf::RenderTarget& target)
// top layer - opacity for discovered / visible status based on perspective // top layer - opacity for discovered / visible status based on perspective
// Only render visibility overlay if perspective is enabled // Only render visibility overlay if perspective is set (not omniscient)
if (perspective_enabled) { if (perspective >= 0 && perspective < static_cast<int>(entities->size())) {
auto entity = perspective_entity.lock(); // Get the entity whose perspective we're using
auto it = entities->begin();
std::advance(it, perspective);
auto& entity = *it;
// Create rectangle for overlays // Create rectangle for overlays
sf::RectangleShape overlay; sf::RectangleShape overlay;
overlay.setSize(sf::Vector2f(cell_width * zoom, cell_height * zoom)); overlay.setSize(sf::Vector2f(cell_width * zoom, cell_height * zoom));
if (entity) { for (int x = (left_edge - 1 >= 0 ? left_edge - 1 : 0);
// Valid entity - use its gridstate for visibility x < x_limit;
for (int x = (left_edge - 1 >= 0 ? left_edge - 1 : 0); x+=1)
x < x_limit; {
x+=1) for (int y = (top_edge - 1 >= 0 ? top_edge - 1 : 0);
y < y_limit;
y+=1)
{ {
for (int y = (top_edge - 1 >= 0 ? top_edge - 1 : 0); // Skip out-of-bounds cells
y < y_limit; if (x < 0 || x >= grid_x || y < 0 || y >= grid_y) continue;
y+=1)
{ auto pixel_pos = sf::Vector2f(
// Skip out-of-bounds cells (x*cell_width - left_spritepixels) * zoom,
if (x < 0 || x >= grid_x || y < 0 || y >= grid_y) continue; (y*cell_height - top_spritepixels) * zoom );
auto pixel_pos = sf::Vector2f(
(x*cell_width - left_spritepixels) * zoom,
(y*cell_height - top_spritepixels) * zoom );
// Get visibility state from entity's perspective // Get visibility state from entity's perspective
int idx = y * grid_x + x; int idx = y * grid_x + x;
if (idx >= 0 && idx < static_cast<int>(entity->gridstate.size())) { if (idx >= 0 && idx < static_cast<int>(entity->gridstate.size())) {
const auto& state = entity->gridstate[idx]; const auto& state = entity->gridstate[idx];
overlay.setPosition(pixel_pos);
// Three overlay colors as specified:
if (!state.discovered) {
// Never seen - black
overlay.setFillColor(sf::Color(0, 0, 0, 255));
renderTexture.draw(overlay);
} else if (!state.visible) {
// Discovered but not currently visible - dark gray
overlay.setFillColor(sf::Color(32, 32, 40, 192));
renderTexture.draw(overlay);
}
// If visible and discovered, no overlay (fully visible)
}
}
}
} else {
// Invalid/destroyed entity with perspective_enabled = true
// Show all cells as undiscovered (black)
for (int x = (left_edge - 1 >= 0 ? left_edge - 1 : 0);
x < x_limit;
x+=1)
{
for (int y = (top_edge - 1 >= 0 ? top_edge - 1 : 0);
y < y_limit;
y+=1)
{
// Skip out-of-bounds cells
if (x < 0 || x >= grid_x || y < 0 || y >= grid_y) continue;
auto pixel_pos = sf::Vector2f(
(x*cell_width - left_spritepixels) * zoom,
(y*cell_height - top_spritepixels) * zoom );
overlay.setPosition(pixel_pos); overlay.setPosition(pixel_pos);
overlay.setFillColor(sf::Color(0, 0, 0, 255));
renderTexture.draw(overlay); // Three overlay colors as specified:
if (!state.discovered) {
// Never seen - black
overlay.setFillColor(sf::Color(0, 0, 0, 255));
renderTexture.draw(overlay);
} else if (!state.visible) {
// Discovered but not currently visible - dark gray
overlay.setFillColor(sf::Color(32, 32, 40, 192));
renderTexture.draw(overlay);
}
// If visible and discovered, no overlay (fully visible)
} }
} }
} }
} }
// else: omniscient view (no overlays)
// grid lines for testing & validation // grid lines for testing & validation
/* /*
@ -341,7 +316,6 @@ void UIGrid::computeFOV(int x, int y, int radius, bool light_walls, TCOD_fov_alg
{ {
if (!tcod_map || x < 0 || x >= grid_x || y < 0 || y >= grid_y) return; if (!tcod_map || x < 0 || x >= grid_x || y < 0 || y >= grid_y) return;
std::lock_guard<std::mutex> lock(fov_mutex);
tcod_map->computeFov(x, y, radius, light_walls, algo); tcod_map->computeFov(x, y, radius, light_walls, algo);
} }
@ -349,7 +323,6 @@ bool UIGrid::isInFOV(int x, int y) const
{ {
if (!tcod_map || x < 0 || x >= grid_x || y < 0 || y >= grid_y) return false; if (!tcod_map || x < 0 || x >= grid_x || y < 0 || y >= grid_y) return false;
std::lock_guard<std::mutex> lock(fov_mutex);
return tcod_map->isInFov(x, y); return tcod_map->isInFov(x, y);
} }
@ -554,7 +527,7 @@ int UIGrid::init(PyUIGridObject* self, PyObject* args, PyObject* kwds) {
PyObject* click_handler = nullptr; PyObject* click_handler = nullptr;
float center_x = 0.0f, center_y = 0.0f; float center_x = 0.0f, center_y = 0.0f;
float zoom = 1.0f; float zoom = 1.0f;
// perspective is now handled via properties, not init args int perspective = -1; // perspective is a difficult __init__ arg; needs an entity in collection to work
int visible = 1; int visible = 1;
float opacity = 1.0f; float opacity = 1.0f;
int z_index = 0; int z_index = 0;
@ -566,15 +539,15 @@ int UIGrid::init(PyUIGridObject* self, PyObject* args, PyObject* kwds) {
static const char* kwlist[] = { static const char* kwlist[] = {
"pos", "size", "grid_size", "texture", // Positional args (as per spec) "pos", "size", "grid_size", "texture", // Positional args (as per spec)
// Keyword-only args // Keyword-only args
"fill_color", "click", "center_x", "center_y", "zoom", "fill_color", "click", "center_x", "center_y", "zoom", "perspective",
"visible", "opacity", "z_index", "name", "x", "y", "w", "h", "grid_x", "grid_y", "visible", "opacity", "z_index", "name", "x", "y", "w", "h", "grid_x", "grid_y",
nullptr nullptr
}; };
// Parse arguments with | for optional positional args // Parse arguments with | for optional positional args
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOOOOOfffifizffffii", const_cast<char**>(kwlist), if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOOOOOfffiifizffffii", const_cast<char**>(kwlist),
&pos_obj, &size_obj, &grid_size_obj, &textureObj, // Positional &pos_obj, &size_obj, &grid_size_obj, &textureObj, // Positional
&fill_color, &click_handler, &center_x, &center_y, &zoom, &fill_color, &click_handler, &center_x, &center_y, &zoom, &perspective,
&visible, &opacity, &z_index, &name, &x, &y, &w, &h, &grid_x, &grid_y)) { &visible, &opacity, &z_index, &name, &x, &y, &w, &h, &grid_x, &grid_y)) {
return -1; return -1;
} }
@ -680,8 +653,7 @@ int UIGrid::init(PyUIGridObject* self, PyObject* args, PyObject* kwds) {
self->data->center_x = center_x; self->data->center_x = center_x;
self->data->center_y = center_y; self->data->center_y = center_y;
self->data->zoom = zoom; self->data->zoom = zoom;
// perspective is now handled by perspective_entity and perspective_enabled self->data->perspective = perspective;
// self->data->perspective = perspective;
self->data->visible = visible; self->data->visible = visible;
self->data->opacity = opacity; self->data->opacity = opacity;
self->data->z_index = z_index; self->data->z_index = z_index;
@ -969,77 +941,33 @@ int UIGrid::set_fill_color(PyUIGridObject* self, PyObject* value, void* closure)
PyObject* UIGrid::get_perspective(PyUIGridObject* self, void* closure) PyObject* UIGrid::get_perspective(PyUIGridObject* self, void* closure)
{ {
auto locked = self->data->perspective_entity.lock(); return PyLong_FromLong(self->data->perspective);
if (locked) {
// Check cache first to preserve derived class
if (locked->serial_number != 0) {
PyObject* cached = PythonObjectCache::getInstance().lookup(locked->serial_number);
if (cached) {
return cached; // Already INCREF'd by lookup
}
}
// Legacy: If the entity has a stored Python object reference
if (locked->self != nullptr) {
Py_INCREF(locked->self);
return locked->self;
}
// Otherwise, create a new base Entity object
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Entity");
auto o = (PyUIEntityObject*)type->tp_alloc(type, 0);
if (o) {
o->data = locked;
o->weakreflist = NULL;
Py_DECREF(type);
return (PyObject*)o;
}
Py_XDECREF(type);
}
Py_RETURN_NONE;
} }
int UIGrid::set_perspective(PyUIGridObject* self, PyObject* value, void* closure) int UIGrid::set_perspective(PyUIGridObject* self, PyObject* value, void* closure)
{ {
if (value == Py_None) { long perspective = PyLong_AsLong(value);
// Clear perspective but keep perspective_enabled unchanged if (PyErr_Occurred()) {
self->data->perspective_entity.reset();
return 0;
}
// Extract UIEntity from PyObject
// Get the Entity type from the module
auto entity_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Entity");
if (!entity_type) {
PyErr_SetString(PyExc_RuntimeError, "Could not get Entity type from mcrfpy module");
return -1; return -1;
} }
if (!PyObject_IsInstance(value, entity_type)) { // Validate perspective (-1 for omniscient, or valid entity index)
Py_DECREF(entity_type); if (perspective < -1) {
PyErr_SetString(PyExc_TypeError, "perspective must be a UIEntity or None"); PyErr_SetString(PyExc_ValueError, "perspective must be -1 (omniscient) or a valid entity index");
return -1; return -1;
} }
Py_DECREF(entity_type);
PyUIEntityObject* entity_obj = (PyUIEntityObject*)value; // Check if entity index is valid (if not omniscient)
self->data->perspective_entity = entity_obj->data; if (perspective >= 0 && self->data->entities) {
self->data->perspective_enabled = true; // Enable perspective when entity assigned int entity_count = self->data->entities->size();
return 0; if (perspective >= entity_count) {
} PyErr_Format(PyExc_IndexError, "perspective index %ld out of range (grid has %d entities)",
perspective, entity_count);
PyObject* UIGrid::get_perspective_enabled(PyUIGridObject* self, void* closure) return -1;
{ }
return PyBool_FromLong(self->data->perspective_enabled);
}
int UIGrid::set_perspective_enabled(PyUIGridObject* self, PyObject* value, void* closure)
{
int enabled = PyObject_IsTrue(value);
if (enabled == -1) {
return -1; // Error occurred
} }
self->data->perspective_enabled = enabled;
self->data->perspective = perspective;
return 0; return 0;
} }
@ -1056,43 +984,8 @@ PyObject* UIGrid::py_compute_fov(PyUIGridObject* self, PyObject* args, PyObject*
return NULL; return NULL;
} }
// Compute FOV
self->data->computeFOV(x, y, radius, light_walls, (TCOD_fov_algorithm_t)algorithm); self->data->computeFOV(x, y, radius, light_walls, (TCOD_fov_algorithm_t)algorithm);
Py_RETURN_NONE;
// Build list of visible cells as tuples (x, y, visible, discovered)
PyObject* result_list = PyList_New(0);
if (!result_list) return NULL;
// Iterate through grid and collect visible cells
for (int gy = 0; gy < self->data->grid_y; gy++) {
for (int gx = 0; gx < self->data->grid_x; gx++) {
if (self->data->isInFOV(gx, gy)) {
// Create tuple (x, y, visible, discovered)
PyObject* cell_tuple = PyTuple_New(4);
if (!cell_tuple) {
Py_DECREF(result_list);
return NULL;
}
PyTuple_SET_ITEM(cell_tuple, 0, PyLong_FromLong(gx));
PyTuple_SET_ITEM(cell_tuple, 1, PyLong_FromLong(gy));
PyTuple_SET_ITEM(cell_tuple, 2, Py_True); // visible
PyTuple_SET_ITEM(cell_tuple, 3, Py_True); // discovered
Py_INCREF(Py_True); // Need to increment ref count for True
Py_INCREF(Py_True);
// Append to list
if (PyList_Append(result_list, cell_tuple) < 0) {
Py_DECREF(cell_tuple);
Py_DECREF(result_list);
return NULL;
}
Py_DECREF(cell_tuple); // List now owns the reference
}
}
}
return result_list;
} }
PyObject* UIGrid::py_is_in_fov(PyUIGridObject* self, PyObject* args) PyObject* UIGrid::py_is_in_fov(PyUIGridObject* self, PyObject* args)
@ -1210,20 +1103,16 @@ PyObject* UIGrid::py_compute_astar_path(PyUIGridObject* self, PyObject* args, Py
PyMethodDef UIGrid::methods[] = { PyMethodDef UIGrid::methods[] = {
{"at", (PyCFunction)UIGrid::py_at, METH_VARARGS | METH_KEYWORDS}, {"at", (PyCFunction)UIGrid::py_at, METH_VARARGS | METH_KEYWORDS},
{"compute_fov", (PyCFunction)UIGrid::py_compute_fov, METH_VARARGS | METH_KEYWORDS, {"compute_fov", (PyCFunction)UIGrid::py_compute_fov, METH_VARARGS | METH_KEYWORDS,
"compute_fov(x: int, y: int, radius: int = 0, light_walls: bool = True, algorithm: int = FOV_BASIC) -> List[Tuple[int, int, bool, bool]]\n\n" "compute_fov(x: int, y: int, radius: int = 0, light_walls: bool = True, algorithm: int = FOV_BASIC) -> None\n\n"
"Compute field of view from a position and return visible cells.\n\n" "Compute field of view from a position.\n\n"
"Args:\n" "Args:\n"
" x: X coordinate of the viewer\n" " x: X coordinate of the viewer\n"
" y: Y coordinate of the viewer\n" " y: Y coordinate of the viewer\n"
" radius: Maximum view distance (0 = unlimited)\n" " radius: Maximum view distance (0 = unlimited)\n"
" light_walls: Whether walls are lit when visible\n" " light_walls: Whether walls are lit when visible\n"
" algorithm: FOV algorithm to use (FOV_BASIC, FOV_DIAMOND, FOV_SHADOW, FOV_PERMISSIVE_0-8)\n\n" " algorithm: FOV algorithm to use (FOV_BASIC, FOV_DIAMOND, FOV_SHADOW, FOV_PERMISSIVE_0-8)\n\n"
"Returns:\n" "Updates the internal FOV state. Use is_in_fov() to check visibility after calling this.\n"
" List of tuples (x, y, visible, discovered) for all visible cells:\n" "When perspective is set, this also updates visibility overlays automatically."},
" - x, y: Grid coordinates\n"
" - visible: True (all returned cells are visible)\n"
" - discovered: True (FOV implies discovery)\n\n"
"Also updates the internal FOV state for use with is_in_fov()."},
{"is_in_fov", (PyCFunction)UIGrid::py_is_in_fov, METH_VARARGS, {"is_in_fov", (PyCFunction)UIGrid::py_is_in_fov, METH_VARARGS,
"is_in_fov(x: int, y: int) -> bool\n\n" "is_in_fov(x: int, y: int) -> bool\n\n"
"Check if a cell is in the field of view.\n\n" "Check if a cell is in the field of view.\n\n"
@ -1296,20 +1185,16 @@ PyMethodDef UIGrid_all_methods[] = {
UIDRAWABLE_METHODS, UIDRAWABLE_METHODS,
{"at", (PyCFunction)UIGrid::py_at, METH_VARARGS | METH_KEYWORDS}, {"at", (PyCFunction)UIGrid::py_at, METH_VARARGS | METH_KEYWORDS},
{"compute_fov", (PyCFunction)UIGrid::py_compute_fov, METH_VARARGS | METH_KEYWORDS, {"compute_fov", (PyCFunction)UIGrid::py_compute_fov, METH_VARARGS | METH_KEYWORDS,
"compute_fov(x: int, y: int, radius: int = 0, light_walls: bool = True, algorithm: int = FOV_BASIC) -> List[Tuple[int, int, bool, bool]]\n\n" "compute_fov(x: int, y: int, radius: int = 0, light_walls: bool = True, algorithm: int = FOV_BASIC) -> None\n\n"
"Compute field of view from a position and return visible cells.\n\n" "Compute field of view from a position.\n\n"
"Args:\n" "Args:\n"
" x: X coordinate of the viewer\n" " x: X coordinate of the viewer\n"
" y: Y coordinate of the viewer\n" " y: Y coordinate of the viewer\n"
" radius: Maximum view distance (0 = unlimited)\n" " radius: Maximum view distance (0 = unlimited)\n"
" light_walls: Whether walls are lit when visible\n" " light_walls: Whether walls are lit when visible\n"
" algorithm: FOV algorithm to use (FOV_BASIC, FOV_DIAMOND, FOV_SHADOW, FOV_PERMISSIVE_0-8)\n\n" " algorithm: FOV algorithm to use (FOV_BASIC, FOV_DIAMOND, FOV_SHADOW, FOV_PERMISSIVE_0-8)\n\n"
"Returns:\n" "Updates the internal FOV state. Use is_in_fov() to check visibility after calling this.\n"
" List of tuples (x, y, visible, discovered) for all visible cells:\n" "When perspective is set, this also updates visibility overlays automatically."},
" - x, y: Grid coordinates\n"
" - visible: True (all returned cells are visible)\n"
" - discovered: True (FOV implies discovery)\n\n"
"Also updates the internal FOV state for use with is_in_fov()."},
{"is_in_fov", (PyCFunction)UIGrid::py_is_in_fov, METH_VARARGS, {"is_in_fov", (PyCFunction)UIGrid::py_is_in_fov, METH_VARARGS,
"is_in_fov(x: int, y: int) -> bool\n\n" "is_in_fov(x: int, y: int) -> bool\n\n"
"Check if a cell is in the field of view.\n\n" "Check if a cell is in the field of view.\n\n"
@ -1400,11 +1285,9 @@ PyGetSetDef UIGrid::getsetters[] = {
{"texture", (getter)UIGrid::get_texture, NULL, "Texture of the grid", NULL}, //TODO 7DRL-day2-item5 {"texture", (getter)UIGrid::get_texture, NULL, "Texture of the grid", NULL}, //TODO 7DRL-day2-item5
{"fill_color", (getter)UIGrid::get_fill_color, (setter)UIGrid::set_fill_color, "Background fill color of the grid", NULL}, {"fill_color", (getter)UIGrid::get_fill_color, (setter)UIGrid::set_fill_color, "Background fill color of the grid", NULL},
{"perspective", (getter)UIGrid::get_perspective, (setter)UIGrid::set_perspective, {"perspective", (getter)UIGrid::get_perspective, (setter)UIGrid::set_perspective,
"Entity whose perspective to use for FOV rendering (None for omniscient view). " "Entity perspective index for FOV rendering (-1 for omniscient view, 0+ for entity index). "
"Setting an entity automatically enables perspective mode.", NULL}, "When set to an entity index, only cells visible to that entity are rendered normally; "
{"perspective_enabled", (getter)UIGrid::get_perspective_enabled, (setter)UIGrid::set_perspective_enabled, "explored but not visible cells are darkened, and unexplored cells are black.", NULL},
"Whether to use perspective-based FOV rendering. When True with no valid entity, "
"all cells appear undiscovered.", NULL},
{"z_index", (getter)UIDrawable::get_int, (setter)UIDrawable::set_int, "Z-order for rendering (lower values rendered first)", (void*)PyObjectsEnum::UIGRID}, {"z_index", (getter)UIDrawable::get_int, (setter)UIDrawable::set_int, "Z-order for rendering (lower values rendered first)", (void*)PyObjectsEnum::UIGRID},
{"name", (getter)UIDrawable::get_name, (setter)UIDrawable::set_name, "Name for finding elements", (void*)PyObjectsEnum::UIGRID}, {"name", (getter)UIDrawable::get_name, (setter)UIDrawable::set_name, "Name for finding elements", (void*)PyObjectsEnum::UIGRID},
UIDRAWABLE_GETSETTERS, UIDRAWABLE_GETSETTERS,

View File

@ -6,7 +6,6 @@
#include "Resources.h" #include "Resources.h"
#include <list> #include <list>
#include <libtcod.h> #include <libtcod.h>
#include <mutex>
#include "PyCallable.h" #include "PyCallable.h"
#include "PyTexture.h" #include "PyTexture.h"
@ -30,7 +29,6 @@ private:
TCODMap* tcod_map; // TCOD map for FOV and pathfinding TCODMap* tcod_map; // TCOD map for FOV and pathfinding
TCODDijkstra* tcod_dijkstra; // Dijkstra pathfinding TCODDijkstra* tcod_dijkstra; // Dijkstra pathfinding
TCODPath* tcod_path; // A* pathfinding TCODPath* tcod_path; // A* pathfinding
mutable std::mutex fov_mutex; // Mutex for thread-safe FOV operations
public: public:
UIGrid(); UIGrid();
@ -79,9 +77,8 @@ public:
// Background rendering // Background rendering
sf::Color fill_color; sf::Color fill_color;
// Perspective system - entity whose view to render // Perspective system - which entity's view to render (-1 = omniscient/default)
std::weak_ptr<UIEntity> perspective_entity; // Weak reference to perspective entity int perspective;
bool perspective_enabled; // Whether to use perspective rendering
// Property system for animations // Property system for animations
bool setProperty(const std::string& name, float value) override; bool setProperty(const std::string& name, float value) override;
@ -106,8 +103,6 @@ public:
static int set_fill_color(PyUIGridObject* self, PyObject* value, void* closure); static int set_fill_color(PyUIGridObject* self, PyObject* value, void* closure);
static PyObject* get_perspective(PyUIGridObject* self, void* closure); static PyObject* get_perspective(PyUIGridObject* self, void* closure);
static int set_perspective(PyUIGridObject* self, PyObject* value, void* closure); static int set_perspective(PyUIGridObject* self, PyObject* value, void* closure);
static PyObject* get_perspective_enabled(PyUIGridObject* self, void* closure);
static int set_perspective_enabled(PyUIGridObject* self, PyObject* value, void* closure);
static PyObject* py_at(PyUIGridObject* self, PyObject* args, PyObject* kwds); static PyObject* py_at(PyUIGridObject* self, PyObject* args, PyObject* kwds);
static PyObject* py_compute_fov(PyUIGridObject* self, PyObject* args, PyObject* kwds); static PyObject* py_compute_fov(PyUIGridObject* self, PyObject* args, PyObject* kwds);
static PyObject* py_is_in_fov(PyUIGridObject* self, PyObject* args); static PyObject* py_is_in_fov(PyUIGridObject* self, PyObject* args);