"""Bresenham circle algorithm demonstration on a grid.""" import mcrfpy import math from .base import GeometryDemoScreen, bresenham_circle, bresenham_line, filled_circle, SCREEN_WIDTH, SCREEN_HEIGHT class BresenhamDemo(GeometryDemoScreen): """Demonstrate Bresenham circle and line algorithms on a grid.""" name = "Bresenham Algorithms" description = "Grid-aligned circle and line rasterization" def setup(self): self.add_title("Bresenham Circle & Line Algorithms") self.add_description("Grid-aligned geometric primitives for orbit rings and LOS calculations") cell_size = 16 margin = 30 frame_gap = 20 # Calculate frame dimensions for 2x2 layout # Available width: 1024 - 2*margin = 964, split into 2 with gap frame_width = (SCREEN_WIDTH - 2 * margin - frame_gap) // 2 # ~472 each # Available height for frames: 768 - 80 (top) - 30 (bottom margin) top_area = 80 bottom_margin = 30 available_height = SCREEN_HEIGHT - top_area - bottom_margin - frame_gap frame_height = available_height // 2 # ~314 each # Top-left: Bresenham Circle self._draw_circle_demo(margin, top_area, frame_width, frame_height, cell_size) # Top-right: Bresenham Lines self._draw_lines_demo(margin + frame_width + frame_gap, top_area, frame_width, frame_height, cell_size) # Bottom-left: Filled Circle self._draw_filled_demo(margin, top_area + frame_height + frame_gap, frame_width, frame_height, cell_size) # Bottom-right: Planet + Orbit Ring self._draw_combined_demo(margin + frame_width + frame_gap, top_area + frame_height + frame_gap, frame_width, frame_height, cell_size) def _draw_circle_demo(self, x, y, w, h, cell_size): """Draw Bresenham circle demonstration.""" bg = mcrfpy.Frame(pos=(x, y), size=(w, h)) bg.fill_color = mcrfpy.Color(15, 15, 25) bg.outline = 1 bg.outline_color = mcrfpy.Color(60, 60, 100) self.ui.append(bg) self.add_label("Bresenham Circle (radius=8)", x + 10, y + 5, (255, 200, 100)) self.add_label("Center: (12, 9)", x + 10, y + 25, (150, 150, 150)) # Grid origin for this demo grid_x = x + 20 grid_y = y + 50 center = (12, 9) radius = 8 circle_cells = bresenham_circle(center, radius) # Draw each cell for cx, cy in circle_cells: px = grid_x + cx * cell_size py = grid_y + cy * cell_size cell_rect = mcrfpy.Frame(pos=(px, py), size=(cell_size - 1, cell_size - 1)) cell_rect.fill_color = mcrfpy.Color(100, 200, 255) cell_rect.outline = 0 self.ui.append(cell_rect) # Draw center point cx_px = grid_x + center[0] * cell_size cy_px = grid_y + center[1] * cell_size center_rect = mcrfpy.Frame(pos=(cx_px, cy_px), size=(cell_size - 1, cell_size - 1)) center_rect.fill_color = mcrfpy.Color(255, 100, 100) self.ui.append(center_rect) # Draw actual circle outline for comparison (centered on cells) actual_circle = mcrfpy.Circle( center=(grid_x + center[0] * cell_size + cell_size // 2, grid_y + center[1] * cell_size + cell_size // 2), radius=radius * cell_size, fill_color=mcrfpy.Color(0, 0, 0, 0), outline_color=mcrfpy.Color(255, 255, 100, 128), outline=2 ) self.ui.append(actual_circle) def _draw_lines_demo(self, x, y, w, h, cell_size): """Draw Bresenham lines demonstration.""" bg = mcrfpy.Frame(pos=(x, y), size=(w, h)) bg.fill_color = mcrfpy.Color(15, 15, 25) bg.outline = 1 bg.outline_color = mcrfpy.Color(60, 60, 100) self.ui.append(bg) self.add_label("Bresenham Lines", x + 10, y + 5, (255, 200, 100)) grid_x = x + 20 grid_y = y + 40 # Draw multiple lines at different angles lines_data = [ ((2, 2), (17, 5), (255, 100, 100)), # Shallow ((2, 7), (17, 14), (100, 255, 100)), # Diagonal-ish ((2, 12), (10, 17), (100, 100, 255)), # Steep ] for start, end, color in lines_data: line_cells = bresenham_line(start, end) for cx, cy in line_cells: px = grid_x + cx * cell_size py = grid_y + cy * cell_size cell_rect = mcrfpy.Frame(pos=(px, py), size=(cell_size - 1, cell_size - 1)) cell_rect.fill_color = mcrfpy.Color(*color) self.ui.append(cell_rect) # Draw the actual line for comparison (through cell centers) line = mcrfpy.Line( start=(grid_x + start[0] * cell_size + cell_size // 2, grid_y + start[1] * cell_size + cell_size // 2), end=(grid_x + end[0] * cell_size + cell_size // 2, grid_y + end[1] * cell_size + cell_size // 2), color=mcrfpy.Color(255, 255, 255, 128), thickness=1 ) self.ui.append(line) def _draw_filled_demo(self, x, y, w, h, cell_size): """Draw filled circle demonstration.""" bg = mcrfpy.Frame(pos=(x, y), size=(w, h)) bg.fill_color = mcrfpy.Color(15, 15, 25) bg.outline = 1 bg.outline_color = mcrfpy.Color(60, 60, 100) self.ui.append(bg) self.add_label("Filled Circle (radius=5)", x + 10, y + 5, (255, 200, 100)) self.add_label("Planet surface representation", x + 10, y + 25, (150, 150, 150)) grid_x = x + 50 grid_y = y + 60 fill_center = (8, 8) fill_radius = 5 filled_cells = filled_circle(fill_center, fill_radius) for cx, cy in filled_cells: px = grid_x + cx * cell_size py = grid_y + cy * cell_size # Gradient based on distance from center dist = math.sqrt((cx - fill_center[0])**2 + (cy - fill_center[1])**2) intensity = int(255 * (1 - dist / (fill_radius + 1))) cell_rect = mcrfpy.Frame(pos=(px, py), size=(cell_size - 1, cell_size - 1)) cell_rect.fill_color = mcrfpy.Color(intensity, intensity // 2, 50) self.ui.append(cell_rect) def _draw_combined_demo(self, x, y, w, h, cell_size): """Draw planet + orbit ring demonstration.""" bg = mcrfpy.Frame(pos=(x, y), size=(w, h)) bg.fill_color = mcrfpy.Color(15, 15, 25) bg.outline = 1 bg.outline_color = mcrfpy.Color(60, 60, 100) self.ui.append(bg) self.add_label("Planet + Orbit Ring", x + 10, y + 5, (255, 200, 100)) self.add_label("Surface (r=3) + Orbit (r=8)", x + 10, y + 25, (150, 150, 150)) grid_x = x + 60 grid_y = y + 50 planet_center = (12, 10) surface_radius = 3 orbit_radius = 8 # Draw orbit ring (behind planet) orbit_cells = bresenham_circle(planet_center, orbit_radius) for cx, cy in orbit_cells: px = grid_x + cx * cell_size py = grid_y + cy * cell_size cell_rect = mcrfpy.Frame(pos=(px, py), size=(cell_size - 1, cell_size - 1)) cell_rect.fill_color = mcrfpy.Color(50, 150, 50, 180) self.ui.append(cell_rect) # Draw planet surface (on top) surface_cells = filled_circle(planet_center, surface_radius) for cx, cy in surface_cells: px = grid_x + cx * cell_size py = grid_y + cy * cell_size dist = math.sqrt((cx - planet_center[0])**2 + (cy - planet_center[1])**2) intensity = int(200 * (1 - dist / (surface_radius + 1))) cell_rect = mcrfpy.Frame(pos=(px, py), size=(cell_size - 1, cell_size - 1)) cell_rect.fill_color = mcrfpy.Color(50 + intensity, 100 + intensity // 2, 200) self.ui.append(cell_rect) # Legend in bottom-left of frame leg_x = x + 10 leg_y = y + h - 50 leg1 = mcrfpy.Frame(pos=(leg_x, leg_y), size=(12, 12)) leg1.fill_color = mcrfpy.Color(100, 150, 200) self.ui.append(leg1) self.add_label("Planet", leg_x + 18, leg_y - 2, (150, 150, 150)) leg2 = mcrfpy.Frame(pos=(leg_x, leg_y + 20), size=(12, 12)) leg2.fill_color = mcrfpy.Color(50, 150, 50) self.ui.append(leg2) self.add_label("Orbit ring", leg_x + 18, leg_y + 18, (150, 150, 150))