//////////////////////////////////////////////////////////// // // SFML - Simple and Fast Multimedia Library // Copyright (C) 2007-2018 Laurent Gomila (laurent@sfml-dev.org) // // This software is provided 'as-is', without any express or implied warranty. // In no event will the authors be held liable for any damages arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it freely, // subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; // you must not claim that you wrote the original software. // If you use this software in a product, an acknowledgment // in the product documentation would be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, // and must not be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source distribution. // //////////////////////////////////////////////////////////// #ifndef SFML_TRANSFORM_HPP #define SFML_TRANSFORM_HPP //////////////////////////////////////////////////////////// // Headers //////////////////////////////////////////////////////////// #include <SFML/Graphics/Export.hpp> #include <SFML/Graphics/Rect.hpp> #include <SFML/System/Vector2.hpp> namespace sf { //////////////////////////////////////////////////////////// /// \brief Define a 3x3 transform matrix /// //////////////////////////////////////////////////////////// class SFML_GRAPHICS_API Transform { public: //////////////////////////////////////////////////////////// /// \brief Default constructor /// /// Creates an identity transform (a transform that does nothing). /// //////////////////////////////////////////////////////////// Transform(); //////////////////////////////////////////////////////////// /// \brief Construct a transform from a 3x3 matrix /// /// \param a00 Element (0, 0) of the matrix /// \param a01 Element (0, 1) of the matrix /// \param a02 Element (0, 2) of the matrix /// \param a10 Element (1, 0) of the matrix /// \param a11 Element (1, 1) of the matrix /// \param a12 Element (1, 2) of the matrix /// \param a20 Element (2, 0) of the matrix /// \param a21 Element (2, 1) of the matrix /// \param a22 Element (2, 2) of the matrix /// //////////////////////////////////////////////////////////// Transform(float a00, float a01, float a02, float a10, float a11, float a12, float a20, float a21, float a22); //////////////////////////////////////////////////////////// /// \brief Return the transform as a 4x4 matrix /// /// This function returns a pointer to an array of 16 floats /// containing the transform elements as a 4x4 matrix, which /// is directly compatible with OpenGL functions. /// /// \code /// sf::Transform transform = ...; /// glLoadMatrixf(transform.getMatrix()); /// \endcode /// /// \return Pointer to a 4x4 matrix /// //////////////////////////////////////////////////////////// const float* getMatrix() const; //////////////////////////////////////////////////////////// /// \brief Return the inverse of the transform /// /// If the inverse cannot be computed, an identity transform /// is returned. /// /// \return A new transform which is the inverse of self /// //////////////////////////////////////////////////////////// Transform getInverse() const; //////////////////////////////////////////////////////////// /// \brief Transform a 2D point /// /// \param x X coordinate of the point to transform /// \param y Y coordinate of the point to transform /// /// \return Transformed point /// //////////////////////////////////////////////////////////// Vector2f transformPoint(float x, float y) const; //////////////////////////////////////////////////////////// /// \brief Transform a 2D point /// /// \param point Point to transform /// /// \return Transformed point /// //////////////////////////////////////////////////////////// Vector2f transformPoint(const Vector2f& point) const; //////////////////////////////////////////////////////////// /// \brief Transform a rectangle /// /// Since SFML doesn't provide support for oriented rectangles, /// the result of this function is always an axis-aligned /// rectangle. Which means that if the transform contains a /// rotation, the bounding rectangle of the transformed rectangle /// is returned. /// /// \param rectangle Rectangle to transform /// /// \return Transformed rectangle /// //////////////////////////////////////////////////////////// FloatRect transformRect(const FloatRect& rectangle) const; //////////////////////////////////////////////////////////// /// \brief Combine the current transform with another one /// /// The result is a transform that is equivalent to applying /// *this followed by \a transform. Mathematically, it is /// equivalent to a matrix multiplication. /// /// \param transform Transform to combine with this transform /// /// \return Reference to *this /// //////////////////////////////////////////////////////////// Transform& combine(const Transform& transform); //////////////////////////////////////////////////////////// /// \brief Combine the current transform with a translation /// /// This function returns a reference to *this, so that calls /// can be chained. /// \code /// sf::Transform transform; /// transform.translate(100, 200).rotate(45); /// \endcode /// /// \param x Offset to apply on X axis /// \param y Offset to apply on Y axis /// /// \return Reference to *this /// /// \see rotate, scale /// //////////////////////////////////////////////////////////// Transform& translate(float x, float y); //////////////////////////////////////////////////////////// /// \brief Combine the current transform with a translation /// /// This function returns a reference to *this, so that calls /// can be chained. /// \code /// sf::Transform transform; /// transform.translate(sf::Vector2f(100, 200)).rotate(45); /// \endcode /// /// \param offset Translation offset to apply /// /// \return Reference to *this /// /// \see rotate, scale /// //////////////////////////////////////////////////////////// Transform& translate(const Vector2f& offset); //////////////////////////////////////////////////////////// /// \brief Combine the current transform with a rotation /// /// This function returns a reference to *this, so that calls /// can be chained. /// \code /// sf::Transform transform; /// transform.rotate(90).translate(50, 20); /// \endcode /// /// \param angle Rotation angle, in degrees /// /// \return Reference to *this /// /// \see translate, scale /// //////////////////////////////////////////////////////////// Transform& rotate(float angle); //////////////////////////////////////////////////////////// /// \brief Combine the current transform with a rotation /// /// The center of rotation is provided for convenience as a second /// argument, so that you can build rotations around arbitrary points /// more easily (and efficiently) than the usual /// translate(-center).rotate(angle).translate(center). /// /// This function returns a reference to *this, so that calls /// can be chained. /// \code /// sf::Transform transform; /// transform.rotate(90, 8, 3).translate(50, 20); /// \endcode /// /// \param angle Rotation angle, in degrees /// \param centerX X coordinate of the center of rotation /// \param centerY Y coordinate of the center of rotation /// /// \return Reference to *this /// /// \see translate, scale /// //////////////////////////////////////////////////////////// Transform& rotate(float angle, float centerX, float centerY); //////////////////////////////////////////////////////////// /// \brief Combine the current transform with a rotation /// /// The center of rotation is provided for convenience as a second /// argument, so that you can build rotations around arbitrary points /// more easily (and efficiently) than the usual /// translate(-center).rotate(angle).translate(center). /// /// This function returns a reference to *this, so that calls /// can be chained. /// \code /// sf::Transform transform; /// transform.rotate(90, sf::Vector2f(8, 3)).translate(sf::Vector2f(50, 20)); /// \endcode /// /// \param angle Rotation angle, in degrees /// \param center Center of rotation /// /// \return Reference to *this /// /// \see translate, scale /// //////////////////////////////////////////////////////////// Transform& rotate(float angle, const Vector2f& center); //////////////////////////////////////////////////////////// /// \brief Combine the current transform with a scaling /// /// This function returns a reference to *this, so that calls /// can be chained. /// \code /// sf::Transform transform; /// transform.scale(2, 1).rotate(45); /// \endcode /// /// \param scaleX Scaling factor on the X axis /// \param scaleY Scaling factor on the Y axis /// /// \return Reference to *this /// /// \see translate, rotate /// //////////////////////////////////////////////////////////// Transform& scale(float scaleX, float scaleY); //////////////////////////////////////////////////////////// /// \brief Combine the current transform with a scaling /// /// The center of scaling is provided for convenience as a second /// argument, so that you can build scaling around arbitrary points /// more easily (and efficiently) than the usual /// translate(-center).scale(factors).translate(center). /// /// This function returns a reference to *this, so that calls /// can be chained. /// \code /// sf::Transform transform; /// transform.scale(2, 1, 8, 3).rotate(45); /// \endcode /// /// \param scaleX Scaling factor on X axis /// \param scaleY Scaling factor on Y axis /// \param centerX X coordinate of the center of scaling /// \param centerY Y coordinate of the center of scaling /// /// \return Reference to *this /// /// \see translate, rotate /// //////////////////////////////////////////////////////////// Transform& scale(float scaleX, float scaleY, float centerX, float centerY); //////////////////////////////////////////////////////////// /// \brief Combine the current transform with a scaling /// /// This function returns a reference to *this, so that calls /// can be chained. /// \code /// sf::Transform transform; /// transform.scale(sf::Vector2f(2, 1)).rotate(45); /// \endcode /// /// \param factors Scaling factors /// /// \return Reference to *this /// /// \see translate, rotate /// //////////////////////////////////////////////////////////// Transform& scale(const Vector2f& factors); //////////////////////////////////////////////////////////// /// \brief Combine the current transform with a scaling /// /// The center of scaling is provided for convenience as a second /// argument, so that you can build scaling around arbitrary points /// more easily (and efficiently) than the usual /// translate(-center).scale(factors).translate(center). /// /// This function returns a reference to *this, so that calls /// can be chained. /// \code /// sf::Transform transform; /// transform.scale(sf::Vector2f(2, 1), sf::Vector2f(8, 3)).rotate(45); /// \endcode /// /// \param factors Scaling factors /// \param center Center of scaling /// /// \return Reference to *this /// /// \see translate, rotate /// //////////////////////////////////////////////////////////// Transform& scale(const Vector2f& factors, const Vector2f& center); //////////////////////////////////////////////////////////// // Static member data //////////////////////////////////////////////////////////// static const Transform Identity; ///< The identity transform (does nothing) private: //////////////////////////////////////////////////////////// // Member data //////////////////////////////////////////////////////////// float m_matrix[16]; ///< 4x4 matrix defining the transformation }; //////////////////////////////////////////////////////////// /// \relates sf::Transform /// \brief Overload of binary operator * to combine two transforms /// /// This call is equivalent to calling Transform(left).combine(right). /// /// \param left Left operand (the first transform) /// \param right Right operand (the second transform) /// /// \return New combined transform /// //////////////////////////////////////////////////////////// SFML_GRAPHICS_API Transform operator *(const Transform& left, const Transform& right); //////////////////////////////////////////////////////////// /// \relates sf::Transform /// \brief Overload of binary operator *= to combine two transforms /// /// This call is equivalent to calling left.combine(right). /// /// \param left Left operand (the first transform) /// \param right Right operand (the second transform) /// /// \return The combined transform /// //////////////////////////////////////////////////////////// SFML_GRAPHICS_API Transform& operator *=(Transform& left, const Transform& right); //////////////////////////////////////////////////////////// /// \relates sf::Transform /// \brief Overload of binary operator * to transform a point /// /// This call is equivalent to calling left.transformPoint(right). /// /// \param left Left operand (the transform) /// \param right Right operand (the point to transform) /// /// \return New transformed point /// //////////////////////////////////////////////////////////// SFML_GRAPHICS_API Vector2f operator *(const Transform& left, const Vector2f& right); //////////////////////////////////////////////////////////// /// \relates sf::Transform /// \brief Overload of binary operator == to compare two transforms /// /// Performs an element-wise comparison of the elements of the /// left transform with the elements of the right transform. /// /// \param left Left operand (the first transform) /// \param right Right operand (the second transform) /// /// \return true if the transforms are equal, false otherwise /// //////////////////////////////////////////////////////////// SFML_GRAPHICS_API bool operator ==(const Transform& left, const Transform& right); //////////////////////////////////////////////////////////// /// \relates sf::Transform /// \brief Overload of binary operator != to compare two transforms /// /// This call is equivalent to !(left == right). /// /// \param left Left operand (the first transform) /// \param right Right operand (the second transform) /// /// \return true if the transforms are not equal, false otherwise /// //////////////////////////////////////////////////////////// SFML_GRAPHICS_API bool operator !=(const Transform& left, const Transform& right); } // namespace sf #endif // SFML_TRANSFORM_HPP //////////////////////////////////////////////////////////// /// \class sf::Transform /// \ingroup graphics /// /// A sf::Transform specifies how to translate, rotate, scale, /// shear, project, whatever things. In mathematical terms, it defines /// how to transform a coordinate system into another. /// /// For example, if you apply a rotation transform to a sprite, the /// result will be a rotated sprite. And anything that is transformed /// by this rotation transform will be rotated the same way, according /// to its initial position. /// /// Transforms are typically used for drawing. But they can also be /// used for any computation that requires to transform points between /// the local and global coordinate systems of an entity (like collision /// detection). /// /// Example: /// \code /// // define a translation transform /// sf::Transform translation; /// translation.translate(20, 50); /// /// // define a rotation transform /// sf::Transform rotation; /// rotation.rotate(45); /// /// // combine them /// sf::Transform transform = translation * rotation; /// /// // use the result to transform stuff... /// sf::Vector2f point = transform.transformPoint(10, 20); /// sf::FloatRect rect = transform.transformRect(sf::FloatRect(0, 0, 10, 100)); /// \endcode /// /// \see sf::Transformable, sf::RenderStates /// ////////////////////////////////////////////////////////////