"""Angle calculation demonstration with Line elements.""" import mcrfpy import math from .base import (GeometryDemoScreen, screen_angle_between, angle_difference, normalize_angle, distance, SCREEN_WIDTH, SCREEN_HEIGHT) class AngleLinesDemo(GeometryDemoScreen): """Demonstrate angle calculations between points using Line elements.""" name = "Angle Calculations" description = "Visualizing angles between grid positions" def setup(self): self.add_title("Angle Calculations & Line Elements") self.add_description("Computing headings, deviations, and opposite angles for pathfinding") margin = 30 frame_gap = 20 top_area = 80 bottom_margin = 30 # Calculate frame dimensions for 2x2 layout frame_width = (SCREEN_WIDTH - 2 * margin - frame_gap) // 2 available_height = SCREEN_HEIGHT - top_area - bottom_margin - frame_gap frame_height = available_height // 2 # Demo 1: Basic angle between two points (top-left) self._demo_basic_angle(margin, top_area, frame_width, frame_height) # Demo 2: Angle deviation (top-right) self._demo_angle_deviation(margin + frame_width + frame_gap, top_area, frame_width, frame_height) # Demo 3: Multiple waypoints (bottom-left) self._demo_waypoint_viability(margin, top_area + frame_height + frame_gap, frame_width, frame_height) # Demo 4: Orbit exit heading (bottom-right) self._demo_orbit_exit(margin + frame_width + frame_gap, top_area + frame_height + frame_gap, frame_width, frame_height) def _demo_basic_angle(self, fx, fy, fw, fh): """Show angle from point A to point B.""" bg = mcrfpy.Frame(pos=(fx, fy), size=(fw, fh)) bg.fill_color = mcrfpy.Color(15, 15, 25) bg.outline = 1 bg.outline_color = mcrfpy.Color(60, 60, 100) self.ui.append(bg) self.add_label("Basic Angle Calculation", fx + 10, fy + 5, (255, 200, 100)) # Point A (origin) - lower left area of frame ax, ay = fx + 80, fy + fh - 80 # Point B (target) - upper right area of frame bx, by = fx + fw - 100, fy + 100 # Calculate angle using screen coordinates angle = screen_angle_between((ax, ay), (bx, by)) dist = distance((ax, ay), (bx, by)) # Draw the line A to B (green) line_ab = mcrfpy.Line( start=(ax, ay), end=(bx, by), color=mcrfpy.Color(100, 255, 100), thickness=3 ) self.ui.append(line_ab) # Draw reference line (east from A) in gray ref_length = 120 line_ref = mcrfpy.Line( start=(ax, ay), end=(ax + ref_length, ay), color=mcrfpy.Color(100, 100, 100), thickness=1 ) self.ui.append(line_ref) # Draw arc showing the angle (from reference to target line) # Arc goes from 0 degrees (east) to the calculated angle arc = mcrfpy.Arc( center=(ax, ay), radius=50, start_angle=0, end_angle=angle, color=mcrfpy.Color(255, 255, 100), thickness=2 ) self.ui.append(arc) # Points point_a = mcrfpy.Circle(center=(ax, ay), radius=8, fill_color=mcrfpy.Color(255, 100, 100)) point_b = mcrfpy.Circle(center=(bx, by), radius=8, fill_color=mcrfpy.Color(100, 255, 100)) self.ui.append(point_a) self.ui.append(point_b) # Labels self.add_label("A", ax - 20, ay + 5, (255, 100, 100)) self.add_label("B", bx + 12, by - 5, (100, 255, 100)) self.add_label(f"Angle: {angle:.1f} deg", fx + 10, fy + fh - 45, (255, 255, 100)) self.add_label(f"Distance: {dist:.1f}", fx + 10, fy + fh - 25, (150, 150, 150)) def _demo_angle_deviation(self, fx, fy, fw, fh): """Show angle deviation when considering a waypoint.""" bg = mcrfpy.Frame(pos=(fx, fy), size=(fw, fh)) bg.fill_color = mcrfpy.Color(15, 15, 25) bg.outline = 1 bg.outline_color = mcrfpy.Color(60, 60, 100) self.ui.append(bg) self.add_label("Waypoint Deviation", fx + 10, fy + 5, (255, 200, 100)) self.add_label("Is planet C useful from A to B?", fx + 10, fy + 25, (150, 150, 150)) # Ship at A, target at B, potential waypoint C ax, ay = fx + 60, fy + fh - 100 bx, by = fx + fw - 60, fy + fh - 60 cx, cy = fx + fw // 2, fy + 100 # Calculate angles using screen coordinates angle_to_target = screen_angle_between((ax, ay), (bx, by)) angle_to_waypoint = screen_angle_between((ax, ay), (cx, cy)) deviation = abs(angle_difference(angle_to_target, angle_to_waypoint)) # Draw line A to B (direct path - green) line_ab = mcrfpy.Line( start=(ax, ay), end=(bx, by), color=mcrfpy.Color(100, 255, 100), thickness=2 ) self.ui.append(line_ab) # Draw line A to C (waypoint path) viable = deviation <= 45 waypoint_color = (255, 255, 100) if viable else (255, 100, 100) line_ac = mcrfpy.Line( start=(ax, ay), end=(cx, cy), color=mcrfpy.Color(*waypoint_color), thickness=2 ) self.ui.append(line_ac) # Draw arc showing the deviation angle between the two directions # Arc should go from angle_to_target to angle_to_waypoint start_ang = min(angle_to_target, angle_to_waypoint) end_ang = max(angle_to_target, angle_to_waypoint) # If the arc would be > 180, we need to go the other way if end_ang - start_ang > 180: start_ang, end_ang = end_ang, start_ang + 360 arc = mcrfpy.Arc( center=(ax, ay), radius=50, start_angle=start_ang, end_angle=end_ang, color=mcrfpy.Color(*waypoint_color), thickness=2 ) self.ui.append(arc) # Points point_a = mcrfpy.Circle(center=(ax, ay), radius=8, fill_color=mcrfpy.Color(255, 100, 100)) point_b = mcrfpy.Circle(center=(bx, by), radius=8, fill_color=mcrfpy.Color(100, 255, 100)) point_c = mcrfpy.Circle(center=(cx, cy), radius=12, fill_color=mcrfpy.Color(100, 100, 200), outline_color=mcrfpy.Color(150, 150, 255), outline=2) self.ui.append(point_a) self.ui.append(point_b) self.ui.append(point_c) # Labels - positioned to avoid overlap self.add_label("A (ship)", ax - 15, ay + 15, (255, 100, 100)) self.add_label("B (target)", bx - 30, by + 15, (100, 255, 100)) self.add_label("C (planet)", cx + 15, cy - 10, (150, 150, 255)) # Status at bottom self.add_label(f"Deviation: {deviation:.1f} deg", fx + 10, fy + fh - 45, waypoint_color) status = "VIABLE (<45 deg)" if viable else "NOT VIABLE (>45 deg)" self.add_label(status, fx + 200, fy + fh - 45, waypoint_color) def _demo_waypoint_viability(self, fx, fy, fw, fh): """Show multiple potential waypoints with viability indicators.""" bg = mcrfpy.Frame(pos=(fx, fy), size=(fw, fh)) bg.fill_color = mcrfpy.Color(15, 15, 25) bg.outline = 1 bg.outline_color = mcrfpy.Color(60, 60, 100) self.ui.append(bg) self.add_label("Multiple Waypoint Analysis", fx + 10, fy + 5, (255, 200, 100)) # Ship and target positions ax, ay = fx + 60, fy + fh - 80 bx, by = fx + fw - 80, fy + fh // 2 angle_to_target = screen_angle_between((ax, ay), (bx, by)) # Draw direct path line_ab = mcrfpy.Line( start=(ax, ay), end=(bx, by), color=mcrfpy.Color(100, 255, 100, 128), thickness=2 ) self.ui.append(line_ab) # Potential waypoints at various positions waypoints = [ (fx + 180, fy + 80, "W1"), # Upper area (fx + 280, fy + fh - 60, "W2"), # Right of path (fx + 80, fy + fh - 150, "W3"), # Left/behind (fx + fw - 150, fy + fh // 2 - 30, "W4"), # Near target ] threshold = 45 for wx, wy, label in waypoints: angle_to_wp = screen_angle_between((ax, ay), (wx, wy)) deviation = abs(angle_difference(angle_to_target, angle_to_wp)) viable = deviation <= threshold # Line to waypoint color_tuple = (100, 255, 100) if viable else (255, 100, 100) line = mcrfpy.Line( start=(ax, ay), end=(wx, wy), color=mcrfpy.Color(*color_tuple), thickness=1 ) self.ui.append(line) # Waypoint circle wp_circle = mcrfpy.Circle( center=(wx, wy), radius=15, fill_color=mcrfpy.Color(80, 80, 120), outline_color=mcrfpy.Color(*color_tuple), outline=2 ) self.ui.append(wp_circle) self.add_label(f"{label}:{deviation:.0f}", wx + 18, wy - 8, color_tuple) # Ship and target markers ship = mcrfpy.Circle(center=(ax, ay), radius=8, fill_color=mcrfpy.Color(255, 200, 100)) target = mcrfpy.Circle(center=(bx, by), radius=8, fill_color=mcrfpy.Color(100, 255, 100)) self.ui.append(ship) self.ui.append(target) self.add_label("Ship", ax - 10, ay + 12, (255, 200, 100)) self.add_label("Target", bx - 20, by + 12, (100, 255, 100)) self.add_label(f"Threshold: {threshold} deg", fx + 10, fy + fh - 25, (150, 150, 150)) def _demo_orbit_exit(self, fx, fy, fw, fh): """Show optimal orbit exit heading toward target.""" bg = mcrfpy.Frame(pos=(fx, fy), size=(fw, fh)) bg.fill_color = mcrfpy.Color(15, 15, 25) bg.outline = 1 bg.outline_color = mcrfpy.Color(60, 60, 100) self.ui.append(bg) self.add_label("Orbit Exit Heading", fx + 10, fy + 5, (255, 200, 100)) self.add_label("Ship repositions FREE in orbit", fx + 10, fy + 25, (150, 150, 150)) # Planet center and orbit px, py = fx + fw // 3, fy + fh // 2 orbit_radius = 70 surface_radius = 30 # Target position tx, ty = fx + fw - 80, fy + 100 # Calculate optimal exit angle (toward target in screen coords) exit_angle = screen_angle_between((px, py), (tx, ty)) exit_x = px + orbit_radius * math.cos(math.radians(exit_angle)) exit_y = py - orbit_radius * math.sin(math.radians(exit_angle)) # Negate for screen Y # Ship's current position on orbit (arbitrary starting position) ship_angle = exit_angle + 120 # 120 degrees away from exit ship_x = px + orbit_radius * math.cos(math.radians(ship_angle)) ship_y = py - orbit_radius * math.sin(math.radians(ship_angle)) # Draw planet surface planet = mcrfpy.Circle( center=(px, py), radius=surface_radius, fill_color=mcrfpy.Color(80, 120, 180), outline_color=mcrfpy.Color(100, 150, 220), outline=2 ) self.ui.append(planet) # Draw orbit ring orbit = mcrfpy.Circle( center=(px, py), radius=orbit_radius, fill_color=mcrfpy.Color(0, 0, 0, 0), outline_color=mcrfpy.Color(50, 150, 50), outline=2 ) self.ui.append(orbit) # Draw arc showing orbital movement from ship to exit (FREE movement) # Arc goes from ship_angle to exit_angle start_ang = min(ship_angle, exit_angle) end_ang = max(ship_angle, exit_angle) orbit_arc = mcrfpy.Arc( center=(px, py), radius=orbit_radius, start_angle=start_ang, end_angle=end_ang, color=mcrfpy.Color(255, 255, 100), thickness=4 ) self.ui.append(orbit_arc) # Draw ship ship = mcrfpy.Circle( center=(ship_x, ship_y), radius=8, fill_color=mcrfpy.Color(255, 200, 100) ) self.ui.append(ship) # Draw exit point exit_point = mcrfpy.Circle( center=(exit_x, exit_y), radius=6, fill_color=mcrfpy.Color(100, 255, 100) ) self.ui.append(exit_point) # Draw line from exit to target exit_line = mcrfpy.Line( start=(exit_x, exit_y), end=(tx, ty), color=mcrfpy.Color(100, 255, 100), thickness=2 ) self.ui.append(exit_line) # Target target = mcrfpy.Circle( center=(tx, ty), radius=10, fill_color=mcrfpy.Color(255, 100, 100) ) self.ui.append(target) # Labels - positioned to avoid overlap self.add_label("Planet", px - 20, py + surface_radius + 5, (100, 150, 220)) self.add_label("Ship", ship_x - 30, ship_y - 15, (255, 200, 100)) self.add_label("Exit", exit_x + 10, exit_y - 15, (100, 255, 100)) self.add_label("Target", tx - 20, ty + 15, (255, 100, 100)) # Info at bottom self.add_label(f"Exit angle: {exit_angle:.1f} deg", fx + 10, fy + fh - 45, (150, 150, 150)) self.add_label("Yellow = FREE orbital move", fx + 200, fy + fh - 45, (255, 255, 100))