/* BSD 3-Clause License
 *
 * Copyright © 2008-2022, Jice and the libtcod contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
#ifndef _TCOD_BRESENHAM_HPP
#define _TCOD_BRESENHAM_HPP

#include <array>
#include <functional>
#include <iterator>
#include <vector>

#include "bresenham.h"

// clang-format off
class TCODLIB_API TCODLineListener {
public :
	virtual bool putPoint(int x,int y) = 0;
	virtual ~TCODLineListener() {}
};

class TCODLIB_API TCODLine {
public :
	/**
	@PageName line
	@PageCategory Base toolkits
	@PageTitle Line drawing toolkit
	@PageDesc This toolkit is a very simple and lightweight implementation of the bresenham line drawing algorithm. It allows you to follow straight paths on your map very easily.
	@FuncTitle Initializing the line
	@FuncDesc First, you have to initialize the toolkit with your starting and ending coordinates.
	@Cpp static void TCODLine::init (int xFrom, int yFrom, int xTo, int yTo)
	@C void TCOD_line_init (int xFrom, int yFrom, int xTo, int yTo)
	@Py line_init (xFrom, yFrom, xTo, yTo)
	@C# static void TCODLine::init(int xFrom, int yFrom, int xTo, int yTo)
	@Lua tcod.line.init(xFrom,yFrom, xTo,yTo)
	@Param xFrom,yFrom Coordinates of the line's starting point.
	@Param xTo,yTo Coordinates of the line's ending point.
	*/
	static void init(int xFrom, int yFrom, int xTo, int yTo);

	/**
	@PageName line
	@FuncTitle Walking the line
	@FuncDesc You can then step through each cell with this function. It returns true when you reach the line's ending point.
	@Cpp static bool TCODLine::step (int * xCur, int * yCur)
	@C bool TCOD_line_step (int * xCur, int * yCur)
	@Py line_step () # returns x,y or None,None if finished
	@C# static bool TCODLine::step(ref int xCur, ref int yCur)
	@Lua tcod.line.step(x,y) -- returns lineEnd,x,y
	@Param xCur,yCur the coordinates of the next cell on the line are stored here when the function returns
	@CppEx
		// Going from point 5,8 to point 13,4
		int x = 5, y = 8;
		TCODLine::init(x,y,13,4);
		do {
		    // update cell x,y
		} while (!TCODLine::step(&x,&y));
	@CEx
		int x = 5, y = 8;
		TCOD_line_init(x,y,13,4);
		do {
		    // update cell x,y
		} while (!TCOD_line_step(&x,&y));
	@PyEx
		libtcod.line_init(5,8,13,4)
		# update cell 5,8
		x,y=libtcod.line_step()
		while (not x is None) :
		    # update cell x,y
		x,y=libtcod.line_step()
	@LuaEx
		x=5
		y=8
		tcod.line.init(x,y,13,4)
		repeat
			-- update cell x,y
			lineEnd,x,y = tcod.line.step(x,y)
		until lineEnd
	*/
	static bool step(int *xCur, int *yCur);

	/**
	@PageName line
	@FuncTitle Callback-based function
	@FuncDesc The function returns false if the line has been interrupted by the callback (it returned false before the last point).
	@Cpp
		class TCODLIB_API TCODLineListener {
			virtual bool putPoint (int x, int y) = 0;
		};
		static bool TCODLine::line (int xFrom, int yFrom, int xTo, int yTo, TCODLineListener * listener)
	@C
		typedef bool (*TCOD_line_listener_t) (int x, int y);
		bool TCOD_line(int xFrom, int yFrom, int xTo, int yTo, TCOD_line_listener_t listener)
	@Py
		def line_listener(x,y) : # ...
		line(xFrom, yFrom, xTo, yTo, listener)
	@C# static bool line(int xFrom, int yFrom, int xTo, int yTo, TCODLineListener listener)
	@Param xFrom,yFrom	Coordinates of the line's starting point.
	@Param xTo,yTo	Coordinates of the line's ending point.
	@Param listener	Callback called for each line's point. The function stops if the callback returns false.
	@CppEx // Going from point 5,8 to point 13,4
class MyLineListener : public TCODLineListener {
    public:
    bool putPoint (int x,int y) {
        printf ("%d %d\n",x,y);
        return true;
    }
};
MyLineListener myListener;
TCODLine::line(5,8,13,4,&myListener);
	@CEx bool my_listener(int x,int y) {
    printf ("%d %d\n",x,y);
    return true;
}
TCOD_line_line(5,8,13,4,my_listener);
	@PyEx def my_listener(x,y):
    print x,y
    return True
libtcod.line_line(5,8,13,4,my_listener)
	*/
	static bool line(int xFrom, int yFrom, int xTo, int yTo, TCODLineListener *listener);
};
// clang-format on
namespace tcod {
/**
    Encapsulates a Bresenham line drawing algorithm.

    \rst
    .. versionadded:: 1.17
    \endrst
 */
class BresenhamLine {
 public:
  using Point2 = std::array<int, 2>;
  using iterator_category = std::random_access_iterator_tag;
  using value_type = Point2;
  using difference_type = int;
  using pointer = void;
  using reference = value_type;
  /**
      Construct a new Bresenham line from `begin` to `end`.

      Iterating over this instance will include both endpoints.
   */
  explicit BresenhamLine(Point2 begin, Point2 end) noexcept
      : origin_{begin},
        dest_{end},
        index_{0},
        index_end_{get_delta_x() + 1},
        cursor_{0, 0},
        y_error_{-get_delta_x() / 2} {}
  /**
      Construct a new Bresenham line with a manually given error value.
   */
  explicit BresenhamLine(Point2 begin, Point2 end, int error) noexcept
      : origin_{begin},
        dest_{end},
        index_{0},
        index_end_{get_delta_x() + 1},
        cursor_{0, 0},
        y_error_{error > 0 ? error % get_delta_x() - get_delta_x() : error % get_delta_x()} {}

  inline BresenhamLine& operator++() noexcept {
    ++index_;
    return *this;
  }
  inline BresenhamLine operator++(int) noexcept {
    auto tmp = *this;
    ++(*this);
    return tmp;
  }
  inline BresenhamLine& operator--() noexcept {
    --index_;
    return *this;
  }
  inline BresenhamLine operator--(int) noexcept {
    auto tmp = *this;
    --(*this);
    return tmp;
  }
  /**
      Return the world position of the Bresenham at the index relative to the current index.

      BresenhamLine is not restricted by any bounds so you can freely give a index past the end or before zero.

      The internal state must always seek to the position being indexed, this will affect performance depending on if
      successive indexes are close together or far apart.
   */
  inline value_type operator[](int index) noexcept { return bresenham_get(index_ + index); }
  /**
      Return the world position of the Bresenham at the current index.
   */
  inline value_type operator*() noexcept { return (*this)[0]; }
  inline constexpr bool operator==(const BresenhamLine& rhs) const noexcept { return index_ == rhs.index_; }
  inline constexpr bool operator!=(const BresenhamLine& rhs) const noexcept { return !(*this == rhs); }
  inline constexpr difference_type operator-(const BresenhamLine& rhs) const noexcept { return index_ - rhs.index_; }

  /**
      Return a new version of this BresenhamLine with an adjusted range.

      `shift_begin` and `shift_end` change the beginning and ending of the line
      when iterators over.

      Example::

        // Remove the endpoints of a bresenham line.
        auto line = tcod::BresenhamLine(from, to).adjust_range(1, -1);
   */
  inline BresenhamLine adjust_range(int shift_begin, int shift_end) const noexcept {
    BresenhamLine new_data{*this};
    new_data.index_ += shift_begin;
    new_data.index_end_ += shift_end;
    new_data.index_end_ = std::max(new_data.index_, new_data.index_end_);
    return new_data;
  }
  /**
      Remove the staring endpoint of a line.

      Example::

        for (auto&& [x, y] : tcod::BresenhamLine(from, to).without_start()) {
          // All positions excluding `from`.
        }
   */
  inline BresenhamLine without_start() const noexcept { return adjust_range(1, 0); }
  /**
      Remove the final endpoint of a line.

      Example::

        for (auto&& [x, y] : tcod::BresenhamLine(from, to).without_end()) {
          // All positions excluding `to`.
        }
   */
  inline BresenhamLine without_end() const noexcept { return adjust_range(0, -1); }
  /**
      Remove both endpoints of a line.

      Example::

        for (auto&& [x, y] : tcod::BresenhamLine(from, to).without_endpoints()) {
          // All positions between and excluding `from` and `to`.
        }
   */
  inline BresenhamLine without_endpoints() const noexcept { return adjust_range(1, -1); }
  /**
      Return the beginning iterator, which is a copy of the current object.
   */
  inline BresenhamLine begin() const noexcept { return {*this}; }
  /**
      Return the past-the-end iterator.
   */
  inline BresenhamLine end() const noexcept {
    return BresenhamLine{origin_, dest_, index_end_, index_end_, cursor_, y_error_};
  }

 private:
  /**
      Transform matrix to convert from normalized state cursor to the real world coordinates.
   */
  struct Matrix {
    /**
        Convert a state cursor vector to the a world vector.
     */
    inline Point2 transform(const Point2& cursor) const noexcept {
      return {ax + cursor.at(0) * xx + cursor.at(1) * yx, ay + cursor.at(0) * xy + cursor.at(1) * yy};
    }
    int ax;  // Affine transformation on X.
    int ay;  // Affine transformation on Y.
    int_fast8_t xx;  // Index to world X.
    int_fast8_t xy;  // Index to world Y.
    int_fast8_t yx;  // Cursor Y to world X.
    int_fast8_t yy;  // Cursor Y to world Y.
  };
  /**
      Return a Matrix that converts a normalized cursor to the correct octant.
   */
  inline Matrix get_matrix() const noexcept { return get_matrix(origin_, dest_); }
  static Matrix get_matrix(const Point2& origin, const Point2& dest) noexcept {
    const int delta_x = dest.at(0) - origin.at(0);
    const int delta_y = dest.at(1) - origin.at(1);
    Matrix matrix{
        origin.at(0),
        origin.at(1),
        1,
        0,
        0,
        1,
    };
    if (delta_x < 0) matrix.xx = -1;
    if (delta_y < 0) matrix.yy = -1;
    if (std::abs(delta_y) > std::abs(delta_x)) {
      std::swap(matrix.xx, matrix.yx);
      std::swap(matrix.xy, matrix.yy);
    }
    return matrix;
  }
  explicit BresenhamLine(Point2 begin, Point2 end, int index_begin, int index_end, Point2 cursor, int error) noexcept
      : origin_{begin}, dest_{end}, index_{index_begin}, index_end_{index_end}, cursor_{cursor}, y_error_{error} {}
  /**
      Return the normalized delta vector.

      The first axis is always the longest. All values are non-negative.
   */
  inline Point2 get_normalized_delta() const noexcept { return get_normalized_delta(origin_, dest_); }
  static Point2 get_normalized_delta(const Point2& origin, const Point2& dest) noexcept {
    return std::abs(dest.at(0) - origin.at(0)) > std::abs(dest.at(1) - origin.at(1))
               ? Point2{std::abs(dest.at(0) - origin.at(0)), std::abs(dest.at(1) - origin.at(1))}
               : Point2{std::abs(dest.at(1) - origin.at(1)), std::abs(dest.at(0) - origin.at(0))};
  }
  /**
      Return the normalized delta X value.

      This is the value of the longest delta axis as a positive integer and is often used to determine the line length.
   */
  inline int get_delta_x() const noexcept { return get_normalized_delta().at(0); }
  /**
      Advance one step using the Bresenham algorithm.
   */
  inline BresenhamLine& bresenham_next() {
    const Point2 delta = get_normalized_delta();
    y_error_ += delta.at(1);
    if (y_error_ > 0) {
      ++cursor_.at(1);
      y_error_ -= delta.at(0);
    };
    ++cursor_.at(0);
    return *this;
  }
  /**
      Inverse Bresenham algorithm.  Takes one step backwards.
   */
  inline BresenhamLine& bresenham_prev() {
    const Point2 delta = get_normalized_delta();
    y_error_ -= delta.at(1);
    if (y_error_ <= -delta.at(0)) {
      --cursor_.at(1);
      y_error_ += delta.at(0);
    };
    --cursor_.at(0);
    return *this;
  }
  /**
      Seek to the given index and return the world position of the cursor.
   */
  inline Point2 bresenham_get(int index) {
    while (cursor_.at(0) < index) bresenham_next();
    while (cursor_.at(0) > index) bresenham_prev();
    return get_matrix().transform(cursor_);
  }
  Point2 origin_;  // Starting point.
  Point2 dest_;  // Ending point.
  int index_;  // The starting index returned by `begin`.
  int index_end_;  // The past-the-end index returned by `end`.
  Point2 cursor_;  // Normalized Bresenham low-slope position.  First axis acts as the current index.
  int y_error_;  // Fractional difference between Y indexes.  Is always `-delta[0] < err <= 0`.
};
}  // namespace tcod
#endif