#!/usr/bin/python
#
# libtcod Python samples
# This code demonstrates various usages of libtcod modules
# It's in the public domain.
#
from __future__ import print_function

import math
import os

import libtcodpy as libtcod

xrange = range

# Import Psyco if available
try:
    import psyco

    psyco.full()
except ImportError:
    pass

SAMPLE_SCREEN_WIDTH = 46
SAMPLE_SCREEN_HEIGHT = 20
SAMPLE_SCREEN_X = 20
SAMPLE_SCREEN_Y = 10
cwd_path = os.path.dirname(os.path.realpath(__file__))
data_path = os.path.abspath(os.path.join(cwd_path, "..", "data"))
font = os.path.join(data_path, "fonts", "consolas10x10_gs_tc.png")
libtcod.console_set_custom_font(font, libtcod.FONT_TYPE_GREYSCALE | libtcod.FONT_LAYOUT_TCOD)
libtcod.console_init_root(80, 50, "libtcod Python sample", False)
sample_console = libtcod.console_new(SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT)

#############################################
# parser unit test
#############################################
# parser declaration
if True:
    print("***** File Parser test *****")
    parser = libtcod.parser_new()
    struct = libtcod.parser_new_struct(parser, "myStruct")
    libtcod.struct_add_property(struct, "bool_field", libtcod.TYPE_BOOL, True)
    libtcod.struct_add_property(struct, "char_field", libtcod.TYPE_CHAR, True)
    libtcod.struct_add_property(struct, "int_field", libtcod.TYPE_INT, True)
    libtcod.struct_add_property(struct, "float_field", libtcod.TYPE_FLOAT, True)
    libtcod.struct_add_property(struct, "color_field", libtcod.TYPE_COLOR, True)
    libtcod.struct_add_property(struct, "dice_field", libtcod.TYPE_DICE, True)
    libtcod.struct_add_property(struct, "string_field", libtcod.TYPE_STRING, True)
    libtcod.struct_add_list_property(struct, "bool_list", libtcod.TYPE_BOOL, True)
    libtcod.struct_add_list_property(struct, "char_list", libtcod.TYPE_CHAR, True)
    libtcod.struct_add_list_property(struct, "integer_list", libtcod.TYPE_INT, True)
    libtcod.struct_add_list_property(struct, "float_list", libtcod.TYPE_FLOAT, True)
    libtcod.struct_add_list_property(struct, "string_list", libtcod.TYPE_STRING, True)
    libtcod.struct_add_list_property(struct, "color_list", libtcod.TYPE_COLOR, True)
    ##    # dice lists doesn't work yet
    ##    libtcod.struct_add_list_property(struct,'dice_list', libtcod.TYPE_DICE,
    ##                                True)

    # default listener
    print("***** Default listener *****")
    libtcod.parser_run(parser, os.path.join(data_path, "cfg", "sample.cfg"))
    print("bool_field : ", libtcod.parser_get_bool_property(parser, "myStruct.bool_field"))
    print("char_field : ", libtcod.parser_get_char_property(parser, "myStruct.char_field"))
    print("int_field : ", libtcod.parser_get_int_property(parser, "myStruct.int_field"))
    print("float_field : ", libtcod.parser_get_float_property(parser, "myStruct.float_field"))
    print("color_field : ", libtcod.parser_get_color_property(parser, "myStruct.color_field"))
    print("dice_field : ", libtcod.parser_get_dice_property(parser, "myStruct.dice_field"))
    print("string_field : ", libtcod.parser_get_string_property(parser, "myStruct.string_field"))
    print("bool_list : ", libtcod.parser_get_list_property(parser, "myStruct.bool_list", libtcod.TYPE_BOOL))
    print("char_list : ", libtcod.parser_get_list_property(parser, "myStruct.char_list", libtcod.TYPE_CHAR))
    print("integer_list : ", libtcod.parser_get_list_property(parser, "myStruct.integer_list", libtcod.TYPE_INT))
    print("float_list : ", libtcod.parser_get_list_property(parser, "myStruct.float_list", libtcod.TYPE_FLOAT))
    print("string_list : ", libtcod.parser_get_list_property(parser, "myStruct.string_list", libtcod.TYPE_STRING))
    print("color_list : ", libtcod.parser_get_list_property(parser, "myStruct.color_list", libtcod.TYPE_COLOR))
    ##    print ('dice_list : ', \
    ##          libtcod.parser_get_list_property(parser,'myStruct.dice_list',
    ##                                                           libtcod.TYPE_DICE))

    # custom listener
    print("***** Custom listener *****")

    class MyListener:
        def new_struct(self, struct, name):
            print("new structure type", libtcod.struct_get_name(struct), " named ", name)
            return True

        def new_flag(self, name):
            print("new flag named ", name)
            return True

        def new_property(self, name, typ, value):
            type_names = ["NONE", "BOOL", "CHAR", "INT", "FLOAT", "STRING", "COLOR", "DICE"]
            type_name = type_names[typ & 0xFF]
            if typ & libtcod.TYPE_LIST:
                type_name = "LIST<%s>" % type_name
            print("new property named ", name, " type ", type_name, " value ", value)
            return True

        def end_struct(self, struct, name):
            print("end structure type", libtcod.struct_get_name(struct), " named ", name)
            return True

        def error(self, msg):
            print("error : ", msg)
            return True

    libtcod.parser_run(parser, os.path.join(data_path, "cfg", "sample.cfg"), MyListener())
#############################################
# end of parser unit test
#############################################

#############################################
# true color sample
#############################################
tc_cols = [
    libtcod.Color(50, 40, 150),
    libtcod.Color(240, 85, 5),
    libtcod.Color(50, 35, 240),
    libtcod.Color(10, 200, 130),
]
tc_dirr = [1, -1, 1, 1]
tc_dirg = [1, -1, -1, 1]
tc_dirb = [1, 1, 1, -1]


def render_colors(first, key, mouse):
    global tc_cols, tc_dirr, tc_dirg, tc_dirb, tc_fast

    TOPLEFT = 0
    TOPRIGHT = 1
    BOTTOMLEFT = 2
    BOTTOMRIGHT = 3
    if first:
        libtcod.sys_set_fps(0)
        libtcod.console_clear(sample_console)
        tc_fast = False
    for c in range(4):
        # move each corner color
        component = libtcod.random_get_int(None, 0, 2)
        if component == 0:
            tc_cols[c].r += 5 * tc_dirr[c]
            if tc_cols[c].r == 255:
                tc_dirr[c] = -1
            elif tc_cols[c].r == 0:
                tc_dirr[c] = 1
        elif component == 1:
            tc_cols[c].g += 5 * tc_dirg[c]
            if tc_cols[c].g == 255:
                tc_dirg[c] = -1
            elif tc_cols[c].g == 0:
                tc_dirg[c] = 1
        elif component == 2:
            tc_cols[c].b += 5 * tc_dirb[c]
            if tc_cols[c].b == 255:
                tc_dirb[c] = -1
            elif tc_cols[c].b == 0:
                tc_dirb[c] = 1

    if not tc_fast:
        # interpolate corner colors
        for x in range(SAMPLE_SCREEN_WIDTH):
            xcoef = float(x) / (SAMPLE_SCREEN_WIDTH - 1)
            top = libtcod.color_lerp(tc_cols[TOPLEFT], tc_cols[TOPRIGHT], xcoef)
            bottom = libtcod.color_lerp(tc_cols[BOTTOMLEFT], tc_cols[BOTTOMRIGHT], xcoef)
            for y in range(SAMPLE_SCREEN_HEIGHT):
                ycoef = float(y) / (SAMPLE_SCREEN_HEIGHT - 1)
                curColor = libtcod.color_lerp(top, bottom, ycoef)
                libtcod.console_set_char_background(sample_console, x, y, curColor, libtcod.BKGND_SET)
        textColor = libtcod.console_get_char_background(sample_console, SAMPLE_SCREEN_WIDTH // 2, 5)
        textColor.r = 255 - textColor.r
        textColor.g = 255 - textColor.g
        textColor.b = 255 - textColor.b
        libtcod.console_set_default_foreground(sample_console, textColor)
        for x in range(SAMPLE_SCREEN_WIDTH):
            for y in range(SAMPLE_SCREEN_HEIGHT):
                col = libtcod.console_get_char_background(sample_console, x, y)
                col = libtcod.color_lerp(col, libtcod.black, 0.5)
                c = libtcod.random_get_int(None, ord("a"), ord("z"))
                libtcod.console_set_default_foreground(sample_console, col)
                libtcod.console_put_char(sample_console, x, y, c, libtcod.BKGND_NONE)
    else:
        # same, but using the ConsoleBuffer class to speed up rendering
        buffer = libtcod.ConsoleBuffer(SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT)  # initialize buffer
        c = libtcod.random_get_int(None, ord("a"), ord("z"))
        for x in xrange(SAMPLE_SCREEN_WIDTH):
            xcoef = float(x) / (SAMPLE_SCREEN_WIDTH - 1)
            top = libtcod.color_lerp(tc_cols[TOPLEFT], tc_cols[TOPRIGHT], xcoef)
            bottom = libtcod.color_lerp(tc_cols[BOTTOMLEFT], tc_cols[BOTTOMRIGHT], xcoef)
            for y in xrange(SAMPLE_SCREEN_HEIGHT):
                # for maximum speed, we avoid using any libtcod function in
                # this inner loop, except for the ConsoleBuffer's functions.
                ycoef = float(y) / (SAMPLE_SCREEN_HEIGHT - 1)
                r = int(top.r * ycoef + bottom.r * (1 - ycoef))
                g = int(top.g * ycoef + bottom.g * (1 - ycoef))
                b = int(top.b * ycoef + bottom.b * (1 - ycoef))
                c += 1
                if c > ord("z"):
                    c = ord("a")
                # set background, foreground and char with a single function
                buffer.set(x, y, r, g, b, r / 2, g / 2, b / 2, chr(c))
        buffer.blit(sample_console)  # update console with the buffer's contents
        libtcod.console_set_default_foreground(sample_console, libtcod.Color(int(r), int(g), int(b)))

    libtcod.console_set_default_background(sample_console, libtcod.grey)
    libtcod.console_print_rect_ex(
        sample_console,
        SAMPLE_SCREEN_WIDTH // 2,
        5,
        SAMPLE_SCREEN_WIDTH - 2,
        SAMPLE_SCREEN_HEIGHT - 1,
        libtcod.BKGND_MULTIPLY,
        libtcod.CENTER,
        "The Doryen library uses 24 bits " "colors, for both background and " "foreground.",
    )

    if key.c == ord("f"):
        tc_fast = not tc_fast
    libtcod.console_set_default_foreground(sample_console, libtcod.white)
    libtcod.console_print(
        sample_console,
        1,
        SAMPLE_SCREEN_HEIGHT - 2,
        "F : turn fast rendering (Python 2.6 only) %s" % ("off" if tc_fast else "on"),
    )


#############################################
# offscreen console sample
#############################################
oc_secondary = None
oc_screenshot = None
oc_counter = 0
oc_x = 0
oc_y = 0
oc_init = False
oc_xdir = 1
oc_ydir = 1


def render_offscreen(first, key, mouse):
    global oc_secondary, oc_screenshot
    global oc_counter, oc_x, oc_y, oc_init, oc_xdir, oc_ydir

    if not oc_init:
        oc_init = True
        oc_secondary = libtcod.console_new(SAMPLE_SCREEN_WIDTH // 2, SAMPLE_SCREEN_HEIGHT // 2)
        oc_screenshot = libtcod.console_new(SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT)
        libtcod.console_print_frame(
            oc_secondary,
            0,
            0,
            SAMPLE_SCREEN_WIDTH // 2,
            SAMPLE_SCREEN_HEIGHT // 2,
            False,
            libtcod.BKGND_NONE,
            "Offscreen console",
        )
        libtcod.console_print_rect_ex(
            oc_secondary,
            SAMPLE_SCREEN_WIDTH // 4,
            2,
            SAMPLE_SCREEN_WIDTH // 2 - 2,
            SAMPLE_SCREEN_HEIGHT // 2,
            libtcod.BKGND_NONE,
            libtcod.CENTER,
            b"You can render to an offscreen console and blit in on another one, simulating alpha transparency.",
        )
    if first:
        libtcod.sys_set_fps(30)
        # get a "screenshot" of the current sample screen
        libtcod.console_blit(sample_console, 0, 0, SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT, oc_screenshot, 0, 0)
    oc_counter += 1
    if oc_counter % 20 == 0:
        oc_x += oc_xdir
        oc_y += oc_ydir
        if oc_x == SAMPLE_SCREEN_WIDTH / 2 + 5:
            oc_xdir = -1
        elif oc_x == -5:
            oc_xdir = 1
        if oc_y == SAMPLE_SCREEN_HEIGHT / 2 + 5:
            oc_ydir = -1
        elif oc_y == -5:
            oc_ydir = 1
    libtcod.console_blit(oc_screenshot, 0, 0, SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT, sample_console, 0, 0)
    libtcod.console_blit(
        oc_secondary, 0, 0, SAMPLE_SCREEN_WIDTH // 2, SAMPLE_SCREEN_HEIGHT // 2, sample_console, oc_x, oc_y, 1.0, 0.75
    )


#############################################
# line drawing sample
#############################################
line_bk = libtcod.Color()
line_init = False
line_bk_flag = libtcod.BKGND_SET


def render_lines(first, key, mouse):
    global line_bk, line_init, line_bk_flag

    flag_names = [
        "BKGND_NONE",
        "BKGND_SET",
        "BKGND_MULTIPLY",
        "BKGND_LIGHTEN",
        "BKGND_DARKEN",
        "BKGND_SCREEN",
        "BKGND_COLOR_DODGE",
        "BKGND_COLOR_BURN",
        "BKGND_ADD",
        "BKGND_ADDALPHA",
        "BKGND_BURN",
        "BKGND_OVERLAY",
        "BKGND_ALPHA",
    ]
    if key.vk in (libtcod.KEY_ENTER, libtcod.KEY_KPENTER):
        line_bk_flag += 1
        if (line_bk_flag & 0xFF) > libtcod.BKGND_ALPH:
            line_bk_flag = libtcod.BKGND_NONE
    alpha = 0.0
    if (line_bk_flag & 0xFF) == libtcod.BKGND_ALPH:
        # for the alpha mode, update alpha every frame
        alpha = (1.0 + math.cos(libtcod.sys_elapsed_seconds() * 2)) / 2.0
        line_bk_flag = libtcod.BKGND_ALPHA(alpha)
    elif (line_bk_flag & 0xFF) == libtcod.BKGND_ADDA:
        # for the add alpha mode, update alpha every frame
        alpha = (1.0 + math.cos(libtcod.sys_elapsed_seconds() * 2)) / 2.0
        line_bk_flag = libtcod.BKGND_ADDALPHA(alpha)
    if not line_init:
        line_bk = libtcod.console_new(SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT)
        # initialize the colored background
        for x in range(SAMPLE_SCREEN_WIDTH):
            for y in range(SAMPLE_SCREEN_HEIGHT):
                col = libtcod.Color(
                    x * 255 // (SAMPLE_SCREEN_WIDTH - 1),
                    (x + y) * 255 // (SAMPLE_SCREEN_WIDTH - 1 + SAMPLE_SCREEN_HEIGHT - 1),
                    y * 255 // (SAMPLE_SCREEN_HEIGHT - 1),
                )
                libtcod.console_set_char_background(line_bk, x, y, col, libtcod.BKGND_SET)
        line_init = True
    if first:
        libtcod.sys_set_fps(30)
        libtcod.console_set_default_foreground(sample_console, libtcod.white)
    libtcod.console_blit(line_bk, 0, 0, SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT, sample_console, 0, 0)
    recty = int((SAMPLE_SCREEN_HEIGHT - 2) * ((1.0 + math.cos(libtcod.sys_elapsed_seconds())) / 2.0))
    for x in range(SAMPLE_SCREEN_WIDTH):
        col = libtcod.Color(
            x * 255 // SAMPLE_SCREEN_WIDTH, x * 255 // SAMPLE_SCREEN_WIDTH, x * 255 // SAMPLE_SCREEN_WIDTH
        )
        libtcod.console_set_char_background(sample_console, x, recty, col, line_bk_flag)
        libtcod.console_set_char_background(sample_console, x, recty + 1, col, line_bk_flag)
        libtcod.console_set_char_background(sample_console, x, recty + 2, col, line_bk_flag)
    angle = libtcod.sys_elapsed_seconds() * 2.0
    cos_angle = math.cos(angle)
    sin_angle = math.sin(angle)
    xo = int(SAMPLE_SCREEN_WIDTH // 2 * (1 + cos_angle))
    yo = int(SAMPLE_SCREEN_HEIGHT // 2 + sin_angle * SAMPLE_SCREEN_WIDTH // 2)
    xd = int(SAMPLE_SCREEN_WIDTH // 2 * (1 - cos_angle))
    yd = int(SAMPLE_SCREEN_HEIGHT // 2 - sin_angle * SAMPLE_SCREEN_WIDTH // 2)
    # draw the line
    # in Python the easiest way is to use the line iterator
    for x, y in libtcod.line_iter(xo, yo, xd, yd):
        if 0 <= x < SAMPLE_SCREEN_WIDTH and 0 <= y < SAMPLE_SCREEN_HEIGHT:
            libtcod.console_set_char_background(sample_console, x, y, libtcod.light_blue, line_bk_flag)
    libtcod.console_print(sample_console, 2, 2, "%s (ENTER to change)" % flag_names[line_bk_flag & 0xFF])


#############################################
# noise sample
#############################################
noise_func = 0
noise_dx = 0.0
noise_dy = 0.0
noise_octaves = 4.0
noise_zoom = 3.0
noise_hurst = libtcod.NOISE_DEFAULT_HURST
noise_lacunarity = libtcod.NOISE_DEFAULT_LACUNARITY
noise = libtcod.noise_new(2)
noise_img = libtcod.image_new(SAMPLE_SCREEN_WIDTH * 2, SAMPLE_SCREEN_HEIGHT * 2)


def render_noise(first, key, mouse):
    global noise_func, noise_img
    global noise_dx, noise_dy
    global noise_octaves, noise_zoom, noise_hurst, noise_lacunarity, noise

    PERLIN = 0
    SIMPLEX = 1
    WAVELET = 2
    FBM_PERLIN = 3
    TURBULENCE_PERLIN = 4
    FBM_SIMPLEX = 5
    TURBULENCE_SIMPLEX = 6
    FBM_WAVELET = 7
    TURBULENCE_WAVELET = 8
    funcName = [
        "1 : perlin noise       ",
        "2 : simplex noise      ",
        "3 : wavelet noise      ",
        "4 : perlin fbm         ",
        "5 : perlin turbulence  ",
        "6 : simplex fbm        ",
        "7 : simplex turbulence ",
        "8 : wavelet fbm        ",
        "9 : wavelet turbulence ",
    ]
    if first:
        libtcod.sys_set_fps(30)
    libtcod.console_clear(sample_console)
    noise_dx += 0.01
    noise_dy += 0.01
    for y in range(2 * SAMPLE_SCREEN_HEIGHT):
        for x in range(2 * SAMPLE_SCREEN_WIDTH):
            f = [
                noise_zoom * x / (2 * SAMPLE_SCREEN_WIDTH) + noise_dx,
                noise_zoom * y / (2 * SAMPLE_SCREEN_HEIGHT) + noise_dy,
            ]
            value = 0.0
            if noise_func == PERLIN:
                value = libtcod.noise_get(noise, f, libtcod.NOISE_PERLIN)
            elif noise_func == SIMPLEX:
                value = libtcod.noise_get(noise, f, libtcod.NOISE_SIMPLEX)
            elif noise_func == WAVELET:
                value = libtcod.noise_get(noise, f, libtcod.NOISE_WAVELET)
            elif noise_func == FBM_PERLIN:
                value = libtcod.noise_get_fbm(noise, f, noise_octaves, libtcod.NOISE_PERLIN)
            elif noise_func == TURBULENCE_PERLIN:
                value = libtcod.noise_get_turbulence(noise, f, noise_octaves, libtcod.NOISE_PERLIN)
            elif noise_func == FBM_SIMPLEX:
                value = libtcod.noise_get_fbm(noise, f, noise_octaves, libtcod.NOISE_SIMPLEX)
            elif noise_func == TURBULENCE_SIMPLEX:
                value = libtcod.noise_get_turbulence(noise, f, noise_octaves, libtcod.NOISE_SIMPLEX)
            elif noise_func == FBM_WAVELET:
                value = libtcod.noise_get_fbm(noise, f, noise_octaves, libtcod.NOISE_WAVELET)
            elif noise_func == TURBULENCE_WAVELET:
                value = libtcod.noise_get_turbulence(noise, f, noise_octaves, libtcod.NOISE_WAVELET)
            c = int((value + 1.0) / 2.0 * 255)
            if c < 0:
                c = 0
            elif c > 255:
                c = 255
            col = libtcod.Color(c // 2, c // 2, c)
            libtcod.image_put_pixel(noise_img, x, y, col)
    libtcod.console_set_default_background(sample_console, libtcod.grey)
    rectw = 24
    recth = 13
    if noise_func <= WAVELET:
        recth = 10
    libtcod.image_blit_2x(noise_img, sample_console, 0, 0)
    libtcod.console_rect(sample_console, 2, 2, rectw, recth, False, libtcod.BKGND_MULTIPLY)
    for y in range(2, 2 + recth):
        for x in range(2, 2 + rectw):
            col = libtcod.console_get_char_foreground(sample_console, x, y)
            col = col * libtcod.grey
            libtcod.console_set_char_foreground(sample_console, x, y, col)

    for curfunc in range(TURBULENCE_WAVELET + 1):
        if curfunc == noise_func:
            libtcod.console_set_default_foreground(sample_console, libtcod.white)
            libtcod.console_set_default_background(sample_console, libtcod.light_blue)
            libtcod.console_print_ex(sample_console, 2, 2 + curfunc, libtcod.BKGND_SET, libtcod.LEFT, funcName[curfunc])
        else:
            libtcod.console_set_default_foreground(sample_console, libtcod.grey)
            libtcod.console_print(sample_console, 2, 2 + curfunc, funcName[curfunc])
    libtcod.console_set_default_foreground(sample_console, libtcod.white)
    libtcod.console_print(sample_console, 2, 11, "Y/H : zoom (%2.1f)" % noise_zoom)
    if noise_func > WAVELET:
        libtcod.console_print(sample_console, 2, 12, "E/D : hurst (%2.1f)" % noise_hurst)
        libtcod.console_print(sample_console, 2, 13, "R/F : lacunarity (%2.1f)" % noise_lacunarity)
        libtcod.console_print(sample_console, 2, 14, "T/G : octaves (%2.1f)" % noise_octaves)
    if key.vk == libtcod.KEY_NONE:
        return
    if ord("9") >= key.c >= ord("1"):
        noise_func = key.c - ord("1")
    elif key.c in (ord("E"), ord("e")):
        noise_hurst += 0.1
        libtcod.noise_delete(noise)
        noise = libtcod.noise_new(2, noise_hurst, noise_lacunarity)
    elif key.c in (ord("D"), ord("d")):
        noise_hurst -= 0.1
        libtcod.noise_delete(noise)
        noise = libtcod.noise_new(2, noise_hurst, noise_lacunarity)
    elif key.c in (ord("R"), ord("r")):
        noise_lacunarity += 0.5
        libtcod.noise_delete(noise)
        noise = libtcod.noise_new(2, noise_hurst, noise_lacunarity)
    elif key.c in (ord("F"), ord("f")):
        noise_lacunarity -= 0.5
        libtcod.noise_delete(noise)
        noise = libtcod.noise_new(2, noise_hurst, noise_lacunarity)
    elif key.c in (ord("T"), ord("t")):
        noise_octaves += 0.5
    elif key.c in (ord("G"), ord("g")):
        noise_octaves -= 0.5
    elif key.c in (ord("Y"), ord("y")):
        noise_zoom += 0.2
    elif key.c in (ord("H"), ord("h")):
        noise_zoom -= 0.2


#############################################
# field of view sample
#############################################
fov_px = 20
fov_py = 10
fov_recompute = True
fov_torch = False
fov_map = None
fov_dark_wall = libtcod.Color(0, 0, 100)
fov_light_wall = libtcod.Color(130, 110, 50)
fov_dark_ground = libtcod.Color(50, 50, 150)
fov_light_ground = libtcod.Color(200, 180, 50)
fov_noise = None
fov_torchx = 0.0
fov_init = False
fov_light_walls = True
fov_algo_num = 0
fov_algo_names = [
    "BASIC      ",
    "DIAMOND    ",
    "SHADOW     ",
    "PERMISSIVE0",
    "PERMISSIVE1",
    "PERMISSIVE2",
    "PERMISSIVE3",
    "PERMISSIVE4",
    "PERMISSIVE5",
    "PERMISSIVE6",
    "PERMISSIVE7",
    "PERMISSIVE8",
    "RESTRICTIVE",
]


def render_fov(first, key, mouse):
    global fov_px, fov_py, fov_map, fov_dark_wall, fov_light_wall
    global fov_dark_ground, fov_light_ground
    global fov_recompute, fov_torch, fov_noise, fov_torchx, fov_init
    global fov_light_walls, fov_algo_num, fov_algo_names

    smap = [
        "##############################################",
        "#######################      #################",
        "#####################    #     ###############",
        "######################  ###        ###########",
        "##################      #####             ####",
        "################       ########    ###### ####",
        "###############      #################### ####",
        "################    ######                  ##",
        "########   #######  ######   #     #     #  ##",
        "########   ######      ###                  ##",
        "########                                    ##",
        "####       ######      ###   #     #     #  ##",
        "#### ###   ########## ####                  ##",
        "#### ###   ##########   ###########=##########",
        "#### ##################   #####          #####",
        "#### ###             #### #####          #####",
        "####           #     ####                #####",
        "########       #     #### #####          #####",
        "########       #####      ####################",
        "##############################################",
    ]
    TORCH_RADIUS = 10
    SQUARED_TORCH_RADIUS = TORCH_RADIUS * TORCH_RADIUS
    dx = 0.0
    dy = 0.0
    di = 0.0
    if not fov_init:
        fov_init = True
        fov_map = libtcod.map_new(SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT)
        for y in range(SAMPLE_SCREEN_HEIGHT):
            for x in range(SAMPLE_SCREEN_WIDTH):
                if smap[y][x] == " ":
                    # ground
                    libtcod.map_set_properties(fov_map, x, y, True, True)
                elif smap[y][x] == "=":
                    # window
                    libtcod.map_set_properties(fov_map, x, y, True, False)
        # 1d noise for the torch flickering
        fov_noise = libtcod.noise_new(1, 1.0, 1.0)
    torchs = "off"
    lights = "off"
    if fov_torch:
        torchs = "on "
    if fov_light_walls:
        lights = "on "
    if first:
        libtcod.sys_set_fps(30)
        # we draw the foreground only the first time.
        #  during the player movement, only the @ is redrawn.
        #  the rest impacts only the background color
        # draw the help text & player @
        libtcod.console_clear(sample_console)
        libtcod.console_set_default_foreground(sample_console, libtcod.white)
        libtcod.console_print(
            sample_console,
            1,
            1,
            "IJKL : move around\nT : torch fx %s\nW : light walls %s\n+-: algo %s"
            % (torchs, lights, fov_algo_names[fov_algo_num]),
        )
        libtcod.console_set_default_foreground(sample_console, libtcod.black)
        libtcod.console_put_char(sample_console, fov_px, fov_py, "@", libtcod.BKGND_NONE)
        # draw windows
        for y in range(SAMPLE_SCREEN_HEIGHT):
            for x in range(SAMPLE_SCREEN_WIDTH):
                if smap[y][x] == "=":
                    libtcod.console_put_char(sample_console, x, y, libtcod.CHAR_DHLINE, libtcod.BKGND_NONE)
    if fov_recompute:
        fov_recompute = False
        if fov_torch:
            libtcod.map_compute_fov(fov_map, fov_px, fov_py, TORCH_RADIUS, fov_light_walls, fov_algo_num)
        else:
            libtcod.map_compute_fov(fov_map, fov_px, fov_py, 0, fov_light_walls, fov_algo_num)
    if fov_torch:
        # slightly change the perlin noise parameter
        fov_torchx += 0.2
        # randomize the light position between -1.5 and 1.5
        tdx = [fov_torchx + 20.0]
        dx = libtcod.noise_get(noise, tdx, libtcod.NOISE_SIMPLEX) * 1.5
        tdx[0] += 30.0
        dy = libtcod.noise_get(noise, tdx, libtcod.NOISE_SIMPLEX) * 1.5
        di = 0.2 * libtcod.noise_get(noise, [fov_torchx], libtcod.NOISE_SIMPLEX)
    for y in range(SAMPLE_SCREEN_HEIGHT):
        for x in range(SAMPLE_SCREEN_WIDTH):
            visible = libtcod.map_is_in_fov(fov_map, x, y)
            wall = smap[y][x] == "#"
            if not visible:
                if wall:
                    libtcod.console_set_char_background(sample_console, x, y, fov_dark_wall, libtcod.BKGND_SET)
                else:
                    libtcod.console_set_char_background(sample_console, x, y, fov_dark_ground, libtcod.BKGND_SET)
            else:
                if not fov_torch:
                    if wall:
                        libtcod.console_set_char_background(sample_console, x, y, fov_light_wall, libtcod.BKGND_SET)
                    else:
                        libtcod.console_set_char_background(sample_console, x, y, fov_light_ground, libtcod.BKGND_SET)
                else:
                    if wall:
                        base = fov_dark_wall
                        light = fov_light_wall
                    else:
                        base = fov_dark_ground
                        light = fov_light_ground
                    # cell distance to torch (squared)
                    r = float(x - fov_px + dx) * (x - fov_px + dx) + (y - fov_py + dy) * (y - fov_py + dy)
                    if r < SQUARED_TORCH_RADIUS:
                        l = (SQUARED_TORCH_RADIUS - r) / SQUARED_TORCH_RADIUS + di
                        if l < 0.0:
                            l = 0.0
                        elif l > 1.0:
                            l = 1.0
                        base = libtcod.color_lerp(base, light, l)
                    libtcod.console_set_char_background(sample_console, x, y, base, libtcod.BKGND_SET)
    if key.c in (ord("I"), ord("i")):
        if smap[fov_py - 1][fov_px] == " ":
            libtcod.console_put_char(sample_console, fov_px, fov_py, " ", libtcod.BKGND_NONE)
            fov_py -= 1
            libtcod.console_put_char(sample_console, fov_px, fov_py, "@", libtcod.BKGND_NONE)
            fov_recompute = True
    elif key.c in (ord("K"), ord("k")):
        if smap[fov_py + 1][fov_px] == " ":
            libtcod.console_put_char(sample_console, fov_px, fov_py, " ", libtcod.BKGND_NONE)
            fov_py += 1
            libtcod.console_put_char(sample_console, fov_px, fov_py, "@", libtcod.BKGND_NONE)
            fov_recompute = True
    elif key.c in (ord("J"), ord("j")):
        if smap[fov_py][fov_px - 1] == " ":
            libtcod.console_put_char(sample_console, fov_px, fov_py, " ", libtcod.BKGND_NONE)
            fov_px -= 1
            libtcod.console_put_char(sample_console, fov_px, fov_py, "@", libtcod.BKGND_NONE)
            fov_recompute = True
    elif key.c in (ord("L"), ord("l")):
        if smap[fov_py][fov_px + 1] == " ":
            libtcod.console_put_char(sample_console, fov_px, fov_py, " ", libtcod.BKGND_NONE)
            fov_px += 1
            libtcod.console_put_char(sample_console, fov_px, fov_py, "@", libtcod.BKGND_NONE)
            fov_recompute = True
    elif key.c in (ord("T"), ord("t")):
        fov_torch = not fov_torch
        libtcod.console_set_default_foreground(sample_console, libtcod.white)
        libtcod.console_print(
            sample_console,
            1,
            1,
            "IJKL : move around\nT : torch fx %s\nW : light walls %s\n+-: algo %s"
            % (torchs, lights, fov_algo_names[fov_algo_num]),
        )
        libtcod.console_set_default_foreground(sample_console, libtcod.black)
    elif key.c in (ord("W"), ord("w")):
        fov_light_walls = not fov_light_walls
        libtcod.console_set_default_foreground(sample_console, libtcod.white)
        libtcod.console_print(
            sample_console,
            1,
            1,
            "IJKL : move around\nT : torch fx %s\nW : light walls %s\n+-: algo %s"
            % (torchs, lights, fov_algo_names[fov_algo_num]),
        )
        libtcod.console_set_default_foreground(sample_console, libtcod.black)
        fov_recompute = True
    elif key.vk == libtcod.KEY_TEXT:
        if key.text in ("+", "-"):
            if key.text == b"+" and fov_algo_num < libtcod.NB_FOV_ALGORITHMS - 1:
                fov_algo_num = fov_algo_num + 1
            elif fov_algo_num > 0:
                fov_algo_num = fov_algo_num - 1
            libtcod.console_set_default_foreground(sample_console, libtcod.white)
            libtcod.console_print(
                sample_console,
                1,
                1,
                "IJKL : move around\nT : torch fx %s\nW : light walls %s\n+-: algo %s"
                % (torchs, lights, fov_algo_names[fov_algo_num]),
            )
            libtcod.console_set_default_foreground(sample_console, libtcod.black)
            fov_recompute = True


#############################################
# pathfinding sample
#############################################
path_px = 20
path_py = 10
path_dx = 24
path_dy = 1
path_map = None
path = None
path_dijk_dist = 0.0
path_using_astar = True
path_dijk = None
path_recalculate = False
path_busy = 0.0
path_oldchar = " "
path_init = False


def render_path(first, key, mouse):
    global path_px, path_py, path_dx, path_dy, path_map, path, path_busy
    global path_oldchar, path_init, path_recalculate
    global path_dijk_dist, path_using_astar, path_dijk

    smap = [
        "##############################################",
        "#######################      #################",
        "#####################    #     ###############",
        "######################  ###        ###########",
        "##################      #####             ####",
        "################       ########    ###### ####",
        "###############      #################### ####",
        "################    ######                  ##",
        "########   #######  ######   #     #     #  ##",
        "########   ######      ###                  ##",
        "########                                    ##",
        "####       ######      ###   #     #     #  ##",
        "#### ###   ########## ####                  ##",
        "#### ###   ##########   ###########=##########",
        "#### ##################   #####          #####",
        "#### ###             #### #####          #####",
        "####           #     ####                #####",
        "########       #     #### #####          #####",
        "########       #####      ####################",
        "##############################################",
    ]
    TORCH_RADIUS = 10.0
    SQUARED_TORCH_RADIUS = TORCH_RADIUS * TORCH_RADIUS
    if not path_init:
        path_init = True
        path_map = libtcod.map_new(SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT)
        for y in range(SAMPLE_SCREEN_HEIGHT):
            for x in range(SAMPLE_SCREEN_WIDTH):
                if smap[y][x] == " ":
                    # ground
                    libtcod.map_set_properties(path_map, x, y, True, True)
                elif smap[y][x] == "=":
                    # window
                    libtcod.map_set_properties(path_map, x, y, True, False)
        path = libtcod.path_new_using_map(path_map)
        path_dijk = libtcod.dijkstra_new(path_map)
    if first:
        libtcod.sys_set_fps(30)
        # we draw the foreground only the first time.
        #  during the player movement, only the @ is redrawn.
        #  the rest impacts only the background color
        # draw the help text & player @
        libtcod.console_clear(sample_console)
        libtcod.console_set_default_foreground(sample_console, libtcod.white)
        libtcod.console_put_char(sample_console, path_dx, path_dy, "+", libtcod.BKGND_NONE)
        libtcod.console_put_char(sample_console, path_px, path_py, "@", libtcod.BKGND_NONE)
        libtcod.console_print(sample_console, 1, 1, "IJKL / mouse :\nmove destination\nTAB : A*/dijkstra")
        libtcod.console_print(sample_console, 1, 4, "Using : A*")
        # draw windows
        for y in range(SAMPLE_SCREEN_HEIGHT):
            for x in range(SAMPLE_SCREEN_WIDTH):
                if smap[y][x] == "=":
                    libtcod.console_put_char(sample_console, x, y, libtcod.CHAR_DHLINE, libtcod.BKGND_NONE)
        path_recalculate = True
    if path_recalculate:
        if path_using_astar:
            libtcod.path_compute(path, path_px, path_py, path_dx, path_dy)
        else:
            path_dijk_dist = 0.0
            # compute dijkstra grid (distance from px,py)
            libtcod.dijkstra_compute(path_dijk, path_px, path_py)
            # get the maximum distance (needed for rendering)
            for y in range(SAMPLE_SCREEN_HEIGHT):
                for x in range(SAMPLE_SCREEN_WIDTH):
                    d = libtcod.dijkstra_get_distance(path_dijk, x, y)
                    if d > path_dijk_dist:
                        path_dijk_dist = d
            # compute path from px,py to dx,dy
            libtcod.dijkstra_path_set(path_dijk, path_dx, path_dy)
        path_recalculate = False
        path_busy = 0.2
    # draw the dungeon
    for y in range(SAMPLE_SCREEN_HEIGHT):
        for x in range(SAMPLE_SCREEN_WIDTH):
            if smap[y][x] == "#":
                libtcod.console_set_char_background(sample_console, x, y, fov_dark_wall, libtcod.BKGND_SET)
            else:
                libtcod.console_set_char_background(sample_console, x, y, fov_dark_ground, libtcod.BKGND_SET)
    # draw the path
    if path_using_astar:
        for i in range(libtcod.path_size(path)):
            x, y = libtcod.path_get(path, i)
            libtcod.console_set_char_background(sample_console, x, y, fov_light_ground, libtcod.BKGND_SET)
    else:
        for y in range(SAMPLE_SCREEN_HEIGHT):
            for x in range(SAMPLE_SCREEN_WIDTH):
                if smap[y][x] != "#":
                    libtcod.console_set_char_background(
                        sample_console,
                        x,
                        y,
                        libtcod.color_lerp(
                            fov_light_ground,
                            fov_dark_ground,
                            0.9 * libtcod.dijkstra_get_distance(path_dijk, x, y) / path_dijk_dist,
                        ),
                        libtcod.BKGND_SET,
                    )
        for i in range(libtcod.dijkstra_size(path_dijk)):
            x, y = libtcod.dijkstra_get(path_dijk, i)
            libtcod.console_set_char_background(sample_console, x, y, fov_light_ground, libtcod.BKGND_SET)

    # move the creature
    path_busy -= libtcod.sys_get_last_frame_length()
    if path_busy <= 0.0:
        path_busy = 0.2
        if path_using_astar:
            if not libtcod.path_is_empty(path):
                libtcod.console_put_char(sample_console, path_px, path_py, " ", libtcod.BKGND_NONE)
                path_px, path_py = libtcod.path_walk(path, True)
                libtcod.console_put_char(sample_console, path_px, path_py, "@", libtcod.BKGND_NONE)
        else:
            if not libtcod.dijkstra_is_empty(path_dijk):
                libtcod.console_put_char(sample_console, path_px, path_py, " ", libtcod.BKGND_NONE)
                path_px, path_py = libtcod.dijkstra_path_walk(path_dijk)
                libtcod.console_put_char(sample_console, path_px, path_py, "@", libtcod.BKGND_NONE)
                path_recalculate = True

    if key.c in (ord("I"), ord("i")) and path_dy > 0:
        # destination move north
        libtcod.console_put_char(sample_console, path_dx, path_dy, path_oldchar, libtcod.BKGND_NONE)
        path_dy -= 1
        path_oldchar = libtcod.console_get_char(sample_console, path_dx, path_dy)
        libtcod.console_put_char(sample_console, path_dx, path_dy, "+", libtcod.BKGND_NONE)
        if smap[path_dy][path_dx] == " ":
            path_recalculate = True
    elif key.c in (ord("K"), ord("k")) and path_dy < SAMPLE_SCREEN_HEIGHT - 1:
        # destination move south
        libtcod.console_put_char(sample_console, path_dx, path_dy, path_oldchar, libtcod.BKGND_NONE)
        path_dy += 1
        path_oldchar = libtcod.console_get_char(sample_console, path_dx, path_dy)
        libtcod.console_put_char(sample_console, path_dx, path_dy, "+", libtcod.BKGND_NONE)
        if smap[path_dy][path_dx] == " ":
            path_recalculate = True
    elif key.c in (ord("J"), ord("j")) and path_dx > 0:
        # destination move west
        libtcod.console_put_char(sample_console, path_dx, path_dy, path_oldchar, libtcod.BKGND_NONE)
        path_dx -= 1
        path_oldchar = libtcod.console_get_char(sample_console, path_dx, path_dy)
        libtcod.console_put_char(sample_console, path_dx, path_dy, "+", libtcod.BKGND_NONE)
        if smap[path_dy][path_dx] == " ":
            path_recalculate = True
    elif key.c in (ord("L"), ord("l")) and path_dx < SAMPLE_SCREEN_WIDTH - 1:
        # destination move east
        libtcod.console_put_char(sample_console, path_dx, path_dy, path_oldchar, libtcod.BKGND_NONE)
        path_dx += 1
        path_oldchar = libtcod.console_get_char(sample_console, path_dx, path_dy)
        libtcod.console_put_char(sample_console, path_dx, path_dy, "+", libtcod.BKGND_NONE)
        if smap[path_dy][path_dx] == " ":
            path_recalculate = True
    elif key.vk == libtcod.KEY_TAB:
        path_using_astar = not path_using_astar
        if path_using_astar:
            libtcod.console_print(sample_console, 1, 4, "Using : A*      ")
        else:
            libtcod.console_print(sample_console, 1, 4, "Using : Dijkstra")
        path_recalculate = True

    mx = mouse.cx - SAMPLE_SCREEN_X
    my = mouse.cy - SAMPLE_SCREEN_Y
    if 0 <= mx < SAMPLE_SCREEN_WIDTH and 0 <= my < SAMPLE_SCREEN_HEIGHT and (path_dx != mx or path_dy != my):
        libtcod.console_put_char(sample_console, path_dx, path_dy, path_oldchar, libtcod.BKGND_NONE)
        path_dx = mx
        path_dy = my
        path_oldchar = libtcod.console_get_char(sample_console, path_dx, path_dy)
        libtcod.console_put_char(sample_console, path_dx, path_dy, "+", libtcod.BKGND_NONE)
        if smap[path_dy][path_dx] == " ":
            path_recalculate = True


#############################################
# bsp sample
#############################################
bsp_depth = 8
bsp_min_room_size = 4
# a room fills a random part of the node or the maximum available space ?
bsp_random_room = False
# if true, there is always a wall on north & west side of a room
bsp_room_walls = True
bsp_map = None
# draw a vertical line
def vline(m, x, y1, y2):
    if y1 > y2:
        y1, y2 = y2, y1
    for y in range(y1, y2 + 1):
        m[x][y] = True


# draw a vertical line up until we reach an empty space
def vline_up(m, x, y):
    while y >= 0 and not m[x][y]:
        m[x][y] = True
        y -= 1


# draw a vertical line down until we reach an empty space
def vline_down(m, x, y):
    while y < SAMPLE_SCREEN_HEIGHT and not m[x][y]:
        m[x][y] = True
        y += 1


# draw a horizontal line
def hline(m, x1, y, x2):
    if x1 > x2:
        x1, x2 = x2, x1
    for x in range(x1, x2 + 1):
        m[x][y] = True


# draw a horizontal line left until we reach an empty space
def hline_left(m, x, y):
    while x >= 0 and not m[x][y]:
        m[x][y] = True
        x -= 1


# draw a horizontal line right until we reach an empty space
def hline_right(m, x, y):
    while x < SAMPLE_SCREEN_WIDTH and not m[x][y]:
        m[x][y] = True
        x += 1


# the class building the dungeon from the bsp nodes
def traverse_node(node, dat):
    global bsp_map
    if libtcod.bsp_is_leaf(node):
        # calculate the room size
        minx = node.x + 1
        maxx = node.x + node.w - 1
        miny = node.y + 1
        maxy = node.y + node.h - 1
        if not bsp_room_walls:
            if minx > 1:
                minx -= 1
            if miny > 1:
                miny -= 1
        if maxx == SAMPLE_SCREEN_WIDTH - 1:
            maxx -= 1
        if maxy == SAMPLE_SCREEN_HEIGHT - 1:
            maxy -= 1
        if bsp_random_room:
            minx = libtcod.random_get_int(None, minx, maxx - bsp_min_room_size + 1)
            miny = libtcod.random_get_int(None, miny, maxy - bsp_min_room_size + 1)
            maxx = libtcod.random_get_int(None, minx + bsp_min_room_size - 1, maxx)
            maxy = libtcod.random_get_int(None, miny + bsp_min_room_size - 1, maxy)
        # resize the node to fit the room
        node.x = minx
        node.y = miny
        node.w = maxx - minx + 1
        node.h = maxy - miny + 1
        # dig the room
        for x in range(minx, maxx + 1):
            for y in range(miny, maxy + 1):
                bsp_map[x][y] = True
    else:
        # resize the node to fit its sons
        left = libtcod.bsp_left(node)
        right = libtcod.bsp_right(node)
        node.x = min(left.x, right.x)
        node.y = min(left.y, right.y)
        node.w = max(left.x + left.w, right.x + right.w) - node.x
        node.h = max(left.y + left.h, right.y + right.h) - node.y
        # create a corridor between the two lower nodes
        if node.horizontal:
            # vertical corridor
            if left.x + left.w - 1 < right.x or right.x + right.w - 1 < left.x:
                # no overlapping zone. we need a Z shaped corridor
                x1 = libtcod.random_get_int(None, left.x, left.x + left.w - 1)
                x2 = libtcod.random_get_int(None, right.x, right.x + right.w - 1)
                y = libtcod.random_get_int(None, left.y + left.h, right.y)
                vline_up(bsp_map, x1, y - 1)
                hline(bsp_map, x1, y, x2)
                vline_down(bsp_map, x2, y + 1)
            else:
                # straight vertical corridor
                minx = max(left.x, right.x)
                maxx = min(left.x + left.w - 1, right.x + right.w - 1)
                x = libtcod.random_get_int(None, minx, maxx)
                vline_down(bsp_map, x, right.y)
                vline_up(bsp_map, x, right.y - 1)
        else:
            # horizontal corridor
            if left.y + left.h - 1 < right.y or right.y + right.h - 1 < left.y:
                # no overlapping zone. we need a Z shaped corridor
                y1 = libtcod.random_get_int(None, left.y, left.y + left.h - 1)
                y2 = libtcod.random_get_int(None, right.y, right.y + right.h - 1)
                x = libtcod.random_get_int(None, left.x + left.w, right.x)
                hline_left(bsp_map, x - 1, y1)
                vline(bsp_map, x, y1, y2)
                hline_right(bsp_map, x + 1, y2)
            else:
                # straight horizontal corridor
                miny = max(left.y, right.y)
                maxy = min(left.y + left.h - 1, right.y + right.h - 1)
                y = libtcod.random_get_int(None, miny, maxy)
                hline_left(bsp_map, right.x - 1, y)
                hline_right(bsp_map, right.x, y)
    return True


bsp = None
bsp_generate = True
bsp_refresh = False


def render_bsp(first, key, mouse):
    global bsp, bsp_generate, bsp_refresh, bsp_map
    global bsp_random_room, bsp_room_walls, bsp_depth, bsp_min_room_size
    if bsp_generate or bsp_refresh:
        # dungeon generation
        if bsp is None:
            # create the bsp
            bsp = libtcod.bsp_new_with_size(0, 0, SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT)
        else:
            # restore the nodes size
            libtcod.bsp_resize(bsp, 0, 0, SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT)
        bsp_map = list()
        for x in range(SAMPLE_SCREEN_WIDTH):
            bsp_map.append([False] * SAMPLE_SCREEN_HEIGHT)
        if bsp_generate:
            # build a new random bsp tree
            libtcod.bsp_remove_sons(bsp)
            if bsp_room_walls:
                libtcod.bsp_split_recursive(bsp, 0, bsp_depth, bsp_min_room_size + 1, bsp_min_room_size + 1, 1.5, 1.5)
            else:
                libtcod.bsp_split_recursive(bsp, 0, bsp_depth, bsp_min_room_size, bsp_min_room_size, 1.5, 1.5)
        # create the dungeon from the bsp
        libtcod.bsp_traverse_inverted_level_order(bsp, traverse_node)
        bsp_generate = False
        bsp_refresh = False
    libtcod.console_clear(sample_console)
    libtcod.console_set_default_foreground(sample_console, libtcod.white)
    rooms = "OFF"
    if bsp_random_room:
        rooms = "ON"
    libtcod.console_print(
        sample_console,
        1,
        1,
        "ENTER : rebuild bsp\n"
        "SPACE : rebuild dungeon\n"
        "+-: bsp depth %d\n"
        "*/: room size %d\n"
        "1 : random room size %s" % (bsp_depth, bsp_min_room_size, rooms),
    )
    if bsp_random_room:
        walls = "OFF"
        if bsp_room_walls:
            walls = "ON"
        libtcod.console_print(sample_console, 1, 6, "2 : room walls %s" % walls)
    # render the level
    for y in range(SAMPLE_SCREEN_HEIGHT):
        for x in range(SAMPLE_SCREEN_WIDTH):
            if not bsp_map[x][y]:
                libtcod.console_set_char_background(sample_console, x, y, fov_dark_wall, libtcod.BKGND_SET)
            else:
                libtcod.console_set_char_background(sample_console, x, y, fov_dark_ground, libtcod.BKGND_SET)
    if key.vk in (libtcod.KEY_ENTER, libtcod.KEY_KPENTER):
        bsp_generate = True
    elif key.c == ord(" "):
        bsp_refresh = True
    elif key.text == b"+":
        bsp_depth += 1
        bsp_generate = True
    elif key.text == b"-" and bsp_depth > 1:
        bsp_depth -= 1
        bsp_generate = True
    elif key.text == b"*":
        bsp_min_room_size += 1
        bsp_generate = True
    elif key.text == b"/" and bsp_min_room_size > 2:
        bsp_min_room_size -= 1
        bsp_generate = True
    elif key.c == ord("1") or key.vk in (libtcod.KEY_1, libtcod.KEY_KP1):
        bsp_random_room = not bsp_random_room
        if not bsp_random_room:
            bsp_room_walls = True
        bsp_refresh = True
    elif key.c == ord("2") or key.vk in (libtcod.KEY_2, libtcod.KEY_KP2):
        bsp_room_walls = not bsp_room_walls
        bsp_refresh = True


#############################################
# image sample
#############################################
img = None
img_circle = None
img_blue = libtcod.Color(0, 0, 255)
img_green = libtcod.Color(0, 255, 0)


def render_image(first, key, mouse):
    global img, img_circle, img_blue, img_green
    if img is None:
        img = libtcod.image_load(os.path.join(data_path, "img", "skull.png"))
        libtcod.image_set_key_color(img, libtcod.black)
        img_circle = libtcod.image_load(os.path.join(data_path, "img", "circle.png"))
    if first:
        libtcod.sys_set_fps(30)
    libtcod.console_set_default_background(sample_console, libtcod.black)
    libtcod.console_clear(sample_console)
    x = SAMPLE_SCREEN_WIDTH / 2 + math.cos(libtcod.sys_elapsed_seconds()) * 10.0
    y = float(SAMPLE_SCREEN_HEIGHT / 2)
    scalex = 0.2 + 1.8 * (1.0 + math.cos(libtcod.sys_elapsed_seconds() / 2)) / 2.0
    scaley = scalex
    angle = libtcod.sys_elapsed_seconds()
    elapsed = libtcod.sys_elapsed_milli() // 2000
    if elapsed & 1 != 0:
        # split the color channels of circle.png
        # the red channel
        libtcod.console_set_default_background(sample_console, libtcod.red)
        libtcod.console_rect(sample_console, 0, 3, 15, 15, False, libtcod.BKGND_SET)
        libtcod.image_blit_rect(img_circle, sample_console, 0, 3, -1, -1, libtcod.BKGND_MULTIPLY)
        # the green channel
        libtcod.console_set_default_background(sample_console, img_green)
        libtcod.console_rect(sample_console, 15, 3, 15, 15, False, libtcod.BKGND_SET)
        libtcod.image_blit_rect(img_circle, sample_console, 15, 3, -1, -1, libtcod.BKGND_MULTIPLY)
        # the blue channel
        libtcod.console_set_default_background(sample_console, img_blue)
        libtcod.console_rect(sample_console, 30, 3, 15, 15, False, libtcod.BKGND_SET)
        libtcod.image_blit_rect(img_circle, sample_console, 30, 3, -1, -1, libtcod.BKGND_MULTIPLY)
    else:
        # render circle.png with normal blitting
        libtcod.image_blit_rect(img_circle, sample_console, 0, 3, -1, -1, libtcod.BKGND_SET)
        libtcod.image_blit_rect(img_circle, sample_console, 15, 3, -1, -1, libtcod.BKGND_SET)
        libtcod.image_blit_rect(img_circle, sample_console, 30, 3, -1, -1, libtcod.BKGND_SET)
    libtcod.image_blit(img, sample_console, x, y, libtcod.BKGND_SET, scalex, scaley, angle)


#############################################
# mouse sample
#############################################
mouse_lbut = 0
mouse_mbut = 0
mouse_rbut = 0


def render_mouse(first, key, mouse):
    global mouse_lbut
    global mouse_mbut
    global mouse_rbut
    butstatus = ("OFF", "ON")
    if first:
        libtcod.console_set_default_background(sample_console, libtcod.grey)
        libtcod.console_set_default_foreground(sample_console, libtcod.light_yellow)
        libtcod.mouse_move(320, 200)
        libtcod.mouse_show_cursor(True)
        libtcod.sys_set_fps(30)
    libtcod.console_clear(sample_console)
    if mouse.lbutton_pressed:
        mouse_lbut = 1 - mouse_lbut
    if mouse.rbutton_pressed:
        mouse_rbut = 1 - mouse_rbut
    if mouse.mbutton_pressed:
        mouse_mbut = 1 - mouse_mbut
    wheel = ""
    if mouse.wheel_up:
        wheel = "UP"
    elif mouse.wheel_down:
        wheel = "DOWN"
    activemsg = "APPLICATION INACTIVE"
    if libtcod.console_is_active():
        activemsg = ""
    focusmsg = "OUT OF FOCUS"
    if libtcod.console_has_mouse_focus():
        focusmsg = ""
    libtcod.console_print(
        sample_console,
        1,
        1,
        "%s\n"
        "Mouse position : %4dx%4d %s\n"
        "Mouse cell     : %4dx%4d\n"
        "Mouse movement : %4dx%4d\n"
        "Left button    : %s (toggle %s)\n"
        "Right button   : %s (toggle %s)\n"
        "Middle button  : %s (toggle %s)\n"
        "Wheel          : %s"
        % (
            activemsg,
            mouse.x,
            mouse.y,
            focusmsg,
            mouse.cx,
            mouse.cy,
            mouse.dx,
            mouse.dy,
            butstatus[mouse.lbutton],
            butstatus[mouse_lbut],
            butstatus[mouse.rbutton],
            butstatus[mouse_rbut],
            butstatus[mouse.mbutton],
            butstatus[mouse_mbut],
            wheel,
        ),
    )
    libtcod.console_print(sample_console, 1, 10, "1 : Hide cursor\n2 : Show cursor")
    if key.c == ord("1"):
        libtcod.mouse_show_cursor(False)
    elif key.c == ord("2"):
        libtcod.mouse_show_cursor(True)


#############################################
# name generator sample
#############################################
ng_curset = 0
ng_nbsets = 0
ng_delay = 0.0
ng_names = []
ng_sets = None


def render_name(first, key, mouse):
    global ng_curset
    global ng_nbsets
    global ng_delay
    global ng_names
    global ng_sets
    if ng_nbsets == 0:
        # parse all *.cfg files in data/namegen
        for file in os.listdir(os.path.join(data_path, "namegen")):
            if file.find(".cfg") > 0:
                libtcod.namegen_parse(os.path.join(data_path, "namegen", file))
        # get the sets list
        ng_sets = libtcod.namegen_get_sets()
        print(ng_sets)
        ng_nbsets = len(ng_sets)
    if first:
        libtcod.sys_set_fps(30)
    while len(ng_names) > 15:
        ng_names.pop(0)
    libtcod.console_clear(sample_console)
    libtcod.console_set_default_foreground(sample_console, libtcod.white)
    libtcod.console_print(sample_console, 1, 1, "%s\n\n+ : next generator\n- : prev generator" % ng_sets[ng_curset])
    for i in range(len(ng_names)):
        libtcod.console_print_ex(
            sample_console, SAMPLE_SCREEN_WIDTH - 2, 2 + i, libtcod.BKGND_NONE, libtcod.RIGHT, ng_names[i]
        )
    ng_delay += libtcod.sys_get_last_frame_length()
    if ng_delay > 0.5:
        ng_delay -= 0.5
        ng_names.append(libtcod.namegen_generate(ng_sets[ng_curset]))
    if key.text == b"+":
        ng_curset += 1
        if ng_curset == ng_nbsets:
            ng_curset = 0
        ng_names.append("======")
    elif key.text == b"-":
        ng_curset -= 1
        if ng_curset < 0:
            ng_curset = ng_nbsets - 1
        ng_names.append("======")


#############################################
# Python fast render sample
#############################################
try:  # import NumPy
    import numpy as np

    numpy_available = True
except ImportError:
    numpy_available = False

use_numpy = numpy_available  # default option
SCREEN_W = SAMPLE_SCREEN_WIDTH
SCREEN_H = SAMPLE_SCREEN_HEIGHT
HALF_W = SCREEN_W // 2
HALF_H = SCREEN_H // 2
RES_U = 80  # texture resolution
RES_V = 80
TEX_STRETCH = 5  # texture stretching with tunnel depth
SPEED = 15
LIGHT_BRIGHTNESS = 3.5  # brightness multiplier for all lights (changes their radius)
LIGHTS_CHANCE = 0.07  # chance of a light appearing
MAX_LIGHTS = 6
MIN_LIGHT_STRENGTH = 0.2
LIGHT_UPDATE = 0.05  # how much the ambient light changes to reflect current light sources
AMBIENT_LIGHT = 0.8  # brightness of tunnel texture

# the coordinates of all tiles in the screen, as numpy arrays. example: (4x3 pixels screen)
# xc = [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]
# yc = [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]
if numpy_available:
    (xc, yc) = np.meshgrid(range(SCREEN_W), range(SCREEN_H))
    # translate coordinates of all pixels to center
    xc = xc - HALF_W
    yc = yc - HALF_H

noise2d = libtcod.noise_new(2, 0.5, 2.0)
if numpy_available:  # the texture starts empty
    texture = np.zeros((RES_U, RES_V))

# create lists to work without numpy
texture2 = [0 for i in range(RES_U * RES_V)]
brightness2 = [0 for i in range(SCREEN_W * SCREEN_H)]
R2 = [0 for i in range(SCREEN_W * SCREEN_H)]
G2 = [0 for i in range(SCREEN_W * SCREEN_H)]
B2 = [0 for i in range(SCREEN_W * SCREEN_H)]


class Light:
    def __init__(self, x, y, z, r, g, b, strength):
        self.x, self.y, self.z = x, y, z  # pos.
        self.r, self.g, self.b = r, g, b  # color
        self.strength = strength  # between 0 and 1, defines brightness


def render_py(first, key, mouse):
    global use_numpy, frac_t, abs_t, lights, tex_r, tex_g, tex_b, xc, yc, texture, texture2, brightness2, R2, G2, B2

    if key.c == ord(" ") and numpy_available:  # toggle renderer
        use_numpy = not use_numpy
        first = True
    if first:  # initialize stuff
        libtcod.sys_set_fps(0)
        libtcod.console_clear(sample_console)  # render status message
        if not numpy_available:
            text = "NumPy uninstalled, using default renderer"
        elif use_numpy:
            text = "Renderer: NumPy  \nSpacebar to change"
        else:
            text = "Renderer: default\nSpacebar to change"
        libtcod.console_set_default_foreground(sample_console, libtcod.white)
        libtcod.console_print(sample_console, 1, SCREEN_H - 3, text)

        frac_t = (
            RES_V - 1
        )  # time is represented in number of pixels of the texture, start later in time to initialize texture
        abs_t = RES_V - 1
        lights = []  # lights list, and current color of the tunnel texture
        tex_r, tex_g, tex_b = 0, 0, 0

    time_delta = libtcod.sys_get_last_frame_length() * SPEED  # advance time
    frac_t += time_delta  # increase fractional (always < 1.0) time
    abs_t += time_delta  # increase absolute elapsed time
    int_t = int(frac_t)  # integer time units that passed this frame (number of texture pixels to advance)
    frac_t -= int_t  # keep this < 1.0

    # change texture color according to presence of lights (basically, sum them
    # to get ambient light and smoothly change the current color into that)
    ambient_r = AMBIENT_LIGHT * sum([light.r * light.strength for light in lights])
    ambient_g = AMBIENT_LIGHT * sum([light.g * light.strength for light in lights])
    ambient_b = AMBIENT_LIGHT * sum([light.b * light.strength for light in lights])
    alpha = LIGHT_UPDATE * time_delta
    tex_r = tex_r * (1 - alpha) + ambient_r * alpha
    tex_g = tex_g * (1 - alpha) + ambient_g * alpha
    tex_b = tex_b * (1 - alpha) + ambient_b * alpha

    if int_t >= 1:  # roll texture (ie, advance in tunnel) according to int_t
        int_t = int_t % RES_V  # can't roll more than the texture's size (can happen when time_delta is large)
        int_abs_t = int(abs_t)  # new pixels are based on absolute elapsed time

        if use_numpy:
            texture = np.roll(texture, -int_t, 1)
            # replace new stretch of texture with new values
            for v in range(RES_V - int_t, RES_V):
                for u in range(0, RES_U):
                    tex_v = (v + int_abs_t) / float(RES_V)
                    texture[u, v] = libtcod.noise_get_fbm(
                        noise2d, [u / float(RES_U), tex_v], 32.0
                    ) + libtcod.noise_get_fbm(noise2d, [1 - u / float(RES_U), tex_v], 32.0)

        else:  # "roll" texture, without numpy
            temp = texture2[0 : RES_U * int_t]
            texture2 = texture2[RES_U * int_t :]
            texture2.extend(temp)

            # replace new stretch of texture with new values
            for v in range(RES_V - int_t, RES_V):
                for u in range(0, RES_U):
                    tex_v = (v + int_abs_t) / float(RES_V)
                    texture2[u + v * RES_U] = libtcod.noise_get_fbm(
                        noise2d, [u / float(RES_U), tex_v], 32.0
                    ) + libtcod.noise_get_fbm(noise2d, [1 - u / float(RES_U), tex_v], 32.0)
    if use_numpy:
        # squared distance from center, clipped to sensible minimum and maximum values
        sqr_dist = xc ** 2 + yc ** 2
        sqr_dist = sqr_dist.clip(1.0 / RES_V, RES_V ** 2)

        # one coordinate into the texture, represents depth in the tunnel
        v = TEX_STRETCH * float(RES_V) / sqr_dist + frac_t
        v = v.clip(0, RES_V - 1)

        # another coordinate, represents rotation around the tunnel
        u = np.mod(RES_U * (np.arctan2(yc, xc) / (2 * np.pi) + 0.5), RES_U)

        # retrieve corresponding pixels from texture
        brightness = texture[u.astype(int), v.astype(int)] / 4.0 + 0.5

        # use the brightness map to compose the final color of the tunnel
        R = brightness * tex_r
        G = brightness * tex_g
        B = brightness * tex_b
    else:
        i = 0
        for y in range(-HALF_H, HALF_H):
            for x in range(-HALF_W, HALF_W):
                # squared distance from center, clipped to sensible minimum and maximum values
                sqr_dist = x ** 2 + y ** 2
                sqr_dist = min(max(sqr_dist, 1.0 / RES_V), RES_V ** 2)

                # one coordinate into the texture, represents depth in the tunnel
                v = TEX_STRETCH * float(RES_V) / sqr_dist + frac_t
                v = min(v, RES_V - 1)

                # another coordinate, represents rotation around the tunnel
                u = (RES_U * (math.atan2(y, x) / (2 * math.pi) + 0.5)) % RES_U

                # retrieve corresponding pixels from texture
                brightness = texture2[int(u) + int(v) * RES_U] / 4.0 + 0.5

                # use the brightness map to compose the final color of the tunnel
                R2[i] = brightness * tex_r
                G2[i] = brightness * tex_g
                B2[i] = brightness * tex_b
                i += 1

    # create new light source
    if libtcod.random_get_float(0, 0, 1) <= time_delta * LIGHTS_CHANCE and len(lights) < MAX_LIGHTS:
        x = libtcod.random_get_float(0, -0.5, 0.5)
        y = libtcod.random_get_float(0, -0.5, 0.5)
        strength = libtcod.random_get_float(0, MIN_LIGHT_STRENGTH, 1.0)

        color = libtcod.Color(0, 0, 0)  # create bright colors with random hue
        hue = libtcod.random_get_float(0, 0, 360)
        libtcod.color_set_hsv(color, hue, 0.5, strength)
        lights.append(Light(x, y, TEX_STRETCH, color.r, color.g, color.b, strength))

    # eliminate lights that are going to be out of view
    lights = [light for light in lights if light.z - time_delta > 1.0 / RES_V]

    for light in lights:  # render lights
        # move light's Z coordinate with time, then project its XYZ coordinates to screen-space
        light.z -= float(time_delta) / TEX_STRETCH
        xl = light.x / light.z * SCREEN_H
        yl = light.y / light.z * SCREEN_H

        if use_numpy:
            # calculate brightness of light according to distance from viewer and strength,
            # then calculate brightness of each pixel with inverse square distance law
            light_brightness = LIGHT_BRIGHTNESS * light.strength * (1.0 - light.z / TEX_STRETCH)
            brightness = light_brightness / ((xc - xl) ** 2 + (yc - yl) ** 2)

            # make all pixels shine around this light
            R += brightness * light.r
            G += brightness * light.g
            B += brightness * light.b
        else:
            i = 0  # same, without numpy
            for y in range(-HALF_H, HALF_H):
                for x in range(-HALF_W, HALF_W):
                    light_brightness = LIGHT_BRIGHTNESS * light.strength * (1.0 - light.z / TEX_STRETCH)
                    brightness = light_brightness / ((x - xl) ** 2 + (y - yl) ** 2)

                    R2[i] += brightness * light.r
                    G2[i] += brightness * light.g
                    B2[i] += brightness * light.b
                    i += 1

    if use_numpy:
        # truncate values
        R = R.clip(0, 255)
        G = G.clip(0, 255)
        B = B.clip(0, 255)

        # fill the screen with these background colors
        libtcod.console_fill_background(sample_console, R, G, B)
    else:
        # truncate and convert to integer
        R2 = [int(min(r, 255)) for r in R2]
        G2 = [int(min(g, 255)) for g in G2]
        B2 = [int(min(b, 255)) for b in B2]

        # fill the screen with these background colors
        libtcod.console_fill_background(sample_console, R2, G2, B2)


#############################################
# main loop
#############################################
class Sample:
    def __init__(self, name, func):
        self.name = name
        self.func = func


samples = (
    Sample("  True colors        ", render_colors),
    Sample("  Offscreen console  ", render_offscreen),
    Sample("  Line drawing       ", render_lines),
    Sample("  Noise              ", render_noise),
    Sample("  Field of view      ", render_fov),
    Sample("  Path finding       ", render_path),
    Sample("  Bsp toolkit        ", render_bsp),
    Sample("  Image toolkit      ", render_image),
    Sample("  Mouse support      ", render_mouse),
    Sample("  Name generator     ", render_name),
    Sample("  Python fast render ", render_py),
)
cur_sample = 0
credits_end = False
first = True
cur_renderer = 0
renderer_name = ("F1 GLSL   ", "F2 OPENGL ", "F3 SDL    ")
key = libtcod.Key()
mouse = libtcod.Mouse()
while not libtcod.console_is_window_closed():
    libtcod.sys_check_for_event(libtcod.EVENT_KEY_PRESS | libtcod.EVENT_MOUSE, key, mouse)
    # render the sample
    samples[cur_sample].func(first, key, mouse)
    first = False
    libtcod.console_blit(
        sample_console, 0, 0, SAMPLE_SCREEN_WIDTH, SAMPLE_SCREEN_HEIGHT, 0, SAMPLE_SCREEN_X, SAMPLE_SCREEN_Y
    )
    # render credits
    if not credits_end:
        credits_end = libtcod.console_credits_render(60, 43, 0)
    # render sample list
    for i in range(len(samples)):
        if i == cur_sample:
            libtcod.console_set_default_foreground(None, libtcod.white)
            libtcod.console_set_default_background(None, libtcod.light_blue)
        else:
            libtcod.console_set_default_foreground(None, libtcod.grey)
            libtcod.console_set_default_background(None, libtcod.black)
        libtcod.console_print_ex(None, 2, 46 - (len(samples) - i), libtcod.BKGND_SET, libtcod.LEFT, samples[i].name)
    # render stats
    libtcod.console_set_default_foreground(None, libtcod.grey)
    libtcod.console_print_ex(
        None,
        79,
        46,
        libtcod.BKGND_NONE,
        libtcod.RIGHT,
        "last frame : %3d ms (%3d fps)" % (int(libtcod.sys_get_last_frame_length() * 1000.0), libtcod.sys_get_fps()),
    )
    libtcod.console_print_ex(
        None,
        79,
        47,
        libtcod.BKGND_NONE,
        libtcod.RIGHT,
        "elapsed : %8d ms %4.2fs" % (libtcod.sys_elapsed_milli(), libtcod.sys_elapsed_seconds()),
    )

    cur_renderer = libtcod.sys_get_renderer()
    libtcod.console_set_default_foreground(None, libtcod.grey)
    libtcod.console_set_default_background(None, libtcod.black)
    libtcod.console_print_ex(None, 42, 46 - (libtcod.NB_RENDERERS + 1), libtcod.BKGND_SET, libtcod.LEFT, "Renderer :")
    for i in range(libtcod.NB_RENDERERS):
        if i == cur_renderer:
            libtcod.console_set_default_foreground(None, libtcod.white)
            libtcod.console_set_default_background(None, libtcod.light_blue)
        else:
            libtcod.console_set_default_foreground(None, libtcod.grey)
            libtcod.console_set_default_background(None, libtcod.black)
        libtcod.console_print_ex(
            None, 42, 46 - (libtcod.NB_RENDERERS - i), libtcod.BKGND_SET, libtcod.LEFT, renderer_name[i]
        )

    # key handler
    if key.vk == libtcod.KEY_DOWN:
        cur_sample = (cur_sample + 1) % len(samples)
        first = True
    elif key.vk == libtcod.KEY_UP:
        cur_sample = (cur_sample - 1) % len(samples)
        first = True
    elif key.vk == libtcod.KEY_ENTER and key.lalt:
        libtcod.console_set_fullscreen(not libtcod.console_is_fullscreen())
    elif key.vk == libtcod.KEY_PRINTSCREEN or key.c == "p":
        print("screenshot")
        if key.lalt:
            libtcod.console_save_apf(None, "samples.apf")
            print("apf")
        else:
            libtcod.sys_save_screenshot()
            print("png")
    elif key.vk == libtcod.KEY_ESCAPE:
        break
    elif key.vk == libtcod.KEY_F1:
        libtcod.sys_set_renderer(libtcod.RENDERER_GLSL)
    elif key.vk == libtcod.KEY_F2:
        libtcod.sys_set_renderer(libtcod.RENDERER_OPENGL)
    elif key.vk == libtcod.KEY_F3:
        libtcod.sys_set_renderer(libtcod.RENDERER_SDL)
    libtcod.console_flush()