McRogueFace/tests/geometry_demo/screens/pathfinding_static_demo.py

315 lines
11 KiB
Python

"""Static pathfinding demonstration with planets and orbit rings."""
import mcrfpy
import math
from .base import (GeometryDemoScreen, bresenham_circle, filled_circle,
screen_angle_between, distance, SCREEN_WIDTH, SCREEN_HEIGHT)
class PathfindingStaticDemo(GeometryDemoScreen):
"""Demonstrate optimal path through a static solar system."""
name = "Static Pathfinding"
description = "Optimal path using orbital slingshots"
def setup(self):
self.add_title("Pathfinding Through Orbital Bodies")
self.add_description("Using free orbital movement to optimize travel paths")
margin = 30
top_area = 80
legend_height = 70
# Main display area - use most of screen
frame_width = SCREEN_WIDTH - 2 * margin
frame_height = SCREEN_HEIGHT - top_area - margin - legend_height
self.cell_size = 8
self.grid_x = margin + 20
self.grid_y = top_area + 20
# Background
bg = mcrfpy.Frame(pos=(margin, top_area), size=(frame_width, frame_height))
bg.fill_color = mcrfpy.Color(5, 5, 15)
bg.outline = 1
bg.outline_color = mcrfpy.Color(40, 40, 80)
self.ui.append(bg)
# Define planets (center_x, center_y, surface_radius, orbit_radius, name)
self.planets = [
(25, 50, 6, 12, "Alpha"),
(60, 25, 4, 9, "Beta"),
(85, 55, 5, 11, "Gamma"),
]
# Ship start and end
self.ship_start = (8, 65)
self.ship_end = (105, 15)
# Draw grid reference
self._draw_grid_reference()
# Draw planets
for px, py, sr, orbit_r, name in self.planets:
self._draw_planet(px, py, sr, orbit_r, name)
# Draw optimal path
self._draw_optimal_path()
# Draw ship and target
self._draw_ship_and_target()
# Legend at bottom
self._draw_legend(margin, top_area + frame_height + 10)
def _to_screen(self, gx, gy):
"""Convert grid coords to screen coords (center of cell)."""
return (self.grid_x + gx * self.cell_size + self.cell_size // 2,
self.grid_y + gy * self.cell_size + self.cell_size // 2)
def _to_screen_corner(self, gx, gy):
"""Convert grid coords to screen coords (corner of cell)."""
return (self.grid_x + gx * self.cell_size,
self.grid_y + gy * self.cell_size)
def _draw_grid_reference(self):
"""Draw faint grid lines for reference."""
max_x = 115
max_y = 75
for i in range(0, max_x + 1, 10):
x = self.grid_x + i * self.cell_size
line = mcrfpy.Line(
start=(x, self.grid_y),
end=(x, self.grid_y + max_y * self.cell_size),
color=mcrfpy.Color(30, 30, 50),
thickness=1
)
self.ui.append(line)
for i in range(0, max_y + 1, 10):
y = self.grid_y + i * self.cell_size
line = mcrfpy.Line(
start=(self.grid_x, y),
end=(self.grid_x + max_x * self.cell_size, y),
color=mcrfpy.Color(30, 30, 50),
thickness=1
)
self.ui.append(line)
def _draw_planet(self, cx, cy, surface_r, orbit_r, name):
"""Draw a planet with surface and orbit ring."""
sx, sy = self._to_screen(cx, cy)
# Orbit ring (smooth circle)
orbit = mcrfpy.Circle(
center=(sx, sy),
radius=orbit_r * self.cell_size,
fill_color=mcrfpy.Color(0, 0, 0, 0),
outline_color=mcrfpy.Color(50, 150, 50, 150),
outline=2
)
self.ui.append(orbit)
# Bresenham orbit cells
orbit_cells = bresenham_circle((cx, cy), orbit_r)
for gx, gy in orbit_cells:
px, py = self._to_screen_corner(gx, gy)
cell = mcrfpy.Frame(
pos=(px, py),
size=(self.cell_size - 1, self.cell_size - 1)
)
cell.fill_color = mcrfpy.Color(40, 100, 40, 100)
self.ui.append(cell)
# Planet surface
surface_cells = filled_circle((cx, cy), surface_r)
for gx, gy in surface_cells:
px, py = self._to_screen_corner(gx, gy)
dist = math.sqrt((gx - cx)**2 + (gy - cy)**2)
intensity = int(180 * (1 - dist / (surface_r + 1)))
cell = mcrfpy.Frame(
pos=(px, py),
size=(self.cell_size - 1, self.cell_size - 1)
)
cell.fill_color = mcrfpy.Color(60 + intensity, 80 + intensity//2, 150)
self.ui.append(cell)
# Planet label (below planet to avoid overlap)
self.add_label(name, sx - 15, sy + (surface_r + 2) * self.cell_size, (150, 150, 200))
def _draw_optimal_path(self):
"""Draw the optimal path using orbital waypoints."""
# The path:
# 1. Ship at (8, 65) -> Alpha orbit entry
# 2. Arc around Alpha -> exit toward Gamma
# 3. Straight to Gamma orbit entry
# 4. Arc around Gamma -> exit toward target
# 5. Straight to target (105, 15)
# Alpha: center (25, 50), orbit_r=12
alpha_center = (25, 50)
alpha_orbit = 12
# Gamma: center (85, 55), orbit_r=11
gamma_center = (85, 55)
gamma_orbit = 11
ship_screen = self._to_screen(*self.ship_start)
target_screen = self._to_screen(*self.ship_end)
# --- Segment 1: Ship to Alpha orbit entry ---
# Entry angle: direction from Alpha to ship
entry_angle_alpha = screen_angle_between(
self._to_screen(*alpha_center),
ship_screen
)
entry_alpha = (
alpha_center[0] + alpha_orbit * math.cos(math.radians(entry_angle_alpha)),
alpha_center[1] - alpha_orbit * math.sin(math.radians(entry_angle_alpha)) # Screen Y inverted
)
entry_alpha_screen = self._to_screen(*entry_alpha)
self._draw_path_line(ship_screen, entry_alpha_screen, (100, 200, 255))
# --- Segment 2: Arc around Alpha toward Gamma ---
exit_angle_alpha = screen_angle_between(
self._to_screen(*alpha_center),
self._to_screen(*gamma_center)
)
exit_alpha = (
alpha_center[0] + alpha_orbit * math.cos(math.radians(exit_angle_alpha)),
alpha_center[1] - alpha_orbit * math.sin(math.radians(exit_angle_alpha))
)
exit_alpha_screen = self._to_screen(*exit_alpha)
self._draw_orbit_arc(self._to_screen(*alpha_center), alpha_orbit * self.cell_size,
entry_angle_alpha, exit_angle_alpha)
# --- Segment 3: Alpha exit to Gamma entry ---
entry_angle_gamma = screen_angle_between(
self._to_screen(*gamma_center),
exit_alpha_screen
)
entry_gamma = (
gamma_center[0] + gamma_orbit * math.cos(math.radians(entry_angle_gamma)),
gamma_center[1] - gamma_orbit * math.sin(math.radians(entry_angle_gamma))
)
entry_gamma_screen = self._to_screen(*entry_gamma)
self._draw_path_line(exit_alpha_screen, entry_gamma_screen, (100, 200, 255))
# --- Segment 4: Arc around Gamma toward target ---
exit_angle_gamma = screen_angle_between(
self._to_screen(*gamma_center),
target_screen
)
exit_gamma = (
gamma_center[0] + gamma_orbit * math.cos(math.radians(exit_angle_gamma)),
gamma_center[1] - gamma_orbit * math.sin(math.radians(exit_angle_gamma))
)
exit_gamma_screen = self._to_screen(*exit_gamma)
self._draw_orbit_arc(self._to_screen(*gamma_center), gamma_orbit * self.cell_size,
entry_angle_gamma, exit_angle_gamma)
# --- Segment 5: Gamma exit to target ---
self._draw_path_line(exit_gamma_screen, target_screen, (100, 200, 255))
# Draw direct path for comparison
direct_line = mcrfpy.Line(
start=ship_screen, end=target_screen,
color=mcrfpy.Color(255, 100, 100, 80),
thickness=1
)
self.ui.append(direct_line)
def _draw_path_line(self, p1, p2, color):
"""Draw a path segment line."""
line = mcrfpy.Line(
start=p1, end=p2,
color=mcrfpy.Color(*color),
thickness=3
)
self.ui.append(line)
def _draw_orbit_arc(self, center, radius, start_angle, end_angle):
"""Draw an arc showing orbital movement (free movement)."""
# Ensure we draw the shorter arc
diff = end_angle - start_angle
if diff > 180:
start_angle, end_angle = end_angle, start_angle
elif diff < -180:
start_angle, end_angle = end_angle, start_angle
arc = mcrfpy.Arc(
center=center,
radius=radius,
start_angle=min(start_angle, end_angle),
end_angle=max(start_angle, end_angle),
color=mcrfpy.Color(255, 255, 100),
thickness=4
)
self.ui.append(arc)
def _draw_ship_and_target(self):
"""Draw ship and target markers."""
ship_screen = self._to_screen(*self.ship_start)
target_screen = self._to_screen(*self.ship_end)
# Ship
ship = mcrfpy.Circle(
center=ship_screen,
radius=10,
fill_color=mcrfpy.Color(255, 200, 100),
outline_color=mcrfpy.Color(255, 255, 200),
outline=2
)
self.ui.append(ship)
self.add_label("SHIP", ship_screen[0] - 15, ship_screen[1] + 15, (255, 200, 100))
# Target
target = mcrfpy.Circle(
center=target_screen,
radius=10,
fill_color=mcrfpy.Color(255, 100, 100),
outline_color=mcrfpy.Color(255, 200, 200),
outline=2
)
self.ui.append(target)
self.add_label("TARGET", target_screen[0] - 25, target_screen[1] + 15, (255, 100, 100))
def _draw_legend(self, x, y):
"""Draw legend."""
# Blue line = movement cost
line1 = mcrfpy.Line(
start=(x, y + 15), end=(x + 40, y + 15),
color=mcrfpy.Color(100, 200, 255),
thickness=3
)
self.ui.append(line1)
self.add_label("Impulse movement (costs energy)", x + 50, y + 8, (150, 150, 150))
# Yellow arc = free movement
arc1 = mcrfpy.Arc(
center=(x + 20, y + 50), radius=18,
start_angle=0, end_angle=180,
color=mcrfpy.Color(255, 255, 100),
thickness=3
)
self.ui.append(arc1)
self.add_label("Orbital movement (FREE)", x + 50, y + 40, (255, 255, 100))
# Red line = direct
line2 = mcrfpy.Line(
start=(x + 400, y + 15), end=(x + 440, y + 15),
color=mcrfpy.Color(255, 100, 100, 80),
thickness=1
)
self.ui.append(line2)
self.add_label("Direct path (comparison)", x + 450, y + 8, (150, 150, 150))
# Green cells = orbit ring
cell1 = mcrfpy.Frame(pos=(x + 400, y + 40), size=(15, 15))
cell1.fill_color = mcrfpy.Color(40, 100, 40)
self.ui.append(cell1)
self.add_label("Orbit ring (ship positions)", x + 420, y + 40, (150, 150, 150))