McRogueFace/src/Animation.cpp

527 lines
16 KiB
C++

#include "Animation.h"
#include "UIDrawable.h"
#include "UIEntity.h"
#include <cmath>
#include <algorithm>
#include <unordered_map>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// Animation implementation
Animation::Animation(const std::string& targetProperty,
const AnimationValue& targetValue,
float duration,
EasingFunction easingFunc,
bool delta)
: targetProperty(targetProperty)
, targetValue(targetValue)
, duration(duration)
, easingFunc(easingFunc)
, delta(delta)
{
}
void Animation::start(UIDrawable* target) {
currentTarget = target;
elapsed = 0.0f;
// Capture startValue from target based on targetProperty
if (!currentTarget) return;
// Try to get the current value based on the expected type
std::visit([this](const auto& targetVal) {
using T = std::decay_t<decltype(targetVal)>;
if constexpr (std::is_same_v<T, float>) {
float value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, int>) {
int value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// For sprite animation, get current sprite index
int value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, sf::Color>) {
sf::Color value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
sf::Vector2f value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, std::string>) {
std::string value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
}, targetValue);
}
void Animation::startEntity(UIEntity* target) {
currentEntityTarget = target;
currentTarget = nullptr; // Clear drawable target
elapsed = 0.0f;
// Capture the starting value from the entity
std::visit([this, target](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
float value = 0.0f;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, int>) {
// For entities, we might need to handle sprite_index differently
if (targetProperty == "sprite_index" || targetProperty == "sprite_number") {
startValue = target->sprite.getSpriteIndex();
}
}
// Entities don't support other types yet
}, targetValue);
}
bool Animation::update(float deltaTime) {
if ((!currentTarget && !currentEntityTarget) || isComplete()) {
return false;
}
elapsed += deltaTime;
elapsed = std::min(elapsed, duration);
// Calculate easing value (0.0 to 1.0)
float t = duration > 0 ? elapsed / duration : 1.0f;
float easedT = easingFunc(t);
// Get interpolated value
AnimationValue currentValue = interpolate(easedT);
// Apply currentValue to target (either drawable or entity)
std::visit([this](const auto& value) {
using T = std::decay_t<decltype(value)>;
if (currentTarget) {
// Handle UIDrawable targets
if constexpr (std::is_same_v<T, float>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, int>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, std::string>) {
currentTarget->setProperty(targetProperty, value);
}
}
else if (currentEntityTarget) {
// Handle UIEntity targets
if constexpr (std::is_same_v<T, float>) {
currentEntityTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, int>) {
currentEntityTarget->setProperty(targetProperty, value);
}
// Entities don't support other types yet
}
}, currentValue);
return !isComplete();
}
AnimationValue Animation::getCurrentValue() const {
float t = duration > 0 ? elapsed / duration : 1.0f;
float easedT = easingFunc(t);
return interpolate(easedT);
}
AnimationValue Animation::interpolate(float t) const {
// Visit the variant to perform type-specific interpolation
return std::visit([this, t](const auto& target) -> AnimationValue {
using T = std::decay_t<decltype(target)>;
if constexpr (std::is_same_v<T, float>) {
// Interpolate float
const float* start = std::get_if<float>(&startValue);
if (!start) return target; // Type mismatch
if (delta) {
return *start + target * t;
} else {
return *start + (target - *start) * t;
}
}
else if constexpr (std::is_same_v<T, int>) {
// Interpolate integer
const int* start = std::get_if<int>(&startValue);
if (!start) return target;
float result;
if (delta) {
result = *start + target * t;
} else {
result = *start + (target - *start) * t;
}
return static_cast<int>(std::round(result));
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// For sprite animation, interpolate through the list
if (target.empty()) return target;
// Map t to an index in the vector
size_t index = static_cast<size_t>(t * (target.size() - 1));
index = std::min(index, target.size() - 1);
return static_cast<int>(target[index]);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
// Interpolate color
const sf::Color* start = std::get_if<sf::Color>(&startValue);
if (!start) return target;
sf::Color result;
if (delta) {
result.r = std::clamp(start->r + target.r * t, 0.0f, 255.0f);
result.g = std::clamp(start->g + target.g * t, 0.0f, 255.0f);
result.b = std::clamp(start->b + target.b * t, 0.0f, 255.0f);
result.a = std::clamp(start->a + target.a * t, 0.0f, 255.0f);
} else {
result.r = start->r + (target.r - start->r) * t;
result.g = start->g + (target.g - start->g) * t;
result.b = start->b + (target.b - start->b) * t;
result.a = start->a + (target.a - start->a) * t;
}
return result;
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
// Interpolate vector
const sf::Vector2f* start = std::get_if<sf::Vector2f>(&startValue);
if (!start) return target;
if (delta) {
return sf::Vector2f(start->x + target.x * t,
start->y + target.y * t);
} else {
return sf::Vector2f(start->x + (target.x - start->x) * t,
start->y + (target.y - start->y) * t);
}
}
else if constexpr (std::is_same_v<T, std::string>) {
// For text, show characters based on t
const std::string* start = std::get_if<std::string>(&startValue);
if (!start) return target;
// If delta mode, append characters from target
if (delta) {
size_t chars = static_cast<size_t>(target.length() * t);
return *start + target.substr(0, chars);
} else {
// Transition from start text to target text
if (t < 0.5f) {
// First half: remove characters from start
size_t chars = static_cast<size_t>(start->length() * (1.0f - t * 2.0f));
return start->substr(0, chars);
} else {
// Second half: add characters to target
size_t chars = static_cast<size_t>(target.length() * ((t - 0.5f) * 2.0f));
return target.substr(0, chars);
}
}
}
return target; // Fallback
}, targetValue);
}
// Easing functions implementation
namespace EasingFunctions {
float linear(float t) {
return t;
}
float easeIn(float t) {
return t * t;
}
float easeOut(float t) {
return t * (2.0f - t);
}
float easeInOut(float t) {
return t < 0.5f ? 2.0f * t * t : -1.0f + (4.0f - 2.0f * t) * t;
}
// Quadratic
float easeInQuad(float t) {
return t * t;
}
float easeOutQuad(float t) {
return t * (2.0f - t);
}
float easeInOutQuad(float t) {
return t < 0.5f ? 2.0f * t * t : -1.0f + (4.0f - 2.0f * t) * t;
}
// Cubic
float easeInCubic(float t) {
return t * t * t;
}
float easeOutCubic(float t) {
float t1 = t - 1.0f;
return t1 * t1 * t1 + 1.0f;
}
float easeInOutCubic(float t) {
return t < 0.5f ? 4.0f * t * t * t : (t - 1.0f) * (2.0f * t - 2.0f) * (2.0f * t - 2.0f) + 1.0f;
}
// Quartic
float easeInQuart(float t) {
return t * t * t * t;
}
float easeOutQuart(float t) {
float t1 = t - 1.0f;
return 1.0f - t1 * t1 * t1 * t1;
}
float easeInOutQuart(float t) {
return t < 0.5f ? 8.0f * t * t * t * t : 1.0f - 8.0f * (t - 1.0f) * (t - 1.0f) * (t - 1.0f) * (t - 1.0f);
}
// Sine
float easeInSine(float t) {
return 1.0f - std::cos(t * M_PI / 2.0f);
}
float easeOutSine(float t) {
return std::sin(t * M_PI / 2.0f);
}
float easeInOutSine(float t) {
return 0.5f * (1.0f - std::cos(M_PI * t));
}
// Exponential
float easeInExpo(float t) {
return t == 0.0f ? 0.0f : std::pow(2.0f, 10.0f * (t - 1.0f));
}
float easeOutExpo(float t) {
return t == 1.0f ? 1.0f : 1.0f - std::pow(2.0f, -10.0f * t);
}
float easeInOutExpo(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
if (t < 0.5f) {
return 0.5f * std::pow(2.0f, 20.0f * t - 10.0f);
} else {
return 1.0f - 0.5f * std::pow(2.0f, -20.0f * t + 10.0f);
}
}
// Circular
float easeInCirc(float t) {
return 1.0f - std::sqrt(1.0f - t * t);
}
float easeOutCirc(float t) {
float t1 = t - 1.0f;
return std::sqrt(1.0f - t1 * t1);
}
float easeInOutCirc(float t) {
if (t < 0.5f) {
return 0.5f * (1.0f - std::sqrt(1.0f - 4.0f * t * t));
} else {
return 0.5f * (std::sqrt(1.0f - (2.0f * t - 2.0f) * (2.0f * t - 2.0f)) + 1.0f);
}
}
// Elastic
float easeInElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.3f;
float a = 1.0f;
float s = p / 4.0f;
float t1 = t - 1.0f;
return -(a * std::pow(2.0f, 10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p));
}
float easeOutElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.3f;
float a = 1.0f;
float s = p / 4.0f;
return a * std::pow(2.0f, -10.0f * t) * std::sin((t - s) * (2.0f * M_PI) / p) + 1.0f;
}
float easeInOutElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.45f;
float a = 1.0f;
float s = p / 4.0f;
if (t < 0.5f) {
float t1 = 2.0f * t - 1.0f;
return -0.5f * (a * std::pow(2.0f, 10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p));
} else {
float t1 = 2.0f * t - 1.0f;
return a * std::pow(2.0f, -10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p) * 0.5f + 1.0f;
}
}
// Back (overshooting)
float easeInBack(float t) {
const float s = 1.70158f;
return t * t * ((s + 1.0f) * t - s);
}
float easeOutBack(float t) {
const float s = 1.70158f;
float t1 = t - 1.0f;
return t1 * t1 * ((s + 1.0f) * t1 + s) + 1.0f;
}
float easeInOutBack(float t) {
const float s = 1.70158f * 1.525f;
if (t < 0.5f) {
return 0.5f * (4.0f * t * t * ((s + 1.0f) * 2.0f * t - s));
} else {
float t1 = 2.0f * t - 2.0f;
return 0.5f * (t1 * t1 * ((s + 1.0f) * t1 + s) + 2.0f);
}
}
// Bounce
float easeOutBounce(float t) {
if (t < 1.0f / 2.75f) {
return 7.5625f * t * t;
} else if (t < 2.0f / 2.75f) {
float t1 = t - 1.5f / 2.75f;
return 7.5625f * t1 * t1 + 0.75f;
} else if (t < 2.5f / 2.75f) {
float t1 = t - 2.25f / 2.75f;
return 7.5625f * t1 * t1 + 0.9375f;
} else {
float t1 = t - 2.625f / 2.75f;
return 7.5625f * t1 * t1 + 0.984375f;
}
}
float easeInBounce(float t) {
return 1.0f - easeOutBounce(1.0f - t);
}
float easeInOutBounce(float t) {
if (t < 0.5f) {
return 0.5f * easeInBounce(2.0f * t);
} else {
return 0.5f * easeOutBounce(2.0f * t - 1.0f) + 0.5f;
}
}
// Get easing function by name
EasingFunction getByName(const std::string& name) {
static std::unordered_map<std::string, EasingFunction> easingMap = {
{"linear", linear},
{"easeIn", easeIn},
{"easeOut", easeOut},
{"easeInOut", easeInOut},
{"easeInQuad", easeInQuad},
{"easeOutQuad", easeOutQuad},
{"easeInOutQuad", easeInOutQuad},
{"easeInCubic", easeInCubic},
{"easeOutCubic", easeOutCubic},
{"easeInOutCubic", easeInOutCubic},
{"easeInQuart", easeInQuart},
{"easeOutQuart", easeOutQuart},
{"easeInOutQuart", easeInOutQuart},
{"easeInSine", easeInSine},
{"easeOutSine", easeOutSine},
{"easeInOutSine", easeInOutSine},
{"easeInExpo", easeInExpo},
{"easeOutExpo", easeOutExpo},
{"easeInOutExpo", easeInOutExpo},
{"easeInCirc", easeInCirc},
{"easeOutCirc", easeOutCirc},
{"easeInOutCirc", easeInOutCirc},
{"easeInElastic", easeInElastic},
{"easeOutElastic", easeOutElastic},
{"easeInOutElastic", easeInOutElastic},
{"easeInBack", easeInBack},
{"easeOutBack", easeOutBack},
{"easeInOutBack", easeInOutBack},
{"easeInBounce", easeInBounce},
{"easeOutBounce", easeOutBounce},
{"easeInOutBounce", easeInOutBounce}
};
auto it = easingMap.find(name);
if (it != easingMap.end()) {
return it->second;
}
return linear; // Default to linear
}
} // namespace EasingFunctions
// AnimationManager implementation
AnimationManager& AnimationManager::getInstance() {
static AnimationManager instance;
return instance;
}
void AnimationManager::addAnimation(std::shared_ptr<Animation> animation) {
activeAnimations.push_back(animation);
}
void AnimationManager::update(float deltaTime) {
for (auto& anim : activeAnimations) {
anim->update(deltaTime);
}
cleanup();
}
void AnimationManager::cleanup() {
activeAnimations.erase(
std::remove_if(activeAnimations.begin(), activeAnimations.end(),
[](const std::shared_ptr<Animation>& anim) {
return anim->isComplete();
}),
activeAnimations.end()
);
}
void AnimationManager::clear() {
activeAnimations.clear();
}