McRogueFace/roguelike_tutorial/part_3.py

299 lines
9.3 KiB
Python

"""
McRogueFace Tutorial - Part 3: Procedural Dungeon Generation
This tutorial builds on Part 2 by adding:
- Binary Space Partition (BSP) dungeon generation
- Rooms connected by hallways using libtcod.line()
- Walkable/non-walkable terrain
- Player spawning in a valid location
- Wall tiles that block movement
Key code references:
- src/scripts/cos_level.py (lines 7-15, 184-217, 218-224) - BSP algorithm
- mcrfpy.libtcod.line() for smooth hallway generation
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30 # Larger grid for dungeon
# Calculate the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# Calculate the position to center the grid on the screen
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid with a TCODMap for pathfinding/FOV
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Room class for BSP
class Room:
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.w = w
self.h = h
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return (center_x, center_y)
def intersects(self, other):
"""Return True if this room overlaps with another"""
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
# Dungeon generation functions
def carve_room(room):
"""Carve out a room in the grid - referenced from cos_level.py lines 117-120"""
# Using individual updates for now (batch updates would be more efficient)
for x in range(room.x1, room.x2):
for y in range(room.y1, room.y2):
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def carve_hallway(x1, y1, x2, y2):
"""Carve a hallway between two points using libtcod.line()
Referenced from cos_level.py lines 184-217, improved with libtcod.line()
"""
# Get all points along the line
points = mcrfpy.libtcod.line(x1, y1, x2, y2)
# Carve out each point
for x, y in points:
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
"""Generate a dungeon using simplified BSP approach
Referenced from cos_level.py lines 218-224
"""
rooms = []
# First, fill everything with walls
for y in range(grid_height):
for x in range(grid_width):
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(WALL_TILES)
point.walkable = False
point.transparent = False
# Generate rooms
for _ in range(max_rooms):
# Random room size
w = random.randint(room_min_size, room_max_size)
h = random.randint(room_min_size, room_max_size)
# Random position (with margin from edges)
x = random.randint(1, grid_width - w - 1)
y = random.randint(1, grid_height - h - 1)
new_room = Room(x, y, w, h)
# Check if it overlaps with existing rooms
failed = False
for other_room in rooms:
if new_room.intersects(other_room):
failed = True
break
if not failed:
# Carve out the room
carve_room(new_room)
# If not the first room, connect to previous room
if rooms:
# Get centers
prev_x, prev_y = rooms[-1].center()
new_x, new_y = new_room.center()
# Carve hallway using libtcod.line()
carve_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
return rooms
# Generate the dungeon
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Spawn player in the first room
if rooms:
spawn_x, spawn_y = rooms[0].center()
else:
# Fallback spawn position
spawn_x, spawn_y = 4, 4
# Create a player entity at the spawn position
player = mcrfpy.Entity(
(spawn_x, spawn_y),
texture=hero_texture,
sprite_index=0
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
# Movement state tracking (from Part 2)
is_moving = False
move_queue = []
current_destination = None
current_move = None
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
def movement_complete(anim, target):
"""Called when movement animation completes"""
global is_moving, move_queue, current_destination, current_move
global player_anim_x, player_anim_y
is_moving = False
current_move = None
current_destination = None
player_anim_x = None
player_anim_y = None
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
if move_queue:
next_move = move_queue.pop(0)
process_move(next_move)
motion_speed = 0.20 # Slightly faster for dungeon exploration
def can_move_to(x, y):
"""Check if a position is valid for movement"""
# Boundary check
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
# Walkability check
point = grid.at(x, y)
if point and point.walkable:
return True
return False
def process_move(key):
"""Process a move based on the key"""
global is_moving, current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
if is_moving:
move_queue.clear()
move_queue.append(key)
return
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# Check if we can move to the new position
if new_x != px or new_y != py:
if can_move_to(new_x, new_y):
is_moving = True
current_move = key
current_destination = (new_x, new_y)
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
else:
# Play a "bump" sound or visual feedback here
print(f"Can't move to ({new_x}, {new_y}) - blocked!")
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start":
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add UI elements
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 3: Dungeon Generation",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
instructions = mcrfpy.Caption((150, 750),
text=f"Procedural dungeon with {len(rooms)} rooms connected by hallways!",
)
instructions.font_size = 18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
# Debug info
debug_caption = mcrfpy.Caption((10, 40),
text=f"Grid: {grid_width}x{grid_height} | Player spawned at ({spawn_x}, {spawn_y})",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
print("Tutorial Part 3 loaded!")
print(f"Generated dungeon with {len(rooms)} rooms")
print(f"Player spawned at ({spawn_x}, {spawn_y})")
print("Walls now block movement!")
print("Use WASD or Arrow keys to explore the dungeon!")