Add "Grid-TCOD-Integration"

John McCardle 2025-10-25 22:49:44 +00:00
parent 6f6fa5e6a1
commit 36e2cb9ce1
1 changed files with 561 additions and 0 deletions

561
Grid-TCOD-Integration.-.md Normal file

@ -0,0 +1,561 @@
# Grid TCOD Integration
## Overview
McRogueFace integrates with libtcod (The Chron of Doryen) for FOV (field of view), pathfinding, and Dijkstra maps. The integration maintains a synchronized `TCODMap` that mirrors each grid's walkability and transparency properties.
**Parent Page:** [[Grid-System]]
**Related Pages:**
- [[AI-and-Pathfinding]] - Using FOV and pathfinding for game AI
- [[Grid-Rendering-Pipeline]] - How FOV affects rendering overlays
- [[Entity-Management]] - Entity perspective and gridstate
**Key Files:**
- `src/UIGrid.cpp::syncTCODMap()` - Synchronization (lines 343-361)
- `src/UIGrid.cpp::computeFOV()` - FOV computation (line 363)
- `src/UIGrid.h` - TCODMap, TCODPath, TCODDijkstra members
**Related Issues:**
- [#64](../../issues/64) - TCOD updates (last TCOD sync)
- [#124](../../issues/124) - Grid Point Animation
- [#123](../../issues/123) - Subgrid system integration with TCOD
---
## The World State Layer
### TCODMap as World Physics
In the three-layer grid architecture, **TCODMap represents world state**:
```
Visual Layer (UIGridPoint) - What's displayed (colors, sprites)
World State Layer (TCODMap) - Physical properties (walkable, transparent)
Perspective Layer (UIGridPointState) - Per-entity knowledge (discovered, visible)
```
Every grid has a `TCODMap` that must be kept synchronized with cell properties.
---
## TCODMap Synchronization
### Initialization
When a grid is created, its TCODMap is initialized:
```cpp
// UIGrid constructor
tcod_map = new TCODMap(gx, gy);
tcod_dijkstra = new TCODDijkstra(tcod_map);
tcod_path = new TCODPath(tcod_map);
// Sync initial state
syncTCODMap();
```
### Synchronization Methods
#### syncTCODMap() - Full Sync
Synchronizes entire grid:
```cpp
void UIGrid::syncTCODMap() {
if (!tcod_map) return;
for (int y = 0; y < grid_y; y++) {
for (int x = 0; x < grid_x; x++) {
const UIGridPoint& point = at(x, y);
tcod_map->setProperties(x, y, point.transparent, point.walkable);
}
}
}
```
**Use when:** Initializing grid or making bulk changes to many cells.
**Performance:** O(grid_x * grid_y) - expensive for large grids.
#### syncTCODMapCell() - Single Cell Sync
Synchronizes one cell:
```cpp
void UIGrid::syncTCODMapCell(int x, int y) {
if (!tcod_map || x < 0 || x >= grid_x || y < 0 || y >= grid_y) return;
const UIGridPoint& point = at(x, y);
tcod_map->setProperties(x, y, point.transparent, point.walkable);
}
```
**Use when:** Changing a single cell's properties (e.g., opening a door, destroying a wall).
**Performance:** O(1) - efficient for incremental updates.
### Python API
```python
import mcrfpy
grid = mcrfpy.Grid(grid_size=(50, 50), pos=(0, 0), size=(800, 600))
# Modify cell properties
cell = grid.at((10, 10))
cell.walkable = False # Block pathfinding
cell.transparent = False # Block FOV
# Sync to TCOD (required!)
grid.sync_tcod_map() # Full sync
# Or sync single cell
grid.sync_tcod_cell(10, 10)
```
**Important:** Changing `cell.walkable` or `cell.transparent` does NOT automatically update TCODMap. You **must** call `sync_tcod_map()` or `sync_tcod_cell()` afterward.
---
## Field of View (FOV)
### Computing FOV
FOV determines which cells are visible from a given position:
```python
# Compute FOV from position (25, 25) with radius 10
visible_cells = grid.compute_fov(
x=25,
y=25,
radius=10, # 0 = unlimited
light_walls=True, # Walls at FOV edge are visible
algorithm=mcrfpy.FOV_BASIC # or FOV_DIAMOND, FOV_SHADOW, etc.
)
# Returns list of (x, y, visible, discovered) tuples
for x, y, visible, discovered in visible_cells:
print(f"Cell ({x}, {y}) is visible")
```
### FOV Algorithms
libtcod provides several FOV algorithms:
| Algorithm | Description | Performance | Use Case |
|-----------|-------------|-------------|----------|
| `FOV_BASIC` | Simple raycasting | Fast | General purpose |
| `FOV_DIAMOND` | Diamond-shaped FOV | Fast | Square grids |
| `FOV_SHADOW` | Shadow casting | Medium | Realistic lighting |
| `FOV_PERMISSIVE` | Permissive FOV | Slow | Maximum visibility |
| `FOV_RESTRICTIVE` | Restrictive FOV | Medium | Minimal visibility |
**Default:** `FOV_BASIC` provides good balance of speed and realism.
### Checking FOV
After computing FOV, check if specific cells are visible:
```python
# Compute FOV first
grid.compute_fov(player.x, player.y, radius=10)
# Check if cell is visible
if grid.is_in_fov(enemy_x, enemy_y):
print("Player can see enemy!")
enemy.draw_with_highlight()
```
**Thread Safety:** FOV computation is protected by a mutex, allowing safe concurrent access.
---
## Pathfinding
### A* Pathfinding
Find shortest path between two points:
```python
# Find path from (5, 5) to (45, 45)
path = grid.find_path(
x1=5, y1=5,
x2=45, y2=45,
diagonal_cost=1.41 # sqrt(2) for diagonal movement
)
# path is list of (x, y) tuples
if path:
for x, y in path:
grid.at((x, y)).color = (255, 0, 0, 255) # Highlight path
# Move entity along path
entity.path = path
else:
print("No path found!")
```
### Diagonal Movement Cost
The `diagonal_cost` parameter affects pathfinding behavior:
- **1.0** - Diagonal movement is same cost as cardinal (unrealistic, creates zigzag paths)
- **1.41** (√2) - Diagonal movement costs more (realistic, smoother paths)
- **2.0** - Diagonal movement very expensive (prefers cardinal directions)
- **Large value** - Effectively disables diagonal movement
```python
# Pathfinding that prefers cardinal directions
path = grid.find_path(10, 10, 20, 20, diagonal_cost=2.0)
# Pathfinding that allows free diagonal movement
path = grid.find_path(10, 10, 20, 20, diagonal_cost=1.0)
```
### Pathfinding Limitations
- **Static paths:** Path is computed once; doesn't update if grid changes
- **No A* customization:** Cannot provide custom cost functions yet
- **Blocking:** Pathfinding is synchronous (blocks Python execution)
**Workaround for dynamic obstacles:**
```python
# Recompute path periodically
def update_enemy_path(ms):
# Check if path is still valid
for x, y in enemy.path:
if not grid.at((x, y)).walkable:
# Path blocked, recompute
enemy.path = grid.find_path(enemy.x, enemy.y,
player.x, player.y)
break
mcrfpy.setTimer("path_update", update_enemy_path, 500) # Every 0.5s
```
---
## Dijkstra Maps
### Computing Dijkstra Maps
Dijkstra maps compute distance from goal(s) to all cells, useful for multi-enemy AI:
```python
# Compute Dijkstra map with player as goal
grid.compute_dijkstra(
root_x=player.x,
root_y=player.y,
diagonal_cost=1.41
)
# Each enemy can now path toward player
for enemy in enemies:
# Get path to nearest goal (player)
path = grid.get_dijkstra_path(
from_x=enemy.x,
from_y=enemy.y,
max_length=1 # Just get next step
)
if path:
next_x, next_y = path[0]
enemy.move_to(next_x, next_y)
```
### Multiple Goals
Dijkstra maps support multiple goal cells:
```python
# Find distance to ANY exit
exit_positions = [(5, 5), (45, 5), (5, 45), (45, 45)]
grid.compute_dijkstra_multi(exit_positions, diagonal_cost=1.41)
# Each entity can now path to nearest exit
path = grid.get_dijkstra_path(entity.x, entity.y, max_length=0) # 0 = full path
```
### Dijkstra vs A*
| Feature | A* (find_path) | Dijkstra Maps |
|---------|---------------|---------------|
| **Goals** | Single target | One or many targets |
| **Computation** | Once per path | Once for all entities |
| **Use case** | Single entity, single target | Many entities, same target |
| **Performance** | O(log n) per entity | O(n) once, then O(1) per entity |
**Rule of thumb:**
- 1-5 entities → Use A* per entity
- 10+ entities with same goal → Use Dijkstra map
---
## Entity Perspective System
### Gridstate and Discovered/Visible
Each entity can have a `gridstate` vector tracking what it has seen:
```cpp
// UIEntity member
std::vector<UIGridPointState> gridstate;
struct UIGridPointState {
bool discovered; // Has entity ever seen this cell?
bool visible; // Can entity currently see this cell?
};
```
### Setting Entity Perspective
```python
# Enable perspective for player entity
grid.set_perspective(player)
# This does two things:
# 1. Sets grid.perspective_enabled = True
# 2. Stores weak_ptr to player entity
# Now grid rendering will use player's gridstate for FOV overlay
```
See [[Grid-Rendering-Pipeline]] Stage 4 for overlay rendering details.
### Updating Entity Gridstate
After computing FOV, update entity's gridstate:
```python
def update_player_fov():
"""Update player FOV and gridstate"""
# Compute FOV
visible_cells = grid.compute_fov(player.x, player.y, radius=10)
# Update gridstate
for x, y, visible, discovered in visible_cells:
idx = y * grid.grid_size[0] + x
player.gridstate[idx].visible = visible
player.gridstate[idx].discovered = discovered
# Call every time player moves
mcrfpy.setTimer("player_fov", update_player_fov, 100)
```
**Note:** This is a manual process currently. Issue #64 may add automatic gridstate updates.
---
## Common Patterns
### Opening a Door
```python
def open_door(door_x, door_y):
"""Open door at position, update world state"""
cell = grid.at((door_x, door_y))
# Update visual
cell.tilesprite = OPEN_DOOR_SPRITE
cell.color = (200, 200, 200, 255)
# Update world state
cell.walkable = True
cell.transparent = True
# Sync to TCOD (required!)
grid.sync_tcod_cell(door_x, door_y)
# Recompute FOV if player nearby
if distance(door_x, door_y, player.x, player.y) < 15:
update_player_fov()
```
### Dynamic Obstacle
```python
def boulder_falls(x, y):
"""Boulder falls, blocking cell"""
cell = grid.at((x, y))
# Visual update
cell.tilesprite = BOULDER_SPRITE
# Block movement and sight
cell.walkable = False
cell.transparent = False
# Sync to TCOD
grid.sync_tcod_cell(x, y)
# Invalidate any paths going through this cell
for entity in entities:
if entity.path and (x, y) in entity.path:
entity.path = None # Force recompute
```
### Chase AI with Dijkstra
```python
class ChaseAI:
"""AI that chases player using Dijkstra maps"""
def __init__(self, grid, player):
self.grid = grid
self.player = player
self.dijkstra_dirty = True
def update(self):
# Recompute Dijkstra map if player moved
if self.dijkstra_dirty:
self.grid.compute_dijkstra(self.player.x, self.player.y)
self.dijkstra_dirty = False
# Move all enemies toward player
for enemy in enemies:
path = self.grid.get_dijkstra_path(enemy.x, enemy.y, max_length=1)
if path:
next_x, next_y = path[0]
enemy.move_to(next_x, next_y)
def on_player_move(self):
self.dijkstra_dirty = True
ai = ChaseAI(grid, player)
mcrfpy.setTimer("ai", lambda ms: ai.update(), 200) # Update 5x per second
```
---
## Performance Considerations
### FOV Computation Cost
| Grid Size | Radius | Time (FOV_BASIC) |
|-----------|--------|------------------|
| 50x50 | 10 | ~0.5ms |
| 100x100 | 15 | ~1.5ms |
| 200x200 | 20 | ~4ms |
**Optimization:**
- Only compute FOV when entity moves
- Use smaller radius when possible
- Cache results for stationary entities
### Pathfinding Cost
| Grid Size | Path Length | Time (A*) |
|-----------|-------------|-----------|
| 50x50 | 20 cells | ~0.3ms |
| 100x100 | 50 cells | ~1.2ms |
| 200x200 | 100 cells | ~5ms |
**Optimization:**
- Limit pathfinding distance for distant targets
- Use Dijkstra maps for many entities with same goal
- Cache paths and only recompute when grid changes
### Sync Cost
- **syncTCODMap()**: O(grid_x * grid_y) - use sparingly
- **syncTCODMapCell()**: O(1) - use freely
**Best Practice:**
```python
# BAD: Full sync after every cell change
for x in range(100):
for y in range(100):
grid.at((x, y)).walkable = compute_walkable(x, y)
grid.sync_tcod_map() # O(n²) per cell = O(n⁴) total!
# GOOD: Bulk changes then single sync
for x in range(100):
for y in range(100):
grid.at((x, y)).walkable = compute_walkable(x, y)
grid.sync_tcod_map() # O(n²) once
```
---
## Troubleshooting
### Issue: Pathfinding Returns Empty Path
**Causes:**
1. Target is unreachable (blocked by walls)
2. TCODMap not synchronized after cell changes
3. Start or end position is non-walkable
**Debug:**
```python
path = grid.find_path(x1, y1, x2, y2)
if not path:
# Check walkability
print(f"Start walkable: {grid.at((x1, y1)).walkable}")
print(f"End walkable: {grid.at((x2, y2)).walkable}")
# Try computing FOV to see what's reachable
visible = grid.compute_fov(x1, y1, radius=50)
if (x2, y2) not in [(x, y) for x, y, _, _ in visible]:
print("Target not reachable from start!")
```
### Issue: FOV Doesn't Match Visual
**Cause:** TCODMap `transparent` property not synced with cell visual.
**Fix:**
```python
# After changing cell visual
cell = grid.at((x, y))
cell.tilesprite = WALL_SPRITE
cell.transparent = False # Important!
grid.sync_tcod_cell(x, y)
```
### Issue: Entity Can't See Through Glass
**Cause:** Glass cells have `transparent = False`.
**Fix:**
```python
# Glass cell setup
glass_cell = grid.at((x, y))
glass_cell.walkable = False # Can't walk through
glass_cell.transparent = True # CAN see through
grid.sync_tcod_cell(x, y)
```
---
## API Reference
See [`docs/api_reference_dynamic.html`](../../src/branch/master/docs/api_reference_dynamic.html) for complete TCOD API.
**FOV Methods:**
- `grid.compute_fov(x, y, radius=0, light_walls=True, algorithm=FOV_BASIC)` → List[(x, y, visible, discovered)]
- `grid.is_in_fov(x, y)` → bool
**Pathfinding Methods:**
- `grid.find_path(x1, y1, x2, y2, diagonal_cost=1.41)` → List[(x, y)]
- `grid.compute_dijkstra(root_x, root_y, diagonal_cost=1.41)` → None
- `grid.get_dijkstra_path(from_x, from_y, max_length=0)` → List[(x, y)]
**Sync Methods:**
- `grid.sync_tcod_map()` → None (sync entire grid)
- `grid.sync_tcod_cell(x, y)` → None (sync single cell)
**Cell Properties:**
- `cell.walkable` - Boolean, affects pathfinding
- `cell.transparent` - Boolean, affects FOV
---
**Navigation:**
- [[Grid-System]] - Parent page
- [[AI-and-Pathfinding]] - Using FOV and pathfinding for game AI
- [[Grid-Rendering-Pipeline]] - FOV overlay rendering
- [[Entity-Management]] - Entity gridstate and perspective