SIFT, orthogonal ship image detection (lives), colored debug output
Set up a SIFT method and massively upgraded the debug view to look at the image processing outputs in color. TODO: the template matching used for unrotated ship icons and asteroids does not work on missiles.
This commit is contained in:
parent
f497bdd61a
commit
372f250167
111
gamemodel.py
111
gamemodel.py
|
@ -2,9 +2,8 @@ import gameio
|
|||
import cv2
|
||||
import numpy as np
|
||||
|
||||
def squared_distance(vec1, vec2):
|
||||
"""returns distance-squared between two x, y point tuples"""
|
||||
return (vec1[0] - vec2[0])**2 + (vec1[1] - vec2[1])**2
|
||||
from utility import *
|
||||
import pointcluster
|
||||
|
||||
class GameModel:
|
||||
"""Platform-independent representation of the game's state."""
|
||||
|
@ -19,19 +18,21 @@ class GameModel:
|
|||
("ship_off", cv2.imread("images/game_assets/spaceship-off.png", 0)),
|
||||
("ship_on", cv2.imread("images/game_assets/spaceship-on.png", 0))
|
||||
]
|
||||
#self.missile = ("missile", cv2.imread("images/game_assets/missile.png", 0))
|
||||
self.frame = None
|
||||
self.cv_template_thresh = 0.6 # reconfigurable at runtime
|
||||
self.duplicate_dist_thresh = 10
|
||||
self.duplicate_dist_thresh = 36
|
||||
|
||||
def with_frame(fn):
|
||||
"""Decorator to process screenshot to cv2 format once upon first requirement, then reuse."""
|
||||
def inner(self, *args, **kwargs):
|
||||
if self.frame is None:
|
||||
print("Fetching frame.")
|
||||
#print("Fetching frame.")
|
||||
sshot = self.gameio.fetch_sshot()
|
||||
open_cv_image = np.array(sshot)
|
||||
# Convert RGB to BGR
|
||||
self.frame = open_cv_image[:, :, ::-1].copy()
|
||||
self.color_frame = np.copy(self.frame)
|
||||
self.frame = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
|
||||
return fn(self, *args, **kwargs)
|
||||
return inner
|
||||
|
@ -52,32 +53,80 @@ class GameModel:
|
|||
return asteroid_rects
|
||||
|
||||
@with_frame
|
||||
def display_results(self, results):
|
||||
def display_results(self, rects = [], pointsets = [], circles = []):
|
||||
"""Draws results on the current frame for test purposes."""
|
||||
displayable = np.copy(self.frame)
|
||||
for pt, wh, label in results:
|
||||
cv2.rectangle(displayable, pt, wh, 255, 1)
|
||||
displayable = np.copy(self.color_frame)
|
||||
for pt, wh, label in rects:
|
||||
color = { "big": (255, 0, 0),
|
||||
"normal": (0, 255, 0),
|
||||
"small": (0, 0, 255),
|
||||
"missile": (128, 0, 0),
|
||||
"ship_on": (0, 0, 128),
|
||||
"ship_off": (0, 64, 128)}[label]
|
||||
cv2.rectangle(displayable, pt, wh, color, 1)
|
||||
cv2.putText(displayable, label, pt,
|
||||
cv2.FONT_HERSHEY_PLAIN,
|
||||
1.0, 255)
|
||||
1.0, color)
|
||||
for ps in pointsets:
|
||||
color = (0, 255, 255)
|
||||
cv2.polylines(displayable, np.int32([ps]), True, color)
|
||||
|
||||
for center, radius, label in circles:
|
||||
color = (255, 255, 0)
|
||||
cv2.circle(displayable, np.int32(center), int(radius), color, 1)
|
||||
cv2.putText(displayable, label, np.int32(center),
|
||||
cv2.FONT_HERSHEY_PLAIN,
|
||||
1.0, color)
|
||||
|
||||
cv2.imshow("Results", displayable)
|
||||
cv2.waitKey(0)
|
||||
|
||||
@with_frame
|
||||
def find_ships(self):
|
||||
def frame_sift(self):
|
||||
sift = cv2.SIFT_create()
|
||||
frame_kp, frame_desc = sift.detectAndCompute(self.frame, None)
|
||||
kp_desc = [] # list of (keypoints, descriptions) for all ship sprites
|
||||
for label, s in self.ships:
|
||||
kp_desc.append((label, sift.detectAndCompute(s, None)))
|
||||
bf = cv2.BFMatcher(cv2.NORM_L1, crossCheck=True)
|
||||
matchsets = []
|
||||
for label, kpdesc in kp_desc:
|
||||
_, desc = kpdesc
|
||||
matchsets.append((label, bf.match(frame_desc, desc)))
|
||||
return { "matchsets": matchsets,
|
||||
"kp_desc": kp_desc
|
||||
}
|
||||
kp_desc = {} # dict of (keypoints, descriptions) for all ship sprites
|
||||
kp_desc["frame"] = sift.detectAndCompute(self.frame, None)
|
||||
frame_kp, frame_desc = kp_desc["frame"]
|
||||
## for label, s in self.ships:
|
||||
## kp_desc[label] = sift.detectAndCompute(s, None)
|
||||
## bf = cv2.BFMatcher(cv2.NORM_L1, crossCheck=True)
|
||||
## matchsets = {}
|
||||
## for label in kp_desc:
|
||||
## _, desc = kp_desc[label]
|
||||
## matchsets[label] = bf.match(frame_desc, desc)
|
||||
## #return { "matchsets": matchsets,
|
||||
## # "kp_desc": kp_desc
|
||||
## # }
|
||||
ship_rsq = rect_radius_squared(*self.ships[0][1].shape)
|
||||
#print(f"max radius^2: {ship_rsq}")
|
||||
clusters = pointcluster.cluster_set([k.pt for k in frame_kp], sqrt(ship_rsq))
|
||||
|
||||
return clusters
|
||||
|
||||
@with_frame
|
||||
def find_ships(self):
|
||||
ship_rects = []
|
||||
for label, a in self.ships:
|
||||
h, w = a.shape
|
||||
res = cv2.matchTemplate(self.frame, a, cv2.TM_CCOEFF_NORMED)
|
||||
loc = np.where( res >= self.cv_template_thresh)
|
||||
for pt in zip(*loc[::-1]):
|
||||
if not ship_rects or squared_distance(ship_rects[-1][0], pt) > self.duplicate_dist_thresh:
|
||||
ship_rects.append((pt, (pt[0] + w, pt[1] + h), label))
|
||||
return ship_rects
|
||||
|
||||
## @with_frame
|
||||
## def find_missiles(self):
|
||||
## """This technique does not work for the 9x9 pixel missile image."""
|
||||
## missile_rects = []
|
||||
## label, img = self.missile
|
||||
## h, w = img.shape
|
||||
## res = cv2.matchTemplate(self.frame, img, cv2.TM_CCOEFF_NORMED)
|
||||
## loc = np.where( res >= self.cv_template_thresh)
|
||||
## for pt in zip(*loc[::-1]):
|
||||
## if not missile_rects or squared_distance(missile_rects[-1][0], pt) > self.duplicate_dist_thresh:
|
||||
## missile_rects.append((pt, (pt[0] + w, pt[1] + h), label))
|
||||
## return missile_rects
|
||||
|
||||
if __name__ == '__main__':
|
||||
import platform
|
||||
|
@ -99,8 +148,14 @@ if __name__ == '__main__':
|
|||
io.loc = pyscreeze.Box(0, 25, 800, 599)
|
||||
|
||||
#input("Press <enter> to detect asteroids on screen.")
|
||||
results = gm.find_asteroids()
|
||||
print(f"Found {len(results)} asteroids")
|
||||
for a in results:
|
||||
print(a[0]) # position tuple
|
||||
gm.display_results(results)
|
||||
a_results = gm.find_asteroids()
|
||||
print(f"Found {len(a_results)} asteroids")
|
||||
#for a in a_results:
|
||||
# print(a[0]) # position tuple
|
||||
#gm.display_results(results)
|
||||
s_results = gm.frame_sift()
|
||||
ship_results = gm.find_ships()
|
||||
polygons = [c.points for c in s_results]
|
||||
#circles = [(c.center, c.max_distance, f"cluster_{i}") for i, c in enumerate(s_results)]
|
||||
r_circles = [(c.center, sqrt(rect_radius_squared(*gm.ships[0][1].shape)), f"cluster_{i}") for i, c in enumerate(s_results)]
|
||||
gm.display_results(rects=a_results+ship_results, pointsets=polygons, circles=r_circles)
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
from utility import *
|
||||
|
||||
class PointCluster:
|
||||
def __init__(self):
|
||||
self.points = []
|
||||
self.center = (0, 0)
|
||||
self.max_distance = None
|
||||
|
||||
def update(self):
|
||||
if len(self.points) == 0: return
|
||||
self.center = (sum([p[0] for p in self.points]) / len(self.points),
|
||||
sum([p[1] for p in self.points]) / len(self.points))
|
||||
self.max_distance = sqrt(max(
|
||||
[squared_distance(self.center, p) for p in self.points]))
|
||||
|
||||
def add(self, pt):
|
||||
self.points.append(pt)
|
||||
self.update()
|
||||
|
||||
def pop(self):
|
||||
p = self.points.pop(-1)
|
||||
self.update()
|
||||
return p
|
||||
|
||||
def __repr__(self):
|
||||
c = f"({self.center[0]:.1f},{self.center[1]:.1f})"
|
||||
return f"<PointCluster center={c}, {len(self.points)} points>"
|
||||
|
||||
def cluster_set(points, maxradius):
|
||||
"""returns a list of PointCluster objects. Points are fit within circles of maxradius"""
|
||||
clusters = []
|
||||
for pt in points:
|
||||
if len(clusters) == 0:
|
||||
#print("first cluster")
|
||||
clusters.append(PointCluster())
|
||||
clusters[-1].add(pt)
|
||||
continue
|
||||
# add point to its nearest cluster
|
||||
scored_clusters = [(c, squared_distance(pt, c.center)) for c in clusters]
|
||||
scored_clusters.sort(key=lambda i: i[1])
|
||||
winner = scored_clusters[0][0]
|
||||
winner.add(pt)
|
||||
|
||||
# if maxradius constraint was violated, pop the newest point & add new cluster
|
||||
if winner.max_distance > maxradius:
|
||||
#print(f"{winner.max_distance} > {maxradius}; new cluster")
|
||||
winner.pop()
|
||||
clusters.append(PointCluster())
|
||||
clusters[-1].add(pt)
|
||||
|
||||
# refine step - accept centers as fixed, put points in closest center
|
||||
new_clusters = {c.center: PointCluster() for c in clusters}
|
||||
closest = lambda pt: sorted(new_clusters.keys(), key= lambda i: squared_distance(pt, i))[0]
|
||||
for point in points:
|
||||
new_clusters[closest(point)].add(point)
|
||||
#print(clusters)
|
||||
#print(new_clusters.values())
|
||||
return new_clusters.values()
|
|
@ -0,0 +1,9 @@
|
|||
from math import sqrt
|
||||
|
||||
def squared_distance(vec1, vec2):
|
||||
"""returns distance-squared between two x, y point tuples"""
|
||||
return (vec1[0] - vec2[0])**2 + (vec1[1] - vec2[1])**2
|
||||
|
||||
def rect_radius_squared(w, h):
|
||||
"""Returns the radius^2 of the circle inscribed in a rectangle of w * h"""
|
||||
return (w/2)**2 + (h/2)**2
|
Loading…
Reference in New Issue