CVImage class in imagepipeline module.
TODO: remove all image manipulation code from GameModel class. Moving all the OpenCV image manipulation actions to the CVImage class would make the GameModel procedures more legible. TODO: abstract multi-step processes in GameModel class as an ImagePipeline. The purpose is to improve testability by making each manipulation action in CVImage to result in a series of images and data structures.
This commit is contained in:
parent
e0f6a62709
commit
a01dbb4a58
|
@ -0,0 +1,57 @@
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class CVImage:
|
||||||
|
def __init__(self, label="", img=None, iscolor=False):
|
||||||
|
self.label = label
|
||||||
|
self.image = img
|
||||||
|
self.iscolor = iscolor
|
||||||
|
|
||||||
|
def load(self, filename, color=False, label=None):
|
||||||
|
self.image = cv2.imread(filename, int(color))
|
||||||
|
if label: self.label = label
|
||||||
|
|
||||||
|
def copy(self):
|
||||||
|
return np.copy(self.image)
|
||||||
|
|
||||||
|
## def snip(self, point, width_height):
|
||||||
|
## return self.image[self.point[0]:self.point[0]+self.width_height[0],
|
||||||
|
## self.point[1]:self.point[1]+self.width_height[1]]
|
||||||
|
|
||||||
|
def snip(self, rect):
|
||||||
|
assert all((len(rect)==2, len(rect[0])==2, len(rect[1])==2)) #((x,y),(w,h))
|
||||||
|
return self.image[self.rect[0][0]:self.rect[0][1],
|
||||||
|
self.rect[1][0]:self.rect[1][1]]
|
||||||
|
|
||||||
|
def mask(self, rect, mask_color=None, nonmask_color=None):
|
||||||
|
assert all((len(rect)==2, len(rect[0])==2, len(rect[1])==2)) #((x,y),(w,h))
|
||||||
|
if mask_color is None:
|
||||||
|
mask_color = (0, 0, 0) if self.iscolor else 0
|
||||||
|
if nonmask_color is None:
|
||||||
|
nonnmask_color = (255, 255, 255) if self.iscolor else 255
|
||||||
|
mask = np.full(self.image.shape, nonmask_color, dtype=np.uint8)
|
||||||
|
cv2.rectangle(mask, *rect, color=mask_color, thickness=cv2.FILLED)
|
||||||
|
return cv2.bitwise_and(self.image, mask)
|
||||||
|
|
||||||
|
def sift_clusters(self, cluster_radius):
|
||||||
|
sift = cv2.SIFT_create()
|
||||||
|
keypoints, descriptions = sift.detectAndCompute(self.image, None)
|
||||||
|
return pointcluster.cluster_set([k.pt for k in keypoints], cluster_radius)
|
||||||
|
|
||||||
|
def set_blob_params(self, minThreshold = 10, maxThreshold = 200,
|
||||||
|
minArea = None, maxArea = None,
|
||||||
|
minCircularity = None, maxCircularity = None,
|
||||||
|
minConvexity = None, maxConvexity = None,
|
||||||
|
minInertiaRatio = None, maxInertiaRatio = None):
|
||||||
|
p = cv2.SimpleBlobDetector_Params()
|
||||||
|
|
||||||
|
|
||||||
|
def blob_detect(self, params=None):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class ImagePipeline:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue