import gameio import cv2 import numpy as np from functools import wraps from utility import * import pointcluster class GameModel: """Platform-independent representation of the game's state.""" def __init__(self, io:gameio.AbstractGameIO): self.gameio = io self.asteroids = [ ("big", cv2.imread("images/game_assets/rock-big.png", 0)), ("normal", cv2.imread("images/game_assets/rock-normal.png", 0)), ("small", cv2.imread("images/game_assets/rock-small.png", 0)) ] self.ships = [ ("ship_off", cv2.imread("images/game_assets/spaceship-off.png", 0)), ("ship_on", cv2.imread("images/game_assets/spaceship-on.png", 0)) ] #self.missile = ("missile", cv2.imread("images/game_assets/missile.png", 0)) self.frame = None self.prev_frame = None self.color_frame = None self.score_img = None self.lives_img = None self.lives_rect = ((10,10), (190, 65)) self.score_rect = ((600, 25), (780, 65)) self.cv_template_thresh = 0.6 # reconfigurable at runtime self.duplicate_dist_thresh = 36 def with_frame(fn): """Decorator to process screenshot to cv2 format once upon first requirement, then reuse.""" @wraps(fn) def inner(self, *args, **kwargs): if self.frame is None: #print("Fetching frame.") sshot = self.gameio.fetch_sshot() open_cv_image = np.array(sshot) # Convert RGB to BGR self.frame = open_cv_image[:, :, ::-1].copy() self.color_frame = np.copy(self.frame) self.frame = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY) self.mask_frame() return fn(self, *args, **kwargs) return inner ## def with_masking(fn): ## """Decorator to cut lives and score into smaller subimages, and mask them out of self.frame.""" ## @wraps(fn) ## def inner(self, *args, **kwargs): ## if self.score_img is None: ## ## return fn(self, *args, **kwargs) ## return inner def mask_frame(self): self.lives_img = self.frame[self.lives_rect[0][0]:self.lives_rect[0][1], self.lives_rect[1][0]:self.lives_rect[1][1]] lives_mask = np.full(self.frame.shape, 255, dtype=np.uint8) cv2.rectangle(lives_mask, *self.lives_rect, color=0, thickness=cv2.FILLED) self.score_img = self.frame[self.score_rect[0][0]:self.score_rect[0][1], self.score_rect[1][0]:self.score_rect[1][1]] score_mask = np.full(self.frame.shape, 255, dtype=np.uint8) cv2.rectangle(score_mask, *self.score_rect, color = 0, thickness=cv2.FILLED) self.frame = cv2.bitwise_and(self.frame, lives_mask) self.frame = cv2.bitwise_and(self.frame, score_mask) ## print("Displaying images for testing purposes") ## cv2.imshow("Original", self.color_frame) ## cv2.waitKey(0) ## cv2.imshow("Masked", self.frame) ## cv2.waitKey(0) def clear_frame(self): self.prev_frame = frame self.frame = None @with_frame def find_asteroids(self): asteroid_rects = [] for label, a in self.asteroids: h, w = a.shape res = cv2.matchTemplate(self.frame, a, cv2.TM_CCOEFF_NORMED) loc = np.where( res >= self.cv_template_thresh) for pt in zip(*loc[::-1]): if not asteroid_rects or squared_distance(asteroid_rects[-1][0], pt) > self.duplicate_dist_thresh: asteroid_rects.append((pt, (pt[0] + w, pt[1] + h), label)) return asteroid_rects @with_frame def display_results(self, rects = [], pointsets = [], circles = []): """Draws results on the current frame for test purposes.""" displayable = np.copy(self.color_frame) cv2.rectangle(displayable, *self.lives_rect, (255,255,255), 1) cv2.rectangle(displayable, *self.score_rect, (255,255,255), 1) #else: # displayable = np.copy(self.color_frame) for pt, wh, label in rects: color = { "big": (255, 0, 0), "normal": (0, 255, 0), "small": (0, 0, 255), "missile": (0, 255, 128), "ship_on": (0, 0, 128), "ship_off": (0, 64, 128)}[label] cv2.rectangle(displayable, pt, wh, color, 1) cv2.putText(displayable, label, pt, cv2.FONT_HERSHEY_PLAIN, 1.0, color) for ps in pointsets: color = (0, 255, 255) cv2.polylines(displayable, np.int32([ps]), True, color) for center, radius, label in circles: color = (255, 255, 0) cv2.circle(displayable, np.int32(center), int(radius), color, 1) cv2.putText(displayable, label, np.int32(center), cv2.FONT_HERSHEY_PLAIN, 1.0, color) cv2.imshow("Results", displayable) cv2.waitKey(0) @with_frame def frame_sift(self): sift = cv2.SIFT_create() kp_desc = {} # dict of (keypoints, descriptions) for all ship sprites kp_desc["frame"] = sift.detectAndCompute(self.frame, None) frame_kp, frame_desc = kp_desc["frame"] ## for label, s in self.ships: ## kp_desc[label] = sift.detectAndCompute(s, None) ## bf = cv2.BFMatcher(cv2.NORM_L1, crossCheck=True) ## matchsets = {} ## for label in kp_desc: ## _, desc = kp_desc[label] ## matchsets[label] = bf.match(frame_desc, desc) ## #return { "matchsets": matchsets, ## # "kp_desc": kp_desc ## # } ship_rsq = rect_radius_squared(*self.ships[0][1].shape) * 0.85 #print(f"max radius^2: {ship_rsq}") clusters = pointcluster.cluster_set([k.pt for k in frame_kp], sqrt(ship_rsq)) return clusters @with_frame def find_ships(self): ship_rects = [] for label, a in self.ships: h, w = a.shape res = cv2.matchTemplate(self.frame, a, cv2.TM_CCOEFF_NORMED) loc = np.where( res >= self.cv_template_thresh) for pt in zip(*loc[::-1]): if not ship_rects or squared_distance(ship_rects[-1][0], pt) > self.duplicate_dist_thresh: ship_rects.append((pt, (pt[0] + w, pt[1] + h), label)) return ship_rects @with_frame def find_missiles(self): # Setup SimpleBlobDetector parameters. params = cv2.SimpleBlobDetector_Params() # Change thresholds params.minThreshold = 10; params.maxThreshold = 200; # Filter by Area. params.filterByArea = True #params.minArea = 1500 params.maxArea = 100 # Filter by Circularity #params.filterByCircularity = True #params.minCircularity = 0.1 # Filter by Convexity params.filterByConvexity = True params.minConvexity = 0.95 # Filter by Inertia params.filterByInertia = True params.minInertiaRatio = 0.4 detector = cv2.SimpleBlobDetector_create(params) keypoints = detector.detect(cv2.bitwise_not(self.frame)) # inverted black/white frame #im_with_keypoints = cv2.drawKeypoints(self.frame, keypoints, np.array([]), # (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) #cv2.imshow("keypoints", im_with_keypoints) #cv2.waitKey(0) s = 9 # pixels for the missile rect_tuple = lambda pt: ((int(pt[0]-s/2),int(pt[1]-s/2)), (int(pt[0]+s/2), int(pt[1]+s/2)), "missile") return [rect_tuple(k.pt) for k in keypoints] def analyse_frame(self): rocks = self.find_asteroids() #lives = self.find_ships() shots = self.find_missiles() clusters = self.frame_sift() labeled_objects = rocks + shots mystery_clusters = [] # TODO: remove these comprehensions and document pretty utility functions. easy_find = lambda cluster: any( [(not cluster.max_distance or cluster.max_distance < max(lo[1][0] - lo[0][0], lo[1][1] - lo[0][1])) and point_in_rect(cluster.center, (lo[0], lo[1])) for lo in labeled_objects]) hard_find = lambda cluster: any( [(not cluster.max_distance or cluster.max_distance < max(lo[1][0] - lo[0][0], lo[1][1] - lo[0][1])) and all([point_in_rect(p, (lo[0], lo[1])) for p in cluster.points]) for lo in labeled_objects]) # Allow me to explain/apologize. ## The first term (cluster.max_distance < ...) stops big point clusters from ## being regarded as smalll objects. (Player ship being matched "inside" a missile) ## The second term (point_in_rect(...)) checks for a "cluster" inside a "rect". ## easy_find just checks the center. ## hard_find checks every point, in case the center is off. for i, c in enumerate(clusters): #if easy_find(c): continue if hard_find(c): continue mystery_clusters.append(c) r_circles = [(c.center, c.max_distance or 5, f"mystery_{i}") for i, c in enumerate(mystery_clusters)] gm.display_results(rects=labeled_objects, circles=r_circles) if __name__ == '__main__': import platform if platform.system() == "Windows": io = gameio.WindowsGameIO() # TODO: Detect OSX or show a message of sadness else: io = gameio.LinuxGameIO() #input("Press to locate the game at the start screen.") gm = GameModel(io) # for testing purposes, populating window location at top-left of my screen # io.loc is None when the title screen isn't found. # manually setting io.loc crops all screenshots as if the title was found. import pyscreeze io.loc = pyscreeze.Box(0, 25, 800, 599) from pprint import pprint #input("Press to detect asteroids on screen.") a_results = gm.find_asteroids() print(f"Found {len(a_results)} asteroids") #for a in a_results: # print(a[0]) # position tuple #gm.display_results(results) s_results = gm.frame_sift() ship_results = gm.find_ships() polygons = [c.points for c in s_results] ##circles = [(c.center, c.max_distance, f"cluster_{i}") for i, c in enumerate(s_results)] r_circles = [(c.center, sqrt(rect_radius_squared(*gm.ships[0][1].shape)), f"cluster_{i}") for i, c in enumerate(s_results)] missile_results = gm.find_missiles() ##m_circles = [(pt, 10, f"missile_{i}") for i, pt in enumerate(missiles)] ##pprint(a_results+ship_results+missile_results) gm.display_results(rects=a_results+ship_results+missile_results, pointsets=polygons, circles=r_circles) gm.analyse_frame()