import cv2 import numpy as np class CVImage: def __init__(self, label="", img=None, color=False, **kwargs): self.label = label self.image = img self.iscolor = color if kwargs: kwargs["color"] = color self.load(**kwargs) def load(self, filename, color=False, label=None): self.image = cv2.imread(filename, int(color)) if label: self.label = label return self def copy(self): return np.copy(self.image) def snip(self, rect): assert all((len(rect)==2, len(rect[0])==2, len(rect[1])==2)) #((x,y),(w,h)) return self.image[rect[0][0]:rect[1][0], rect[0][1]:rect[1][1]] def mask(self, rect, mask_color=None, nonmask_color=None): assert all((len(rect)==2, len(rect[0])==2, len(rect[1])==2)) #((x,y),(w,h)) if mask_color is None: mask_color = (0, 0, 0) if self.iscolor else 0 if nonmask_color is None: nonnmask_color = (255, 255, 255) if self.iscolor else 255 mask = np.full(self.image.shape, nonmask_color, dtype=np.uint8) cv2.rectangle(mask, *rect, color=mask_color, thickness=cv2.FILLED) return cv2.bitwise_and(self.image, mask) def sift_clusters(self, cluster_radius): sift = cv2.SIFT_create() keypoints, descriptions = sift.detectAndCompute(self.image, None) return pointcluster.cluster_set([k.pt for k in keypoints], cluster_radius) def blob_params(self, minThreshold = 10, maxThreshold = 200, minArea = None, maxArea = None, minCircularity = None, maxCircularity = None, minConvexity = None, maxConvexity = None, minInertiaRatio = None, maxInertiaRatio = None): p = cv2.SimpleBlobDetector_Params() p.minThreshold = minThreshold p.maxThreshold = maxThreshold if minArea or maxArea: p.filterByArea = True if minArea: p.minArea = minArea if maxArea: p.maxArea = maxArea if minConvexity or maxConvexity: p.filterByConvexity = True if minConvexity: p.minConvexity = minConvexity if maxConvexity: p.maxConvexity = maxConvexity if minInertiaRatio or maxInertiaRatio: p.filterByInertiaRatio = True if minInertiaRatio: p.minInertiaRatio = minInertiaRatio if maxInertiaRatio: p.maxInertiaRatio = maxInertiaRatio if minCircularity or maxCircularity: p.filterByCircularity = True if minCircularity: p.minCircularity = minCircularity if maxCircularity: p.maxCircularity = maxCircularity return p def blob_detect(self, params=None, invert=False): if params is None: params = self.blob_params() detector = cv2.SimpleBlobDetector_create(params) return detector.detect(cv2.bitwise_not(self.image) if invert else self.image) def show(self, delay=0): cv2.imshow(self.label, self.image) cv2.waitKey(delay) class ImagePipeline: def __init__(self): pass