215 lines
8.6 KiB
Python
215 lines
8.6 KiB
Python
import cv2
|
|
import numpy as np
|
|
import typing
|
|
import pointcluster
|
|
|
|
class Rect:
|
|
def __init__(self, *args, label=None, **kwargs):
|
|
if len(args) == 4 and all([type(i) is int or type(i) is float for i in args]):
|
|
self.x, self.y, self.w, self.h = args
|
|
elif len(args) == 2 and all([type(i) is tuple and len(i) == 2 and all([type(j) is int or type(j) is float for j in i]) for i in args]):
|
|
xy, wh = self.args
|
|
self.x, self.y = xy
|
|
self.w, self.h = wh
|
|
elif all([k in kwargs for k in ("x", "y", "w", "h")]):
|
|
self.x = kwargs["x"]
|
|
self.y = kwargs["y"]
|
|
self.w = kwargs["w"]
|
|
self.h = kwargs["h"]
|
|
elif all([k in kwargs for k in ("x", "y", "x2", "y2")]):
|
|
self.x = kwargs["x"]
|
|
self.y = kwargs["y"]
|
|
self.w = kwargs["x2"] - self.x
|
|
self.h = kwargs["y2"] - self.y
|
|
elif all([k in kwargs for k in ("x1", "y1", "x2", "y2")]):
|
|
self.x = kwargs["x1"]
|
|
self.y = kwargs["y1"]
|
|
self.w = kwargs["x2"] - self.x
|
|
self.h = kwargs["y2"] - self.y
|
|
else:
|
|
raise RuntimeError("Rect requires 4 values: two coordinates or a coordinate plus width and height.")
|
|
self.label = label
|
|
|
|
def __repr__(self):
|
|
return f"<Rect label={repr(self.label)}, (({self.x}, {self.y}), ({self.w}, {self.h}))>"
|
|
|
|
def __iter__(self):
|
|
yield (self.x, self.y)
|
|
yield (self.w, self.h)
|
|
|
|
def __getitem__(self, i):
|
|
if i == 0: return (self.x, self.y)
|
|
elif i == 1: return (self.w, self.h)
|
|
else: raise IndexError("Rect only supports index of 0 or 1.")
|
|
|
|
def __setitem__(self, i, value):
|
|
assert i in (0, 1) and len(value) == 2
|
|
if not i: self.x, self.y = value
|
|
else: self.w, self.h = value
|
|
|
|
@property
|
|
def point(self):
|
|
return (self.x, self.y)
|
|
|
|
@property
|
|
def point2(self):
|
|
return (self.x + self.w, self.y + self.h)
|
|
|
|
class CVImage:
|
|
"""Dummy definition to allow recursive type hints"""
|
|
pass
|
|
|
|
class CVImage:
|
|
def __init__(self, label="", img:np.ndarray=None, color:bool=False, **kwargs):
|
|
"""You can provide a 'filename' keyword arg to automatically load a file."""
|
|
self.label = label
|
|
self.image = img
|
|
self.iscolor = color
|
|
self._init_kwargs = kwargs
|
|
if kwargs:
|
|
load_kwargs = dict(kwargs) # copy
|
|
load_kwargs["color"] = color # share arg between both functions
|
|
self.load(**load_kwargs)
|
|
|
|
def load(self, filename:str, color:bool=False, label:str=None):
|
|
"""Load an image from file. You can optionally set the 'label' keyword."""
|
|
self.image = cv2.imread(filename, int(color))
|
|
if label: self.label = label
|
|
return self
|
|
|
|
def from_pil(self, pil_img, color=False):
|
|
self.image = np.array(pil_img)
|
|
self.image = self.image[:, :, ::-1].copy()
|
|
self.color = None # force check in cv2.cvtColor
|
|
self.image = self.convert_color(color)
|
|
|
|
def convert_color(self, color:bool):
|
|
if color == self.iscolor: return self.image
|
|
return cv2.cvtColor(self.image, cv2.COLOR_GRAY2BGR if color else cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
def __repr__(self):
|
|
if self._init_kwargs:
|
|
kwargstr = ", " + ", ".join([f"{k}={repr(self._init_kwargs[k])}" for k in self._init_kwargs])
|
|
else:
|
|
kwargstr = ''
|
|
return f"<CVImage label={repr(self.label)}, image={self.image.shape} px, iscolor={self.iscolor}{kwargstr}>"
|
|
|
|
def copy(self):
|
|
return np.copy(self.image)
|
|
|
|
def snip(self, rect):
|
|
assert all((len(rect)==2, len(rect[0])==2, len(rect[1])==2)) #((x,y),(w,h))
|
|
return self.image[rect[0][1]:rect[0][1]+rect[1][1],
|
|
rect[0][0]:rect[0][0]+rect[1][0]
|
|
]
|
|
|
|
def mask(self, rect, mask_color=None, nonmask_color=None):
|
|
assert all((len(rect)==2, len(rect[0])==2, len(rect[1])==2)) #((x,y),(w,h))
|
|
if mask_color is None:
|
|
mask_color = (0, 0, 0) if self.iscolor else 0
|
|
if nonmask_color is None:
|
|
nonnmask_color = (255, 255, 255) if self.iscolor else 255
|
|
mask = np.full(self.image.shape, nonmask_color, dtype=np.uint8)
|
|
cv2.rectangle(mask, *rect, color=mask_color, thickness=cv2.FILLED)
|
|
return cv2.bitwise_and(self.image, mask)
|
|
|
|
def sift_clusters(self, cluster_radius) -> pointcluster.PointCluster:
|
|
sift = cv2.SIFT_create()
|
|
keypoints, descriptions = sift.detectAndCompute(self.image, None)
|
|
return pointcluster.cluster_set([k.pt for k in keypoints], cluster_radius)
|
|
|
|
@staticmethod
|
|
def blob_params(cls, *, minThreshold = 10, maxThreshold = 200,
|
|
minArea = None, maxArea = None,
|
|
minCircularity = None, maxCircularity = None,
|
|
minConvexity = None, maxConvexity = None,
|
|
minInertiaRatio = None, maxInertiaRatio = None):
|
|
p = cv2.SimpleBlobDetector_Params()
|
|
p.minThreshold = minThreshold
|
|
p.maxThreshold = maxThreshold
|
|
if minArea or maxArea:
|
|
p.filterByArea = True
|
|
if minArea: p.minArea = minArea
|
|
if maxArea: p.maxArea = maxArea
|
|
if minConvexity or maxConvexity:
|
|
p.filterByConvexity = True
|
|
if minConvexity: p.minConvexity = minConvexity
|
|
if maxConvexity: p.maxConvexity = maxConvexity
|
|
if minInertiaRatio or maxInertiaRatio:
|
|
p.filterByInertiaRatio = True
|
|
if minInertiaRatio: p.minInertiaRatio = minInertiaRatio
|
|
if maxInertiaRatio: p.maxInertiaRatio = maxInertiaRatio
|
|
if minCircularity or maxCircularity:
|
|
p.filterByCircularity = True
|
|
if minCircularity: p.minCircularity = minCircularity
|
|
if maxCircularity: p.maxCircularity = maxCircularity
|
|
return p
|
|
|
|
def blob_detect(self, size:int, params=None, invert:bool=False, label:str=None) -> typing.List[Rect]:
|
|
if params is None: params = CVImage.blob_params()
|
|
detector = cv2.SimpleBlobDetector_create(params)
|
|
keypoints = detector.detect(cv2.bitwise_not(self.image) if invert else self.image)
|
|
rects = []
|
|
s = size / 2.0
|
|
for kp in keypoints:
|
|
rects.append(Rect(x=kp.pt[0] - s, y = kp.pt[1] - s,
|
|
w = size, h = size,
|
|
label = label or "blob"))
|
|
return rects
|
|
|
|
def template_detect(self, template:CVImage, threshold:int, dupe_spacing:int) -> typing.List[Rect]:
|
|
h, w = template.image.shape
|
|
res = cv2.matchTemplate(self.image, template.image, cv2.TM_CCOEFF_NORMED)
|
|
loc = np.where(rec >= threshold)
|
|
rects = []
|
|
for pt in zip(*loc[::-1]):
|
|
if len(rects) > 0:
|
|
if squared_distance(rects[-1][0], pt) < dupe_spacing: continue
|
|
rects.append(Rect(*pt, w, h, label=template.label))
|
|
|
|
def show(self, delay=0):
|
|
cv2.imshow(self.label, self.image)
|
|
cv2.waitKey(delay)
|
|
|
|
def draw_rect(self, rect:Rect, color=None, text_color=None, text:bool=True, thickness=1):
|
|
if color is None:
|
|
color = (255, 255, 255) if self.iscolor else 255
|
|
cv2.rectangle(self.image, rect.point, rect.point2, color, thickness)
|
|
if text:
|
|
self.draw_text(rect.label, rect.point, text_color if text_color else color)
|
|
|
|
def draw_poly(self, points:typing.List[typing.Tuple], closed=True, color=None):
|
|
if color is None:
|
|
color = (255, 255, 255) if self.iscolor else 255
|
|
cv2.polylines(self.image, np.int32([points]), closed, color)
|
|
|
|
def draw_circle(self, center, radius, thickness = 1):
|
|
if color is None:
|
|
color = (255, 255, 255) if self.iscolor else 255
|
|
cv2.circle(self.image, np.int32(center), radius, color, thickness)
|
|
|
|
def draw_text(self, text, point, color):
|
|
cv2.putText(self.image, text, np.int32(point), cv2.FONT_HERSHEY_PLAIN, 1.0, color)
|
|
|
|
|
|
class ImagePipeline:
|
|
def __init__(self):
|
|
pass
|
|
|
|
# running this module executes tests
|
|
if __name__ == '__main__':
|
|
# initializer for CVImage can load from file
|
|
img = CVImage("test frame", filename="/home/john/Desktop/Screenshot at 2021-12-19 20-55-22.png")
|
|
#img.show()
|
|
# initializer for CVImage can accept a numpy array
|
|
img_no_title = CVImage("test frame", img.snip( ((0,24),(800,600)) ))
|
|
#img_no_title.show()
|
|
|
|
#standard rectangle format used throughout the class, avoiding ugly splat operator
|
|
lives_rect = ((10,10), (190, 65))
|
|
lives = CVImage("lives", img_no_title.snip(lives_rect))
|
|
lives.show()
|
|
|
|
|