asteroid-automator/gamemodel.py

273 lines
11 KiB
Python

import gameio
import cv2
import numpy as np
from functools import wraps
from utility import *
import pointcluster
class GameModel:
"""Platform-independent representation of the game's state."""
def __init__(self, io:gameio.AbstractGameIO):
self.gameio = io
self.asteroids = [
("big", cv2.imread("images/game_assets/rock-big.png", 0)),
("normal", cv2.imread("images/game_assets/rock-normal.png", 0)),
("small", cv2.imread("images/game_assets/rock-small.png", 0))
]
self.ships = [
("ship_off", cv2.imread("images/game_assets/spaceship-off.png", 0)),
("ship_on", cv2.imread("images/game_assets/spaceship-on.png", 0))
]
#self.missile = ("missile", cv2.imread("images/game_assets/missile.png", 0))
self.frame = None
self.prev_frame = None
self.color_frame = None
self.score_img = None
self.lives_img = None
self.lives_rect = ((10,10), (190, 65))
self.score_rect = ((600, 25), (780, 65))
self.cv_template_thresh = 0.6 # reconfigurable at runtime
self.duplicate_dist_thresh = 36
def with_frame(fn):
"""Decorator to process screenshot to cv2 format once upon first requirement, then reuse."""
@wraps(fn)
def inner(self, *args, **kwargs):
if self.frame is None:
#print("Fetching frame.")
sshot = self.gameio.fetch_sshot()
open_cv_image = np.array(sshot)
# Convert RGB to BGR
self.frame = open_cv_image[:, :, ::-1].copy()
self.color_frame = np.copy(self.frame)
self.frame = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)
self.mask_frame()
return fn(self, *args, **kwargs)
return inner
## def with_masking(fn):
## """Decorator to cut lives and score into smaller subimages, and mask them out of self.frame."""
## @wraps(fn)
## def inner(self, *args, **kwargs):
## if self.score_img is None:
##
## return fn(self, *args, **kwargs)
## return inner
def mask_frame(self):
self.lives_img = self.frame[self.lives_rect[0][0]:self.lives_rect[0][1],
self.lives_rect[1][0]:self.lives_rect[1][1]]
lives_mask = np.full(self.frame.shape, 255, dtype=np.uint8)
cv2.rectangle(lives_mask,
*self.lives_rect,
color=0, thickness=cv2.FILLED)
self.score_img = self.frame[self.score_rect[0][0]:self.score_rect[0][1],
self.score_rect[1][0]:self.score_rect[1][1]]
score_mask = np.full(self.frame.shape, 255, dtype=np.uint8)
cv2.rectangle(score_mask,
*self.score_rect,
color = 0, thickness=cv2.FILLED)
self.frame = cv2.bitwise_and(self.frame, lives_mask)
self.frame = cv2.bitwise_and(self.frame, score_mask)
## print("Displaying images for testing purposes")
## cv2.imshow("Original", self.color_frame)
## cv2.waitKey(0)
## cv2.imshow("Masked", self.frame)
## cv2.waitKey(0)
def clear_frame(self):
self.prev_frame = frame
self.frame = None
@with_frame
def find_asteroids(self):
asteroid_rects = []
for label, a in self.asteroids:
h, w = a.shape
res = cv2.matchTemplate(self.frame, a, cv2.TM_CCOEFF_NORMED)
loc = np.where( res >= self.cv_template_thresh)
for pt in zip(*loc[::-1]):
if not asteroid_rects or squared_distance(asteroid_rects[-1][0], pt) > self.duplicate_dist_thresh:
asteroid_rects.append((pt, (pt[0] + w, pt[1] + h), label))
return asteroid_rects
@with_frame
def display_results(self, rects = [], pointsets = [], circles = []):
"""Draws results on the current frame for test purposes."""
displayable = np.copy(self.color_frame)
cv2.rectangle(displayable, *self.lives_rect, (255,255,255), 1)
cv2.rectangle(displayable, *self.score_rect, (255,255,255), 1)
#else:
# displayable = np.copy(self.color_frame)
for pt, wh, label in rects:
color = { "big": (255, 0, 0),
"normal": (0, 255, 0),
"small": (0, 0, 255),
"missile": (0, 255, 128),
"ship_on": (0, 0, 128),
"ship_off": (0, 64, 128)}[label]
cv2.rectangle(displayable, pt, wh, color, 1)
cv2.putText(displayable, label, pt,
cv2.FONT_HERSHEY_PLAIN,
1.0, color)
for ps in pointsets:
color = (0, 255, 255)
cv2.polylines(displayable, np.int32([ps]), True, color)
for center, radius, label in circles:
color = (255, 255, 0)
cv2.circle(displayable, np.int32(center), int(radius), color, 1)
cv2.putText(displayable, label, np.int32(center),
cv2.FONT_HERSHEY_PLAIN,
1.0, color)
cv2.imshow("Results", displayable)
cv2.waitKey(0)
@with_frame
def frame_sift(self):
sift = cv2.SIFT_create()
kp_desc = {} # dict of (keypoints, descriptions) for all ship sprites
kp_desc["frame"] = sift.detectAndCompute(self.frame, None)
frame_kp, frame_desc = kp_desc["frame"]
## for label, s in self.ships:
## kp_desc[label] = sift.detectAndCompute(s, None)
## bf = cv2.BFMatcher(cv2.NORM_L1, crossCheck=True)
## matchsets = {}
## for label in kp_desc:
## _, desc = kp_desc[label]
## matchsets[label] = bf.match(frame_desc, desc)
## #return { "matchsets": matchsets,
## # "kp_desc": kp_desc
## # }
ship_rsq = rect_radius_squared(*self.ships[0][1].shape) * 0.85
#print(f"max radius^2: {ship_rsq}")
clusters = pointcluster.cluster_set([k.pt for k in frame_kp], sqrt(ship_rsq))
return clusters
@with_frame
def find_ships(self):
ship_rects = []
for label, a in self.ships:
h, w = a.shape
res = cv2.matchTemplate(self.frame, a, cv2.TM_CCOEFF_NORMED)
loc = np.where( res >= self.cv_template_thresh)
for pt in zip(*loc[::-1]):
if not ship_rects or squared_distance(ship_rects[-1][0], pt) > self.duplicate_dist_thresh:
ship_rects.append((pt, (pt[0] + w, pt[1] + h), label))
return ship_rects
@with_frame
def find_missiles(self):
# Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
# Change thresholds
params.minThreshold = 10;
params.maxThreshold = 200;
# Filter by Area.
params.filterByArea = True
#params.minArea = 1500
params.maxArea = 100
# Filter by Circularity
#params.filterByCircularity = True
#params.minCircularity = 0.1
# Filter by Convexity
params.filterByConvexity = True
params.minConvexity = 0.95
# Filter by Inertia
params.filterByInertia = True
params.minInertiaRatio = 0.4
detector = cv2.SimpleBlobDetector_create(params)
keypoints = detector.detect(cv2.bitwise_not(self.frame)) # inverted black/white frame
#im_with_keypoints = cv2.drawKeypoints(self.frame, keypoints, np.array([]),
# (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
#cv2.imshow("keypoints", im_with_keypoints)
#cv2.waitKey(0)
s = 9 # pixels for the missile
rect_tuple = lambda pt: ((int(pt[0]-s/2),int(pt[1]-s/2)),
(int(pt[0]+s/2), int(pt[1]+s/2)),
"missile")
return [rect_tuple(k.pt) for k in keypoints]
def analyse_frame(self):
rocks = self.find_asteroids()
#lives = self.find_ships()
shots = self.find_missiles()
clusters = self.frame_sift()
labeled_objects = rocks + shots
mystery_clusters = []
# TODO: remove these comprehensions and document pretty utility functions.
easy_find = lambda cluster: any(
[(not cluster.max_distance or cluster.max_distance < max(lo[1][0] - lo[0][0], lo[1][1] - lo[0][1]))
and point_in_rect(cluster.center, (lo[0], lo[1]))
for lo in labeled_objects])
hard_find = lambda cluster: any(
[(not cluster.max_distance or cluster.max_distance < max(lo[1][0] - lo[0][0], lo[1][1] - lo[0][1]))
and all([point_in_rect(p, (lo[0], lo[1]))
for p in cluster.points])
for lo in labeled_objects])
# Allow me to explain/apologize.
## The first term (cluster.max_distance < ...) stops big point clusters from
## being regarded as smalll objects. (Player ship being matched "inside" a missile)
## The second term (point_in_rect(...)) checks for a "cluster" inside a "rect".
## easy_find just checks the center.
## hard_find checks every point, in case the center is off.
for i, c in enumerate(clusters):
#if easy_find(c): continue
if hard_find(c): continue
mystery_clusters.append(c)
r_circles = [(c.center, c.max_distance or 5, f"mystery_{i}") for i, c in enumerate(mystery_clusters)]
gm.display_results(rects=labeled_objects, circles=r_circles)
if __name__ == '__main__':
import platform
if platform.system() == "Windows":
io = gameio.WindowsGameIO()
# TODO: Detect OSX or show a message of sadness
else:
io = gameio.LinuxGameIO()
#input("Press <enter> to locate the game at the start screen.")
gm = GameModel(io)
# for testing purposes, populating window location at top-left of my screen
# io.loc is None when the title screen isn't found.
# manually setting io.loc crops all screenshots as if the title was found.
import pyscreeze
io.loc = pyscreeze.Box(0, 25, 800, 599)
from pprint import pprint
#input("Press <enter> to detect asteroids on screen.")
a_results = gm.find_asteroids()
print(f"Found {len(a_results)} asteroids")
#for a in a_results:
# print(a[0]) # position tuple
#gm.display_results(results)
s_results = gm.frame_sift()
ship_results = gm.find_ships()
polygons = [c.points for c in s_results]
##circles = [(c.center, c.max_distance, f"cluster_{i}") for i, c in enumerate(s_results)]
r_circles = [(c.center, sqrt(rect_radius_squared(*gm.ships[0][1].shape)), f"cluster_{i}") for i, c in enumerate(s_results)]
missile_results = gm.find_missiles()
##m_circles = [(pt, 10, f"missile_{i}") for i, pt in enumerate(missiles)]
##pprint(a_results+ship_results+missile_results)
gm.display_results(rects=a_results+ship_results+missile_results, pointsets=polygons, circles=r_circles)
gm.analyse_frame()