feat: Add action parser and executor for LLM agent actions

ActionParser: Extracts structured actions from LLM text responses
- Regex patterns for GO, WAIT, LOOK, TAKE, DROP, PUSH, USE, etc.
- Direction normalization (N→NORTH, UP→NORTH)
- Handles "Action: GO EAST" and fallback patterns
- 12 unit tests covering edge cases

ActionExecutor: Executes parsed actions in the game world
- Movement with collision detection (walls, entities)
- Boundary checking
- ActionResult with path data for animation replay

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
John McCardle 2025-12-14 12:53:39 -05:00
parent e45760c2ac
commit 2890528e21
3 changed files with 468 additions and 0 deletions

View File

@ -0,0 +1,136 @@
"""
Action Executor for McRogueFace
===============================
Executes parsed actions in the game world.
Handles movement, collision detection, and action results.
"""
from dataclasses import dataclass
from typing import Optional, List, Tuple
from action_parser import Action, ActionType
@dataclass
class ActionResult:
success: bool
message: str
new_position: Optional[Tuple[int, int]] = None
path: Optional[List[Tuple[int, int]]] = None # For animation replay
class ActionExecutor:
"""Execute actions in the McRogueFace game world."""
# Direction vectors
DIRECTION_VECTORS = {
'NORTH': (0, -1),
'SOUTH': (0, 1),
'EAST': (1, 0),
'WEST': (-1, 0),
}
def __init__(self, grid):
"""
Initialize executor with a grid reference.
Args:
grid: mcrfpy.Grid instance
"""
self.grid = grid
def execute(self, agent, action: Action) -> ActionResult:
"""
Execute an action for an agent.
Args:
agent: Agent wrapper with .entity attribute
action: Parsed Action to execute
Returns:
ActionResult with success status and message
"""
handlers = {
ActionType.GO: self._execute_go,
ActionType.WAIT: self._execute_wait,
ActionType.LOOK: self._execute_look,
ActionType.TAKE: self._execute_take,
ActionType.DROP: self._execute_drop,
ActionType.INVALID: self._execute_invalid,
}
handler = handlers.get(action.type, self._execute_unimplemented)
return handler(agent, action)
def _execute_go(self, agent, action: Action) -> ActionResult:
"""Execute movement in a direction."""
if not action.args or not action.args[0]:
return ActionResult(False, "No direction specified")
direction = action.args[0]
if direction not in self.DIRECTION_VECTORS:
return ActionResult(False, f"Invalid direction: {direction}")
dx, dy = self.DIRECTION_VECTORS[direction]
# Get current position
current_x, current_y = int(agent.entity.pos[0]), int(agent.entity.pos[1])
new_x, new_y = current_x + dx, current_y + dy
# Check bounds
grid_w, grid_h = self.grid.grid_size
if not (0 <= new_x < grid_w and 0 <= new_y < grid_h):
return ActionResult(False, f"Cannot go {direction} - edge of map")
# Check walkability
target_cell = self.grid.at(new_x, new_y)
if not target_cell.walkable:
return ActionResult(False, f"Cannot go {direction} - path blocked")
# Check for entity collision (optional - depends on game rules)
for entity in self.grid.entities:
if entity is agent.entity:
continue
ex, ey = int(entity.pos[0]), int(entity.pos[1])
if ex == new_x and ey == new_y:
return ActionResult(False, f"Cannot go {direction} - someone is there")
# Execute movement
agent.entity.pos = (new_x, new_y)
return ActionResult(
success=True,
message=f"Moved {direction.lower()} to ({new_x}, {new_y})",
new_position=(new_x, new_y),
path=[(current_x, current_y), (new_x, new_y)]
)
def _execute_wait(self, agent, action: Action) -> ActionResult:
"""Execute wait action (no-op)."""
return ActionResult(True, "Waited and observed surroundings")
def _execute_look(self, agent, action: Action) -> ActionResult:
"""Execute look action - returns enhanced observation."""
target = action.args[0] if action.args else None
if target:
return ActionResult(True, f"Examined {target} closely")
return ActionResult(True, "Looked around carefully")
def _execute_take(self, agent, action: Action) -> ActionResult:
"""Execute take action (placeholder)."""
item = action.args[0] if action.args else "unknown"
# TODO: Implement inventory system
return ActionResult(False, f"Cannot take {item} - not implemented yet")
def _execute_drop(self, agent, action: Action) -> ActionResult:
"""Execute drop action (placeholder)."""
item = action.args[0] if action.args else "unknown"
return ActionResult(False, f"Cannot drop {item} - not implemented yet")
def _execute_invalid(self, agent, action: Action) -> ActionResult:
"""Handle invalid/unparseable action."""
return ActionResult(False, f"Could not understand action: {action.args[0]}")
def _execute_unimplemented(self, agent, action: Action) -> ActionResult:
"""Handle unimplemented action types."""
return ActionResult(False, f"Action {action.type.value} not yet implemented")

View File

@ -0,0 +1,118 @@
"""
Action Parser for LLM Agent Responses
=====================================
Extracts structured actions from free-form LLM text responses.
Handles variations like "Action: GO EAST", "I'll go east", "GO E", etc.
"""
import re
from dataclasses import dataclass
from typing import Optional, Tuple, Any
from enum import Enum
class ActionType(Enum):
GO = "GO"
WAIT = "WAIT"
LOOK = "LOOK"
TAKE = "TAKE"
DROP = "DROP"
PUSH = "PUSH"
USE = "USE"
OPEN = "OPEN"
CLOSE = "CLOSE"
ANNOUNCE = "ANNOUNCE"
SPEAK = "SPEAK"
INVALID = "INVALID"
@dataclass
class Action:
type: ActionType
args: Tuple[Any, ...] = ()
raw_match: str = ""
class ActionParser:
"""Parse LLM responses into structured actions."""
# Direction normalization
DIRECTIONS = {
'N': 'NORTH', 'S': 'SOUTH', 'E': 'EAST', 'W': 'WEST',
'NORTH': 'NORTH', 'SOUTH': 'SOUTH', 'EAST': 'EAST', 'WEST': 'WEST',
'UP': 'NORTH', 'DOWN': 'SOUTH', 'LEFT': 'WEST', 'RIGHT': 'EAST',
}
# Patterns ordered by specificity (most specific first)
PATTERNS = [
# Explicit "Action: X" format (preferred)
(ActionType.GO, r'Action:\s*GO\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
(ActionType.WAIT, r'Action:\s*WAIT\b', 0),
(ActionType.LOOK, r'Action:\s*LOOK(?:\s+AT\s+(\w+))?\b', 1),
(ActionType.TAKE, r'Action:\s*TAKE\s+(\w+)', 1),
(ActionType.DROP, r'Action:\s*DROP\s+(\w+)', 1),
(ActionType.PUSH, r'Action:\s*PUSH\s+(\w+)\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)', 2),
(ActionType.USE, r'Action:\s*USE\s+(\w+)(?:\s+ON\s+(\w+))?', 2),
(ActionType.OPEN, r'Action:\s*OPEN\s+(\w+)', 1),
(ActionType.CLOSE, r'Action:\s*CLOSE\s+(\w+)', 1),
(ActionType.ANNOUNCE, r'Action:\s*ANNOUNCE\s+["\'](.+?)["\']', 1),
(ActionType.SPEAK, r'Action:\s*SPEAK\s+["\'](.+?)["\']', 1),
# Fallback patterns (less strict)
(ActionType.GO, r'\bGO\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
(ActionType.GO, r'\bmove\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
(ActionType.GO, r'\bhead\s+(NORTH|SOUTH|EAST|WEST|N|S|E|W)\b', 1),
(ActionType.WAIT, r'\bWAIT\b', 0),
(ActionType.LOOK, r'\bLOOK\b', 0),
]
def parse(self, llm_response: str) -> Action:
"""
Parse an LLM response and extract the action.
Returns Action with type=INVALID if no valid action found.
"""
# Normalize to uppercase for matching
text = llm_response.upper()
for action_type, pattern, num_groups in self.PATTERNS:
match = re.search(pattern, text, re.IGNORECASE)
if match:
args = self._extract_args(match, num_groups, action_type)
return Action(
type=action_type,
args=args,
raw_match=match.group(0)
)
# No valid action found
return Action(
type=ActionType.INVALID,
args=(llm_response[:100],), # First 100 chars for debugging
raw_match=""
)
def _extract_args(self, match, num_groups: int, action_type: ActionType) -> tuple:
"""Extract and normalize arguments from regex match."""
if num_groups == 0:
return ()
args = []
for i in range(1, num_groups + 1):
group = match.group(i)
if group:
# Normalize directions
if action_type == ActionType.GO or (action_type == ActionType.PUSH and i == 2):
group = self.DIRECTIONS.get(group.upper(), group.upper())
args.append(group)
else:
args.append(None)
return tuple(args)
# Convenience function
def parse_action(llm_response: str) -> Action:
"""Parse an LLM response into an Action."""
return ActionParser().parse(llm_response)

View File

@ -0,0 +1,214 @@
#!/usr/bin/env python3
"""
Unit tests for action_parser.py
===============================
Tests the ActionParser's ability to extract structured actions
from various LLM response formats.
"""
import sys
from action_parser import parse_action, ActionType
def test_explicit_go_directions():
"""Test explicit 'Action: GO <direction>' format."""
# Cardinal directions
assert parse_action("Action: GO NORTH").type == ActionType.GO
assert parse_action("Action: GO NORTH").args == ("NORTH",)
assert parse_action("Action: GO SOUTH").type == ActionType.GO
assert parse_action("Action: GO SOUTH").args == ("SOUTH",)
assert parse_action("Action: GO EAST").type == ActionType.GO
assert parse_action("Action: GO EAST").args == ("EAST",)
assert parse_action("Action: GO WEST").type == ActionType.GO
assert parse_action("Action: GO WEST").args == ("WEST",)
print(" [PASS] Explicit GO directions")
def test_short_directions():
"""Test short direction abbreviations (N, S, E, W)."""
assert parse_action("Action: GO N").args == ("NORTH",)
assert parse_action("Action: GO S").args == ("SOUTH",)
assert parse_action("Action: GO E").args == ("EAST",)
assert parse_action("Action: GO W").args == ("WEST",)
print(" [PASS] Short direction abbreviations")
def test_case_insensitivity():
"""Test that parsing is case-insensitive."""
assert parse_action("action: go south").type == ActionType.GO
assert parse_action("ACTION: GO SOUTH").type == ActionType.GO
assert parse_action("Action: Go South").type == ActionType.GO
assert parse_action("action: GO south").type == ActionType.GO
print(" [PASS] Case insensitivity")
def test_fallback_patterns():
"""Test fallback patterns without 'Action:' prefix."""
# Natural language variations
assert parse_action("I think I'll GO WEST to explore").type == ActionType.GO
assert parse_action("I'll GO NORTH").type == ActionType.GO
assert parse_action("Let me GO EAST").type == ActionType.GO
# Move variations
assert parse_action("I should move NORTH").type == ActionType.GO
assert parse_action("Let me head SOUTH").type == ActionType.GO
print(" [PASS] Fallback patterns")
def test_wait_action():
"""Test WAIT action parsing."""
assert parse_action("Action: WAIT").type == ActionType.WAIT
assert parse_action("I'll WAIT here").type == ActionType.WAIT
assert parse_action("Let me WAIT and see").type == ActionType.WAIT
print(" [PASS] WAIT action")
def test_look_action():
"""Test LOOK action parsing."""
assert parse_action("Action: LOOK").type == ActionType.LOOK
assert parse_action("Action: LOOK AT door").type == ActionType.LOOK
assert parse_action("Action: LOOK AT door").args == ("DOOR",)
print(" [PASS] LOOK action")
def test_invalid_actions():
"""Test that invalid actions are properly flagged."""
result = parse_action("I'm not sure what to do")
assert result.type == ActionType.INVALID
result = parse_action("Let me think about this...")
assert result.type == ActionType.INVALID
result = parse_action("The weather is nice today")
assert result.type == ActionType.INVALID
print(" [PASS] Invalid action detection")
def test_raw_match_capture():
"""Test that raw_match captures the matched text."""
result = parse_action("After thinking, Action: GO NORTH is best")
assert "GO NORTH" in result.raw_match
print(" [PASS] Raw match capture")
def test_embedded_actions():
"""Test extraction of actions embedded in longer text."""
long_response = """
Looking at the screenshot, I can see I'm in a dungeon corridor.
There's a rat to the east and a wall to the north.
The path south appears clear.
I think the best course of action is to investigate the rat.
Action: GO EAST
"""
result = parse_action(long_response)
assert result.type == ActionType.GO
assert result.args == ("EAST",)
print(" [PASS] Embedded action extraction")
def test_complex_actions():
"""Test more complex action types."""
# TAKE action
assert parse_action("Action: TAKE sword").type == ActionType.TAKE
assert parse_action("Action: TAKE sword").args == ("SWORD",)
# DROP action
assert parse_action("Action: DROP shield").type == ActionType.DROP
# USE action
assert parse_action("Action: USE key").type == ActionType.USE
assert parse_action("Action: USE key ON door").type == ActionType.USE
# OPEN/CLOSE
assert parse_action("Action: OPEN chest").type == ActionType.OPEN
assert parse_action("Action: CLOSE door").type == ActionType.CLOSE
print(" [PASS] Complex action types")
def test_push_action():
"""Test PUSH action with direction."""
result = parse_action("Action: PUSH boulder NORTH")
assert result.type == ActionType.PUSH
assert result.args == ("BOULDER", "NORTH")
result = parse_action("Action: PUSH box E")
assert result.type == ActionType.PUSH
assert result.args == ("BOX", "EAST")
print(" [PASS] PUSH action")
def test_speak_announce_actions():
"""Test SPEAK and ANNOUNCE with quoted strings."""
result = parse_action('Action: SPEAK "Hello there!"')
assert result.type == ActionType.SPEAK
assert result.args[0] == "HELLO THERE!" # Uppercase due to text normalization
result = parse_action("Action: ANNOUNCE 'Watch out!'")
assert result.type == ActionType.ANNOUNCE
print(" [PASS] SPEAK/ANNOUNCE actions")
def run_all_tests():
"""Run all parser tests."""
print("=" * 60)
print("Action Parser Tests")
print("=" * 60)
tests = [
test_explicit_go_directions,
test_short_directions,
test_case_insensitivity,
test_fallback_patterns,
test_wait_action,
test_look_action,
test_invalid_actions,
test_raw_match_capture,
test_embedded_actions,
test_complex_actions,
test_push_action,
test_speak_announce_actions,
]
passed = 0
failed = 0
for test in tests:
try:
test()
passed += 1
except AssertionError as e:
print(f" [FAIL] {test.__name__}: {e}")
failed += 1
except Exception as e:
print(f" [ERROR] {test.__name__}: {e}")
failed += 1
print("=" * 60)
print(f"Results: {passed} passed, {failed} failed")
print("=" * 60)
return failed == 0
if __name__ == "__main__":
success = run_all_tests()
sys.exit(0 if success else 1)