feat: Add entity.visible_entities() and improve entity.updateVisibility() (closes #113)

Phase 3 of Agent POV Integration:

Entity.updateVisibility() improvements:
- Now uses grid.fov_algorithm and grid.fov_radius instead of hardcoded values
- Updates any ColorLayers bound to this entity via apply_perspective()
- Properly triggers layer FOV recomputation when entity moves

New Entity.visible_entities(fov=None, radius=None) method:
- Returns list of other entities visible from this entity's position
- Optional fov parameter to override grid's FOV algorithm
- Optional radius parameter to override grid's fov_radius
- Useful for AI decision-making and line-of-sight checks

Test coverage in test_perspective_binding.py:
- Tests entity movement with bound layers
- Tests visible_entities with wall occlusion
- Tests radius override limiting visibility

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
John McCardle 2025-12-01 15:55:18 -05:00
parent 018e73590f
commit c5b4200dea
3 changed files with 411 additions and 12 deletions

View File

@ -5,6 +5,7 @@
#include "PyObjectUtils.h"
#include "PyVector.h"
#include "PythonObjectCache.h"
#include "PyFOV.h"
// UIDrawable methods now in UIBase.h
#include "UIEntityPyMethods.h"
@ -44,12 +45,12 @@ void UIEntity::updateVisibility()
state.visible = false;
}
// Compute FOV from entity's position
// Compute FOV from entity's position using grid's FOV settings (#114)
int x = static_cast<int>(position.x);
int y = static_cast<int>(position.y);
// Use default FOV radius of 10 (can be made configurable later)
grid->computeFOV(x, y, 10);
// Use grid's configured FOV algorithm and radius
grid->computeFOV(x, y, grid->fov_radius, true, grid->fov_algorithm);
// Update visible cells based on FOV computation
for (int gy = 0; gy < grid->grid_y; gy++) {
@ -61,6 +62,32 @@ void UIEntity::updateVisibility()
}
}
}
// #113 - Update any ColorLayers bound to this entity via perspective
// Get shared_ptr to self for comparison
std::shared_ptr<UIEntity> self_ptr = nullptr;
if (grid->entities) {
for (auto& entity : *grid->entities) {
if (entity.get() == this) {
self_ptr = entity;
break;
}
}
}
if (self_ptr) {
for (auto& layer : grid->layers) {
if (layer->type == GridLayerType::Color) {
auto color_layer = std::static_pointer_cast<ColorLayer>(layer);
if (color_layer->has_perspective) {
auto bound_entity = color_layer->perspective_entity.lock();
if (bound_entity && bound_entity.get() == this) {
color_layer->updatePerspective();
}
}
}
}
}
}
PyObject* UIEntity::at(PyUIEntityObject* self, PyObject* o) {
@ -588,6 +615,96 @@ PyObject* UIEntity::update_visibility(PyUIEntityObject* self, PyObject* Py_UNUSE
Py_RETURN_NONE;
}
PyObject* UIEntity::visible_entities(PyUIEntityObject* self, PyObject* args, PyObject* kwds)
{
static const char* keywords[] = {"fov", "radius", nullptr};
PyObject* fov_arg = nullptr;
int radius = -1; // -1 means use grid default
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi", const_cast<char**>(keywords),
&fov_arg, &radius)) {
return NULL;
}
// Check if entity has a grid
if (!self->data || !self->data->grid) {
PyErr_SetString(PyExc_ValueError, "Entity must be associated with a grid to find visible entities");
return NULL;
}
auto grid = self->data->grid;
// Parse FOV algorithm - use grid default if not specified
TCOD_fov_algorithm_t algorithm = grid->fov_algorithm;
bool fov_was_none = false;
if (fov_arg && fov_arg != Py_None) {
if (PyFOV::from_arg(fov_arg, &algorithm, &fov_was_none) < 0) {
return NULL; // Error already set
}
}
// Use grid radius if not specified
if (radius < 0) {
radius = grid->fov_radius;
}
// Get current position
int x = static_cast<int>(self->data->position.x);
int y = static_cast<int>(self->data->position.y);
// Compute FOV from this entity's position
grid->computeFOV(x, y, radius, true, algorithm);
// Create result list
PyObject* result = PyList_New(0);
if (!result) return PyErr_NoMemory();
// Get Entity type for creating Python objects
PyTypeObject* entity_type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Entity");
if (!entity_type) {
Py_DECREF(result);
return NULL;
}
// Iterate through all entities in the grid
if (grid->entities) {
for (auto& entity : *grid->entities) {
// Skip self
if (entity.get() == self->data.get()) {
continue;
}
// Check if entity is in FOV
int ex = static_cast<int>(entity->position.x);
int ey = static_cast<int>(entity->position.y);
if (grid->isInFOV(ex, ey)) {
// Create Python Entity object for this entity
auto pyEntity = (PyUIEntityObject*)entity_type->tp_alloc(entity_type, 0);
if (!pyEntity) {
Py_DECREF(result);
Py_DECREF(entity_type);
return PyErr_NoMemory();
}
pyEntity->data = entity;
pyEntity->weakreflist = NULL;
if (PyList_Append(result, (PyObject*)pyEntity) < 0) {
Py_DECREF(pyEntity);
Py_DECREF(result);
Py_DECREF(entity_type);
return NULL;
}
Py_DECREF(pyEntity); // List now owns the reference
}
}
}
Py_DECREF(entity_type);
return result;
}
PyMethodDef UIEntity::methods[] = {
{"at", (PyCFunction)UIEntity::at, METH_O},
{"index", (PyCFunction)UIEntity::index, METH_NOARGS, "Return the index of this entity in its grid's entity collection"},
@ -608,6 +725,16 @@ PyMethodDef UIEntity::methods[] = {
"Recomputes which cells are visible from the entity's position and updates\n"
"the entity's gridstate to track explored areas. This is called automatically\n"
"when the entity moves if it has a grid with perspective set."},
{"visible_entities", (PyCFunction)UIEntity::visible_entities, METH_VARARGS | METH_KEYWORDS,
"visible_entities(fov=None, radius=None) -> list[Entity]\n\n"
"Get list of other entities visible from this entity's position.\n\n"
"Args:\n"
" fov (FOV, optional): FOV algorithm to use. Default: grid.fov\n"
" radius (int, optional): FOV radius. Default: grid.fov_radius\n\n"
"Returns:\n"
" List of Entity objects that are within field of view.\n\n"
"Computes FOV from this entity's position and returns all other entities\n"
"whose positions fall within the visible area."},
{NULL, NULL, 0, NULL}
};
@ -636,6 +763,16 @@ PyMethodDef UIEntity_all_methods[] = {
"Recomputes which cells are visible from the entity's position and updates\n"
"the entity's gridstate to track explored areas. This is called automatically\n"
"when the entity moves if it has a grid with perspective set."},
{"visible_entities", (PyCFunction)UIEntity::visible_entities, METH_VARARGS | METH_KEYWORDS,
"visible_entities(fov=None, radius=None) -> list[Entity]\n\n"
"Get list of other entities visible from this entity's position.\n\n"
"Args:\n"
" fov (FOV, optional): FOV algorithm to use. Default: grid.fov\n"
" radius (int, optional): FOV radius. Default: grid.fov_radius\n\n"
"Returns:\n"
" List of Entity objects that are within field of view.\n\n"
"Computes FOV from this entity's position and returns all other entities\n"
"whose positions fall within the visible area."},
{NULL} // Sentinel
};

View File

@ -89,6 +89,7 @@ public:
static PyObject* die(PyUIEntityObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* path_to(PyUIEntityObject* self, PyObject* args, PyObject* kwds);
static PyObject* update_visibility(PyUIEntityObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* visible_entities(PyUIEntityObject* self, PyObject* args, PyObject* kwds);
static int init(PyUIEntityObject* self, PyObject* args, PyObject* kwds);
static PyObject* get_position(PyUIEntityObject* self, void* closure);

View File

@ -0,0 +1,261 @@
#!/usr/bin/env python3
"""
Test Perspective Binding System
===============================
Tests the integration between:
1. ColorLayer.apply_perspective() - binding a layer to an entity
2. entity.updateVisibility() - automatically updating bound layers
3. ColorLayer.clear_perspective() - removing the binding
This implements issue #113 requirements for "Agent POV Integration".
"""
import mcrfpy
import sys
def run_tests():
"""Run perspective binding tests"""
print("=== Perspective Binding Tests ===\n")
# Test 1: Create grid with entity and color layer
print("Test 1: Setup")
grid = mcrfpy.Grid(pos=(0, 0), size=(640, 400), grid_size=(40, 25))
# Set up walls
for y in range(25):
for x in range(40):
point = grid.at(x, y)
# Border walls
if x == 0 or x == 39 or y == 0 or y == 24:
point.walkable = False
point.transparent = False
# Central wall
elif x == 20 and y != 12: # Wall with door at y=12
point.walkable = False
point.transparent = False
else:
point.walkable = True
point.transparent = True
# Create player entity
player = mcrfpy.Entity((5, 12))
grid.entities.append(player)
print(f" Player at ({player.x}, {player.y})")
print(" Grid setup complete")
print()
# Test 2: Apply perspective binding
print("Test 2: Perspective Binding")
fov_layer = grid.add_layer('color', z_index=-1)
fov_layer.fill((0, 0, 0, 255)) # Start with black (unknown)
fov_layer.apply_perspective(
entity=player,
visible=(255, 255, 200, 64),
discovered=(100, 100, 100, 128),
unknown=(0, 0, 0, 255)
)
print(" Applied perspective to layer")
# Check layer is bound
# (We can't directly check internal state, but we can verify behavior)
print()
# Test 3: updateVisibility should update the bound layer
print("Test 3: Entity updateVisibility")
player.update_visibility()
# Check that the player's position is now visible
visible_cell = fov_layer.at(int(player.x), int(player.y))
assert visible_cell.r == 255, f"Player position should be visible (got r={visible_cell.r})"
print(" Player position has visible color after updateVisibility()")
# Check that cells behind wall are unknown
behind_wall = fov_layer.at(21, 5)
assert behind_wall.r == 0, f"Behind wall should be unknown (got r={behind_wall.r})"
print(" Cell behind wall is unknown")
print()
# Test 4: Moving entity and calling updateVisibility
print("Test 4: Entity Movement with Perspective")
# Move player through the door
player.x = 21
player.y = 12
player.update_visibility()
# Now the player should see both sides of the wall
# Check a cell that was previously hidden
now_visible = fov_layer.at(25, 12) # To the right of where player moved
# This should now be visible (or discovered if was visible)
assert now_visible.r in [255, 100], f"Cell should be visible or discovered (got r={now_visible.r})"
print(f" After moving to door, cell (25,12) has r={now_visible.r}")
# Player's new position should be visible
new_pos_color = fov_layer.at(int(player.x), int(player.y))
assert new_pos_color.r == 255, f"New player position should be visible (got r={new_pos_color.r})"
print(f" Player's new position ({player.x}, {player.y}) is visible")
print()
# Test 5: Check discovered cells remain discovered
print("Test 5: Discovered State Persistence")
# Move player away from original position
player.x = 35
player.y = 12
player.update_visibility()
# Original position (5, 12) should now be discovered (not visible, but was seen)
original_pos = fov_layer.at(5, 12)
# It could be visible if in line of sight, or discovered if not
print(f" Original position (5,12) color: r={original_pos.r}")
print()
# Test 6: Clear perspective
print("Test 6: Clear Perspective")
fov_layer.clear_perspective()
# After clearing, updateVisibility should not affect this layer
fov_layer.fill((128, 0, 128, 255)) # Fill with purple
player.update_visibility()
# Layer should still be purple (not modified by updateVisibility)
check_cell = fov_layer.at(int(player.x), int(player.y))
assert check_cell.r == 128, f"Layer should be unchanged after clear_perspective (got r={check_cell.r})"
assert check_cell.g == 0, f"Layer should be unchanged (got g={check_cell.g})"
assert check_cell.b == 128, f"Layer should be unchanged (got b={check_cell.b})"
print(" Layer unchanged after clear_perspective()")
print()
# Test 7: Grid FOV settings
print("Test 7: Grid FOV Settings Integration")
# Create a new grid and layer to test FOV radius without discovered interference
grid2 = mcrfpy.Grid(pos=(0, 0), size=(640, 400), grid_size=(40, 25))
# Set all cells walkable/transparent
for y in range(25):
for x in range(40):
point = grid2.at(x, y)
point.walkable = True
point.transparent = True
# Create player entity
player2 = mcrfpy.Entity((20, 12))
grid2.entities.append(player2)
# Set grid FOV settings
grid2.fov = mcrfpy.FOV.SHADOW
grid2.fov_radius = 5 # Smaller radius
# Create layer and bind perspective
fov_layer2 = grid2.add_layer('color', z_index=-1)
fov_layer2.fill((0, 0, 0, 255)) # Start with black (unknown)
fov_layer2.apply_perspective(
entity=player2,
visible=(255, 0, 0, 64), # Red for visible
discovered=(100, 100, 100, 128),
unknown=(0, 0, 0, 255)
)
# Update visibility - this should only illuminate cells within radius 5
player2.update_visibility()
# With radius 5, cells far from player should be unknown (never discovered)
far_cell = fov_layer2.at(30, 12) # 10 cells away from player
assert far_cell.r == 0, f"Far cell should be unknown with radius 5 (got r={far_cell.r})"
print(f" Far cell (30,12) is unknown with radius=5")
# Near cell should be visible
near_cell = fov_layer2.at(22, 12) # 2 cells away
assert near_cell.r == 255, f"Near cell should be visible (got r={near_cell.r})"
print(f" Near cell (22,12) is visible")
print()
# Test 8: visible_entities method
print("Test 8: Entity.visible_entities()")
# Create a grid with multiple entities
grid3 = mcrfpy.Grid(pos=(0, 0), size=(640, 400), grid_size=(40, 25))
# Set all cells transparent
for y in range(25):
for x in range(40):
point = grid3.at(x, y)
point.walkable = True
point.transparent = True
# Add a wall to block visibility
for y in range(25):
if y != 12: # Door at y=12
point = grid3.at(20, y)
point.walkable = False
point.transparent = False
# Create entities
player3 = mcrfpy.Entity((5, 12)) # Left side
ally = mcrfpy.Entity((8, 12)) # Near player
enemy1 = mcrfpy.Entity((35, 12)) # Behind wall
enemy2 = mcrfpy.Entity((25, 12)) # Through door (should be visible)
grid3.entities.append(player3)
grid3.entities.append(ally)
grid3.entities.append(enemy1)
grid3.entities.append(enemy2)
# Set grid FOV settings
grid3.fov = mcrfpy.FOV.SHADOW
grid3.fov_radius = 20
# Get visible entities from player
visible = player3.visible_entities()
visible_positions = [(int(e.x), int(e.y)) for e in visible]
print(f" Player at (5, 12)")
print(f" Visible entities: {visible_positions}")
# Ally should be visible
assert (8, 12) in visible_positions, "Ally at (8,12) should be visible"
print(" Ally at (8, 12) is visible")
# Enemy1 behind wall should NOT be visible
assert (35, 12) not in visible_positions, "Enemy1 at (35,12) should NOT be visible (behind wall)"
print(" Enemy1 at (35, 12) is NOT visible (behind wall)")
# Enemy2 through door should be visible
assert (25, 12) in visible_positions, "Enemy2 at (25,12) should be visible through door"
print(" Enemy2 at (25, 12) is visible (through door)")
print()
# Test 9: visible_entities with radius override
print("Test 9: visible_entities with radius override")
# With small radius, only ally should be visible
visible_small = player3.visible_entities(radius=4)
visible_small_positions = [(int(e.x), int(e.y)) for e in visible_small]
print(f" With radius=4: {visible_small_positions}")
assert (8, 12) in visible_small_positions, "Ally should be visible with radius=4"
assert (25, 12) not in visible_small_positions, "Enemy2 should NOT be visible with radius=4"
print(" Correctly limited visibility to nearby entities")
print()
print("=== All Perspective Binding Tests Passed! ===")
return True
# Main execution
if __name__ == "__main__":
try:
if run_tests():
print("\nPASS")
sys.exit(0)
else:
print("\nFAIL")
sys.exit(1)
except Exception as e:
print(f"\nFAIL: {e}")
import traceback
traceback.print_exc()
sys.exit(1)