Compare commits

..

14 Commits

Author SHA1 Message Date
John McCardle 6aa151aba3 UISprite.h/.cpp cleanup 2024-04-19 21:43:58 -04:00
John McCardle ec0374ef50 UIGridPoint.h/.cpp reorganization 2024-04-19 21:37:39 -04:00
John McCardle 2cb7339535 UIGrid.h/.cpp cleanup. I have reservations about the UIEntityCollection[Iter] classes + methods living there, but not enough to fix it right now. 2024-04-19 21:19:25 -04:00
John McCardle 5d6af324bf UIFrame - moving static method into class namespace; no type object access 2024-04-18 22:14:57 -04:00
John McCardle 567218cd7b UIEntity fixes for the UI.h split: There are segfaults in cos_play, I may have missed a type usage or something 2024-04-18 21:23:49 -04:00
John McCardle 76693acd28 delete leftover comments 2024-04-13 00:18:37 -04:00
John McCardle 9efe998a33 some work on UICaption and UICollection; fixing segfaults resulting from mcrfpydef namepace TypeObject usage 2024-04-13 00:17:43 -04:00
John McCardle 714965da45 eliminate extra includes on UICaption 2024-04-12 23:01:42 -04:00
John McCardle 8efa25878f remove a lot of stuff 2024-04-10 23:41:14 -04:00
John McCardle c186d8c7f3 We are compiling again! Started refactoring UICaption to be more idiomatic 2024-04-10 23:10:15 -04:00
John McCardle 1b6e2a709b Still not quite compiling; as predicted, a lot of interdependency and definition order bugs to untangle 2024-04-09 22:42:02 -04:00
John McCardle aa7553a818 PyTexture clean up scribbles and experiments 2024-04-09 22:41:20 -04:00
John McCardle c0201d989a additional unsaved changes 2024-04-09 14:07:01 -04:00
John McCardle 83a63a3093 doesn't compile, but UI.h/.cpp code has been divvy'd up.
refs #43 @2h
2024-04-09 11:04:16 -04:00
182 changed files with 1540 additions and 36891 deletions

20
.gitignore vendored
View File

@ -9,24 +9,4 @@ obj
build build
lib lib
obj obj
__pycache__
.cache/
7DRL2025 Release/
CMakeFiles/
Makefile
*.md
*.zip
__lib/
_oldscripts/
assets/
cellular_automata_fire/
*.txt
deps/
fetch_issues_txt.py
forest_fire_CA.py
mcrogueface.github.io
scripts/
test_*
tcod_reference

File diff suppressed because it is too large Load Diff

View File

@ -22,6 +22,11 @@ file(GLOB_RECURSE SOURCES "src/*.cpp")
# Create a list of libraries to link against # Create a list of libraries to link against
set(LINK_LIBS set(LINK_LIBS
m
dl
util
pthread
python3.12
sfml-graphics sfml-graphics
sfml-window sfml-window
sfml-system sfml-system
@ -30,33 +35,22 @@ set(LINK_LIBS
# On Windows, add any additional libs and include directories # On Windows, add any additional libs and include directories
if(WIN32) if(WIN32)
# Windows-specific Python library name (no dots)
list(APPEND LINK_LIBS python312)
# Add the necessary Windows-specific libraries and include directories # Add the necessary Windows-specific libraries and include directories
# include_directories(path_to_additional_includes) # include_directories(path_to_additional_includes)
# link_directories(path_to_additional_libs) # link_directories(path_to_additional_libs)
# list(APPEND LINK_LIBS additional_windows_libs) # list(APPEND LINK_LIBS additional_windows_libs)
include_directories(${CMAKE_SOURCE_DIR}/deps/platform/windows) include_directories(${CMAKE_SOURCE_DIR}/deps/platform/windows)
else() else()
# Unix/Linux specific libraries
list(APPEND LINK_LIBS python3.12 m dl util pthread)
include_directories(${CMAKE_SOURCE_DIR}/deps/platform/linux) include_directories(${CMAKE_SOURCE_DIR}/deps/platform/linux)
endif() endif()
# Add the directory where the linker should look for the libraries # Add the directory where the linker should look for the libraries
#link_directories(${CMAKE_SOURCE_DIR}/deps_linux) #link_directories(${CMAKE_SOURCE_DIR}/deps_linux)
link_directories(${CMAKE_SOURCE_DIR}/__lib) link_directories(${CMAKE_SOURCE_DIR}/lib)
# Define the executable target before linking libraries # Define the executable target before linking libraries
add_executable(mcrogueface ${SOURCES}) add_executable(mcrogueface ${SOURCES})
# On Windows, set subsystem to WINDOWS to hide console
if(WIN32)
set_target_properties(mcrogueface PROPERTIES
WIN32_EXECUTABLE TRUE
LINK_FLAGS "/SUBSYSTEM:WINDOWS /ENTRY:mainCRTStartup")
endif()
# Now the linker will find the libraries in the specified directory # Now the linker will find the libraries in the specified directory
target_link_libraries(mcrogueface ${LINK_LIBS}) target_link_libraries(mcrogueface ${LINK_LIBS})
@ -73,28 +67,9 @@ add_custom_command(TARGET mcrogueface POST_BUILD
# Copy Python standard library to build directory # Copy Python standard library to build directory
add_custom_command(TARGET mcrogueface POST_BUILD add_custom_command(TARGET mcrogueface POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_directory COMMAND ${CMAKE_COMMAND} -E copy_directory
${CMAKE_SOURCE_DIR}/__lib $<TARGET_FILE_DIR:mcrogueface>/lib) ${CMAKE_SOURCE_DIR}/lib $<TARGET_FILE_DIR:mcrogueface>/lib)
# On Windows, copy DLLs to executable directory # rpath for including shared libraries
if(WIN32)
# Copy all DLL files from lib to the executable directory
add_custom_command(TARGET mcrogueface POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_directory
${CMAKE_SOURCE_DIR}/__lib $<TARGET_FILE_DIR:mcrogueface>
COMMAND ${CMAKE_COMMAND} -E echo "Copied DLLs to executable directory")
# Alternative: Copy specific DLLs if you want more control
# file(GLOB DLLS "${CMAKE_SOURCE_DIR}/__lib/*.dll")
# foreach(DLL ${DLLS})
# add_custom_command(TARGET mcrogueface POST_BUILD
# COMMAND ${CMAKE_COMMAND} -E copy_if_different
# ${DLL} $<TARGET_FILE_DIR:mcrogueface>)
# endforeach()
endif()
# rpath for including shared libraries (Linux/Unix only)
if(NOT WIN32)
set_target_properties(mcrogueface PROPERTIES set_target_properties(mcrogueface PROPERTIES
INSTALL_RPATH "$ORIGIN/./lib") INSTALL_RPATH "./lib")
endif()

View File

@ -1,54 +0,0 @@
# Convenience Makefile wrapper for McRogueFace
# This delegates to CMake build in the build directory
.PHONY: all build clean run test dist help
# Default target
all: build
# Build the project
build:
@./build.sh
# Clean build artifacts
clean:
@./clean.sh
# Run the game
run: build
@cd build && ./mcrogueface
# Run in Python mode
python: build
@cd build && ./mcrogueface -i
# Test basic functionality
test: build
@echo "Testing McRogueFace..."
@cd build && ./mcrogueface -V
@cd build && ./mcrogueface -c "print('Test passed')"
@cd build && ./mcrogueface --headless -c "import mcrfpy; print('mcrfpy imported successfully')"
# Create distribution archive
dist: build
@echo "Creating distribution archive..."
@cd build && zip -r ../McRogueFace-$$(date +%Y%m%d).zip . -x "*.o" "CMakeFiles/*" "Makefile" "*.cmake"
@echo "Distribution archive created: McRogueFace-$$(date +%Y%m%d).zip"
# Show help
help:
@echo "McRogueFace Build System"
@echo "======================="
@echo ""
@echo "Available targets:"
@echo " make - Build the project (default)"
@echo " make build - Build the project"
@echo " make clean - Remove all build artifacts"
@echo " make run - Build and run the game"
@echo " make python - Build and run in Python interactive mode"
@echo " make test - Run basic tests"
@echo " make dist - Create distribution archive"
@echo " make help - Show this help message"
@echo ""
@echo "Build output goes to: ./build/"
@echo "Distribution archives are created in project root"

104
README.md
View File

@ -1,88 +1,30 @@
# McRogueFace # McRogueFace - 2D Game Engine
An experimental prototype game engine built for my own use in 7DRL 2023.
*Blame my wife for the name* *Blame my wife for the name*
A Python-powered 2D game engine for creating roguelike games, built with C++ and SFML. ## Tenets:
**Pre-Alpha Release Demo**: my 7DRL 2025 entry *"Crypt of Sokoban"* - a prototype with buttons, boulders, enemies, and items. * C++ first, Python close behind.
* Entity-Component system based on David Churchill's Memorial University COMP4300 course lectures available on Youtube.
* Graphics, particles and shaders provided by SFML.
* Pathfinding, noise generation, and other Roguelike goodness provided by TCOD.
## Tenets ## Why?
- **Python & C++ Hand-in-Hand**: Create your game without ever recompiling. Your Python commands create C++ objects, and animations can occur without calling Python at all. I did the r/RoguelikeDev TCOD tutorial in Python. I loved it, but I did not want to be limited to ASCII. I want to be able to draw pixels on top of my tiles (like lines or circles) and eventually incorporate even more polish.
- **Simple Yet Flexible UI System**: Sprites, Grids, Frames, and Captions with full animation support
- **Entity-Component Architecture**: Implement your game objects with Python integration
- **Built-in Roguelike Support**: Dungeon generation, pathfinding, and field-of-view via libtcod (demos still under construction)
- **Automation API**: PyAutoGUI-inspired event generation framework. All McRogueFace interactions can be performed headlessly via script: for software testing or AI integration
- **Interactive Development**: Python REPL integration for live game debugging. Use `mcrogueface` like a Python interpreter
## Quick Start ## To-do
```bash * ✅ Initial Commit
# Clone and build * ✅ Integrate scene, action, entity, component system from COMP4300 engine
git clone <wherever you found this repo> * ✅ Windows / Visual Studio project
cd McRogueFace * ✅ Draw Sprites
make * ✅ Play Sounds
* ✅ Draw UI, spawn entity from Python code
# Run the example game * ❌ Python AI for entities (NPCs on set paths, enemies towards player)
cd build * ✅ Walking / Collision
./mcrogueface * ❌ "Boards" (stairs / doors / walk off edge of screen)
``` * ❌ Cutscenes - interrupt normal controls, text scroll, character portraits
* ❌ Mouse integration - tooltips, zoom, click to select targets, cursors
## Example: Creating a Simple Scene
```python
import mcrfpy
# Create a new scene
mcrfpy.createScene("intro")
# Add a text caption
caption = mcrfpy.Caption((50, 50), "Welcome to McRogueFace!")
caption.size = 48
caption.fill_color = (255, 255, 255)
# Add to scene
mcrfpy.sceneUI("intro").append(caption)
# Switch to the scene
mcrfpy.setScene("intro")
```
## Documentation
For comprehensive documentation, tutorials, and API reference, visit:
**[https://mcrogueface.github.io](https://mcrogueface.github.io)**
## Requirements
- C++17 compiler (GCC 7+ or Clang 5+)
- CMake 3.14+
- Python 3.12+
- SFML 2.5+
- Linux or Windows (macOS untested)
## Project Structure
```
McRogueFace/
├── src/ # C++ engine source
├── scripts/ # Python game scripts
├── assets/ # Sprites, fonts, audio
├── build/ # Build output directory
└── tests/ # Automated test suite
```
## Contributing
PRs will be considered! Please include explicit mention that your contribution is your own work and released under the MIT license in the pull request.
The project has a private roadmap and issue list. Reach out via email or social media if you have bugs or feature requests.
## License
This project is licensed under the MIT License - see LICENSE file for details.
## Acknowledgments
- Developed for 7-Day Roguelike 2023, 2024, 2025 - here's to many more
- Built with [SFML](https://www.sfml-dev.org/), [libtcod](https://github.com/libtcod/libtcod), and Python
- Inspired by David Churchill's COMP4300 game engine lectures

Binary file not shown.

Before

Width:  |  Height:  |  Size: 181 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 674 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,54 +0,0 @@
#!/bin/bash
# Build script for McRogueFace - compiles everything into ./build directory
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
echo -e "${GREEN}McRogueFace Build Script${NC}"
echo "========================="
# Create build directory if it doesn't exist
if [ ! -d "build" ]; then
echo -e "${YELLOW}Creating build directory...${NC}"
mkdir build
fi
# Change to build directory
cd build
# Run CMake to generate build files
echo -e "${YELLOW}Running CMake...${NC}"
cmake .. -DCMAKE_BUILD_TYPE=Release
# Check if CMake succeeded
if [ $? -ne 0 ]; then
echo -e "${RED}CMake configuration failed!${NC}"
exit 1
fi
# Run make with parallel jobs
echo -e "${YELLOW}Building with make...${NC}"
make -j$(nproc)
# Check if make succeeded
if [ $? -ne 0 ]; then
echo -e "${RED}Build failed!${NC}"
exit 1
fi
echo -e "${GREEN}Build completed successfully!${NC}"
echo ""
echo "The build directory contains:"
ls -la
echo ""
echo -e "${GREEN}To run McRogueFace:${NC}"
echo " cd build"
echo " ./mcrogueface"
echo ""
echo -e "${GREEN}To create a distribution archive:${NC}"
echo " cd build"
echo " zip -r ../McRogueFace-$(date +%Y%m%d).zip ."

View File

@ -1,36 +0,0 @@
@echo off
REM Windows build script for McRogueFace
REM Run this over SSH without Visual Studio GUI
echo Building McRogueFace for Windows...
REM Clean previous build
if exist build_win rmdir /s /q build_win
mkdir build_win
cd build_win
REM Generate Visual Studio project files with CMake
REM Use -G to specify generator, -A for architecture
REM Visual Studio 2022 = "Visual Studio 17 2022"
REM Visual Studio 2019 = "Visual Studio 16 2019"
cmake -G "Visual Studio 17 2022" -A x64 ..
if errorlevel 1 (
echo CMake configuration failed!
exit /b 1
)
REM Build using MSBuild (comes with Visual Studio)
REM You can also use cmake --build . --config Release
msbuild McRogueFace.sln /p:Configuration=Release /p:Platform=x64 /m
if errorlevel 1 (
echo Build failed!
exit /b 1
)
echo Build completed successfully!
echo Executable location: build_win\Release\mcrogueface.exe
REM Alternative: Using cmake to build (works with any generator)
REM cmake --build . --config Release --parallel
cd ..

View File

@ -1,112 +0,0 @@
[
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/GameEngine.cpp.o -c /home/john/Development/McRogueFace/src/GameEngine.cpp",
"file": "/home/john/Development/McRogueFace/src/GameEngine.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/IndexTexture.cpp.o -c /home/john/Development/McRogueFace/src/IndexTexture.cpp",
"file": "/home/john/Development/McRogueFace/src/IndexTexture.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/McRFPy_API.cpp.o -c /home/john/Development/McRogueFace/src/McRFPy_API.cpp",
"file": "/home/john/Development/McRogueFace/src/McRFPy_API.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyCallable.cpp.o -c /home/john/Development/McRogueFace/src/PyCallable.cpp",
"file": "/home/john/Development/McRogueFace/src/PyCallable.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyColor.cpp.o -c /home/john/Development/McRogueFace/src/PyColor.cpp",
"file": "/home/john/Development/McRogueFace/src/PyColor.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyFont.cpp.o -c /home/john/Development/McRogueFace/src/PyFont.cpp",
"file": "/home/john/Development/McRogueFace/src/PyFont.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyScene.cpp.o -c /home/john/Development/McRogueFace/src/PyScene.cpp",
"file": "/home/john/Development/McRogueFace/src/PyScene.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyTexture.cpp.o -c /home/john/Development/McRogueFace/src/PyTexture.cpp",
"file": "/home/john/Development/McRogueFace/src/PyTexture.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyVector.cpp.o -c /home/john/Development/McRogueFace/src/PyVector.cpp",
"file": "/home/john/Development/McRogueFace/src/PyVector.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/Resources.cpp.o -c /home/john/Development/McRogueFace/src/Resources.cpp",
"file": "/home/john/Development/McRogueFace/src/Resources.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/Scene.cpp.o -c /home/john/Development/McRogueFace/src/Scene.cpp",
"file": "/home/john/Development/McRogueFace/src/Scene.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/Timer.cpp.o -c /home/john/Development/McRogueFace/src/Timer.cpp",
"file": "/home/john/Development/McRogueFace/src/Timer.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UICaption.cpp.o -c /home/john/Development/McRogueFace/src/UICaption.cpp",
"file": "/home/john/Development/McRogueFace/src/UICaption.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UICollection.cpp.o -c /home/john/Development/McRogueFace/src/UICollection.cpp",
"file": "/home/john/Development/McRogueFace/src/UICollection.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIDrawable.cpp.o -c /home/john/Development/McRogueFace/src/UIDrawable.cpp",
"file": "/home/john/Development/McRogueFace/src/UIDrawable.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIEntity.cpp.o -c /home/john/Development/McRogueFace/src/UIEntity.cpp",
"file": "/home/john/Development/McRogueFace/src/UIEntity.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIFrame.cpp.o -c /home/john/Development/McRogueFace/src/UIFrame.cpp",
"file": "/home/john/Development/McRogueFace/src/UIFrame.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIGrid.cpp.o -c /home/john/Development/McRogueFace/src/UIGrid.cpp",
"file": "/home/john/Development/McRogueFace/src/UIGrid.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIGridPoint.cpp.o -c /home/john/Development/McRogueFace/src/UIGridPoint.cpp",
"file": "/home/john/Development/McRogueFace/src/UIGridPoint.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UISprite.cpp.o -c /home/john/Development/McRogueFace/src/UISprite.cpp",
"file": "/home/john/Development/McRogueFace/src/UISprite.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UITestScene.cpp.o -c /home/john/Development/McRogueFace/src/UITestScene.cpp",
"file": "/home/john/Development/McRogueFace/src/UITestScene.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/main.cpp.o -c /home/john/Development/McRogueFace/src/main.cpp",
"file": "/home/john/Development/McRogueFace/src/main.cpp"
}
]

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,482 +0,0 @@
#!/usr/bin/env python3
"""Generate API reference documentation for McRogueFace.
This script generates comprehensive API documentation in multiple formats:
- Markdown for GitHub/documentation sites
- HTML for local browsing
- RST for Sphinx integration (future)
"""
import os
import sys
import inspect
import datetime
from typing import Dict, List, Any, Optional
from pathlib import Path
# We need to run this with McRogueFace as the interpreter
# so mcrfpy is available
import mcrfpy
def escape_markdown(text: str) -> str:
"""Escape special markdown characters."""
if not text:
return ""
# Escape backticks in inline code
return text.replace("`", "\\`")
def format_signature(name: str, doc: str) -> str:
"""Extract and format function signature from docstring."""
if not doc:
return f"{name}(...)"
lines = doc.strip().split('\n')
if lines and '(' in lines[0]:
# First line contains signature
return lines[0].split('->')[0].strip()
return f"{name}(...)"
def get_class_info(cls: type) -> Dict[str, Any]:
"""Extract comprehensive information about a class."""
info = {
'name': cls.__name__,
'doc': cls.__doc__ or "",
'methods': [],
'properties': [],
'bases': [base.__name__ for base in cls.__bases__ if base.__name__ != 'object'],
}
# Get all attributes
for attr_name in sorted(dir(cls)):
if attr_name.startswith('_') and not attr_name.startswith('__'):
continue
try:
attr = getattr(cls, attr_name)
if isinstance(attr, property):
prop_info = {
'name': attr_name,
'doc': (attr.fget.__doc__ if attr.fget else "") or "",
'readonly': attr.fset is None
}
info['properties'].append(prop_info)
elif callable(attr) and not attr_name.startswith('__'):
method_info = {
'name': attr_name,
'doc': attr.__doc__ or "",
'signature': format_signature(attr_name, attr.__doc__)
}
info['methods'].append(method_info)
except:
pass
return info
def get_function_info(func: Any, name: str) -> Dict[str, Any]:
"""Extract information about a function."""
return {
'name': name,
'doc': func.__doc__ or "",
'signature': format_signature(name, func.__doc__)
}
def generate_markdown_class(cls_info: Dict[str, Any]) -> List[str]:
"""Generate markdown documentation for a class."""
lines = []
# Class header
lines.append(f"### class `{cls_info['name']}`")
if cls_info['bases']:
lines.append(f"*Inherits from: {', '.join(cls_info['bases'])}*")
lines.append("")
# Class description
if cls_info['doc']:
doc_lines = cls_info['doc'].strip().split('\n')
# First line is usually the constructor signature
if doc_lines and '(' in doc_lines[0]:
lines.append(f"```python")
lines.append(doc_lines[0])
lines.append("```")
lines.append("")
# Rest is description
if len(doc_lines) > 2:
lines.extend(doc_lines[2:])
lines.append("")
else:
lines.extend(doc_lines)
lines.append("")
# Properties
if cls_info['properties']:
lines.append("#### Properties")
lines.append("")
for prop in cls_info['properties']:
readonly = " *(readonly)*" if prop['readonly'] else ""
lines.append(f"- **`{prop['name']}`**{readonly}")
if prop['doc']:
lines.append(f" - {prop['doc'].strip()}")
lines.append("")
# Methods
if cls_info['methods']:
lines.append("#### Methods")
lines.append("")
for method in cls_info['methods']:
lines.append(f"##### `{method['signature']}`")
if method['doc']:
# Parse docstring for better formatting
doc_lines = method['doc'].strip().split('\n')
# Skip the signature line if it's repeated
start = 1 if doc_lines and method['name'] in doc_lines[0] else 0
for line in doc_lines[start:]:
lines.append(line)
lines.append("")
lines.append("---")
lines.append("")
return lines
def generate_markdown_function(func_info: Dict[str, Any]) -> List[str]:
"""Generate markdown documentation for a function."""
lines = []
lines.append(f"### `{func_info['signature']}`")
lines.append("")
if func_info['doc']:
doc_lines = func_info['doc'].strip().split('\n')
# Skip signature line if present
start = 1 if doc_lines and func_info['name'] in doc_lines[0] else 0
# Process documentation sections
in_section = None
for line in doc_lines[start:]:
if line.strip() in ['Args:', 'Returns:', 'Raises:', 'Note:', 'Example:']:
in_section = line.strip()
lines.append(f"**{in_section}**")
elif in_section and line.strip():
# Indent content under sections
lines.append(f"{line}")
else:
lines.append(line)
lines.append("")
lines.append("---")
lines.append("")
return lines
def generate_markdown_docs() -> str:
"""Generate complete markdown API documentation."""
lines = []
# Header
lines.append("# McRogueFace API Reference")
lines.append("")
lines.append(f"*Generated on {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*")
lines.append("")
# Module description
if mcrfpy.__doc__:
lines.append("## Overview")
lines.append("")
lines.extend(mcrfpy.__doc__.strip().split('\n'))
lines.append("")
# Table of contents
lines.append("## Table of Contents")
lines.append("")
lines.append("- [Classes](#classes)")
lines.append("- [Functions](#functions)")
lines.append("- [Automation Module](#automation-module)")
lines.append("")
# Collect all components
classes = []
functions = []
constants = []
for name in sorted(dir(mcrfpy)):
if name.startswith('_'):
continue
obj = getattr(mcrfpy, name)
if isinstance(obj, type):
classes.append((name, obj))
elif callable(obj):
functions.append((name, obj))
elif not inspect.ismodule(obj):
constants.append((name, obj))
# Document classes
lines.append("## Classes")
lines.append("")
# Group classes by category
ui_classes = []
collection_classes = []
system_classes = []
other_classes = []
for name, cls in classes:
if name in ['Frame', 'Caption', 'Sprite', 'Grid', 'Entity']:
ui_classes.append((name, cls))
elif 'Collection' in name:
collection_classes.append((name, cls))
elif name in ['Color', 'Vector', 'Texture', 'Font']:
system_classes.append((name, cls))
else:
other_classes.append((name, cls))
# UI Classes
if ui_classes:
lines.append("### UI Components")
lines.append("")
for name, cls in ui_classes:
lines.extend(generate_markdown_class(get_class_info(cls)))
# Collections
if collection_classes:
lines.append("### Collections")
lines.append("")
for name, cls in collection_classes:
lines.extend(generate_markdown_class(get_class_info(cls)))
# System Classes
if system_classes:
lines.append("### System Types")
lines.append("")
for name, cls in system_classes:
lines.extend(generate_markdown_class(get_class_info(cls)))
# Other Classes
if other_classes:
lines.append("### Other Classes")
lines.append("")
for name, cls in other_classes:
lines.extend(generate_markdown_class(get_class_info(cls)))
# Document functions
lines.append("## Functions")
lines.append("")
# Group functions by category
scene_funcs = []
audio_funcs = []
ui_funcs = []
system_funcs = []
for name, func in functions:
if 'scene' in name.lower() or name in ['createScene', 'setScene']:
scene_funcs.append((name, func))
elif any(x in name.lower() for x in ['sound', 'music', 'volume']):
audio_funcs.append((name, func))
elif name in ['find', 'findAll']:
ui_funcs.append((name, func))
else:
system_funcs.append((name, func))
# Scene Management
if scene_funcs:
lines.append("### Scene Management")
lines.append("")
for name, func in scene_funcs:
lines.extend(generate_markdown_function(get_function_info(func, name)))
# Audio
if audio_funcs:
lines.append("### Audio")
lines.append("")
for name, func in audio_funcs:
lines.extend(generate_markdown_function(get_function_info(func, name)))
# UI Utilities
if ui_funcs:
lines.append("### UI Utilities")
lines.append("")
for name, func in ui_funcs:
lines.extend(generate_markdown_function(get_function_info(func, name)))
# System
if system_funcs:
lines.append("### System")
lines.append("")
for name, func in system_funcs:
lines.extend(generate_markdown_function(get_function_info(func, name)))
# Automation module
if hasattr(mcrfpy, 'automation'):
lines.append("## Automation Module")
lines.append("")
lines.append("The `mcrfpy.automation` module provides testing and automation capabilities.")
lines.append("")
automation = mcrfpy.automation
auto_funcs = []
for name in sorted(dir(automation)):
if not name.startswith('_'):
obj = getattr(automation, name)
if callable(obj):
auto_funcs.append((name, obj))
for name, func in auto_funcs:
# Format as static method
func_info = get_function_info(func, name)
lines.append(f"### `automation.{func_info['signature']}`")
lines.append("")
if func_info['doc']:
lines.append(func_info['doc'])
lines.append("")
lines.append("---")
lines.append("")
return '\n'.join(lines)
def generate_html_docs(markdown_content: str) -> str:
"""Convert markdown to HTML."""
# Simple conversion - in production use a proper markdown parser
html = ['<!DOCTYPE html>']
html.append('<html><head>')
html.append('<meta charset="UTF-8">')
html.append('<title>McRogueFace API Reference</title>')
html.append('<style>')
html.append('''
body { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, sans-serif;
line-height: 1.6; color: #333; max-width: 900px; margin: 0 auto; padding: 20px; }
h1, h2, h3, h4, h5 { color: #2c3e50; margin-top: 24px; }
h1 { border-bottom: 2px solid #3498db; padding-bottom: 10px; }
h2 { border-bottom: 1px solid #ecf0f1; padding-bottom: 8px; }
code { background: #f4f4f4; padding: 2px 4px; border-radius: 3px; font-size: 90%; }
pre { background: #f4f4f4; padding: 12px; border-radius: 5px; overflow-x: auto; }
pre code { background: none; padding: 0; }
blockquote { border-left: 4px solid #3498db; margin: 0; padding-left: 16px; color: #7f8c8d; }
hr { border: none; border-top: 1px solid #ecf0f1; margin: 24px 0; }
a { color: #3498db; text-decoration: none; }
a:hover { text-decoration: underline; }
.property { color: #27ae60; }
.method { color: #2980b9; }
.class-name { color: #8e44ad; font-weight: bold; }
ul { padding-left: 24px; }
li { margin: 4px 0; }
''')
html.append('</style>')
html.append('</head><body>')
# Very basic markdown to HTML conversion
lines = markdown_content.split('\n')
in_code_block = False
in_list = False
for line in lines:
stripped = line.strip()
if stripped.startswith('```'):
if in_code_block:
html.append('</code></pre>')
in_code_block = False
else:
lang = stripped[3:] or 'python'
html.append(f'<pre><code class="language-{lang}">')
in_code_block = True
continue
if in_code_block:
html.append(line)
continue
# Headers
if stripped.startswith('#'):
level = len(stripped.split()[0])
text = stripped[level:].strip()
html.append(f'<h{level}>{text}</h{level}>')
# Lists
elif stripped.startswith('- '):
if not in_list:
html.append('<ul>')
in_list = True
html.append(f'<li>{stripped[2:]}</li>')
# Horizontal rule
elif stripped == '---':
if in_list:
html.append('</ul>')
in_list = False
html.append('<hr>')
# Emphasis
elif stripped.startswith('*') and stripped.endswith('*') and len(stripped) > 2:
html.append(f'<em>{stripped[1:-1]}</em>')
# Bold
elif stripped.startswith('**') and stripped.endswith('**'):
html.append(f'<strong>{stripped[2:-2]}</strong>')
# Regular paragraph
elif stripped:
if in_list:
html.append('</ul>')
in_list = False
# Convert inline code
text = stripped
if '`' in text:
import re
text = re.sub(r'`([^`]+)`', r'<code>\1</code>', text)
html.append(f'<p>{text}</p>')
else:
if in_list:
html.append('</ul>')
in_list = False
# Empty line
html.append('')
if in_list:
html.append('</ul>')
if in_code_block:
html.append('</code></pre>')
html.append('</body></html>')
return '\n'.join(html)
def main():
"""Generate API documentation in multiple formats."""
print("Generating McRogueFace API Documentation...")
# Create docs directory
docs_dir = Path("docs")
docs_dir.mkdir(exist_ok=True)
# Generate markdown documentation
print("- Generating Markdown documentation...")
markdown_content = generate_markdown_docs()
# Write markdown
md_path = docs_dir / "API_REFERENCE.md"
with open(md_path, 'w') as f:
f.write(markdown_content)
print(f" ✓ Written to {md_path}")
# Generate HTML
print("- Generating HTML documentation...")
html_content = generate_html_docs(markdown_content)
# Write HTML
html_path = docs_dir / "api_reference.html"
with open(html_path, 'w') as f:
f.write(html_content)
print(f" ✓ Written to {html_path}")
# Summary statistics
lines = markdown_content.split('\n')
class_count = markdown_content.count('### class')
func_count = len([l for l in lines if l.strip().startswith('### `') and 'class' not in l])
print("\nDocumentation Statistics:")
print(f"- Classes documented: {class_count}")
print(f"- Functions documented: {func_count}")
print(f"- Total lines: {len(lines)}")
print(f"- File size: {len(markdown_content):,} bytes")
print("\nAPI documentation generated successfully!")
if __name__ == '__main__':
main()

File diff suppressed because it is too large Load Diff

View File

@ -1,119 +0,0 @@
#!/usr/bin/env python3
"""Generate API reference documentation for McRogueFace - Simple version."""
import os
import sys
import datetime
from pathlib import Path
import mcrfpy
def generate_markdown_docs():
"""Generate markdown API documentation."""
lines = []
# Header
lines.append("# McRogueFace API Reference")
lines.append("")
lines.append("*Generated on {}*".format(datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')))
lines.append("")
# Module description
if mcrfpy.__doc__:
lines.append("## Overview")
lines.append("")
lines.extend(mcrfpy.__doc__.strip().split('\n'))
lines.append("")
# Collect all components
classes = []
functions = []
for name in sorted(dir(mcrfpy)):
if name.startswith('_'):
continue
obj = getattr(mcrfpy, name)
if isinstance(obj, type):
classes.append((name, obj))
elif callable(obj):
functions.append((name, obj))
# Document classes
lines.append("## Classes")
lines.append("")
for name, cls in classes:
lines.append("### class {}".format(name))
if cls.__doc__:
doc_lines = cls.__doc__.strip().split('\n')
for line in doc_lines[:5]: # First 5 lines
lines.append(line)
lines.append("")
lines.append("---")
lines.append("")
# Document functions
lines.append("## Functions")
lines.append("")
for name, func in functions:
lines.append("### {}".format(name))
if func.__doc__:
doc_lines = func.__doc__.strip().split('\n')
for line in doc_lines[:5]: # First 5 lines
lines.append(line)
lines.append("")
lines.append("---")
lines.append("")
# Automation module
if hasattr(mcrfpy, 'automation'):
lines.append("## Automation Module")
lines.append("")
automation = mcrfpy.automation
for name in sorted(dir(automation)):
if not name.startswith('_'):
obj = getattr(automation, name)
if callable(obj):
lines.append("### automation.{}".format(name))
if obj.__doc__:
lines.append(obj.__doc__.strip().split('\n')[0])
lines.append("")
return '\n'.join(lines)
def main():
"""Generate API documentation."""
print("Generating McRogueFace API Documentation...")
# Create docs directory
docs_dir = Path("docs")
docs_dir.mkdir(exist_ok=True)
# Generate markdown
markdown_content = generate_markdown_docs()
# Write markdown
md_path = docs_dir / "API_REFERENCE.md"
with open(md_path, 'w') as f:
f.write(markdown_content)
print("Written to {}".format(md_path))
# Summary
lines = markdown_content.split('\n')
class_count = markdown_content.count('### class')
func_count = markdown_content.count('### ') - class_count - markdown_content.count('### automation.')
print("\nDocumentation Statistics:")
print("- Classes documented: {}".format(class_count))
print("- Functions documented: {}".format(func_count))
print("- Total lines: {}".format(len(lines)))
print("\nAPI documentation generated successfully!")
sys.exit(0)
if __name__ == '__main__':
main()

View File

@ -1,960 +0,0 @@
#!/usr/bin/env python3
"""Generate COMPLETE HTML API reference documentation for McRogueFace with NO missing methods."""
import os
import sys
import datetime
import html
from pathlib import Path
import mcrfpy
def escape_html(text: str) -> str:
"""Escape HTML special characters."""
return html.escape(text) if text else ""
def get_complete_method_documentation():
"""Return complete documentation for ALL methods across all classes."""
return {
# Base Drawable methods (inherited by all UI elements)
'Drawable': {
'get_bounds': {
'signature': 'get_bounds()',
'description': 'Get the bounding rectangle of this drawable element.',
'returns': 'tuple: (x, y, width, height) representing the element\'s bounds',
'note': 'The bounds are in screen coordinates and account for current position and size.'
},
'move': {
'signature': 'move(dx, dy)',
'description': 'Move the element by a relative offset.',
'args': [
('dx', 'float', 'Horizontal offset in pixels'),
('dy', 'float', 'Vertical offset in pixels')
],
'note': 'This modifies the x and y position properties by the given amounts.'
},
'resize': {
'signature': 'resize(width, height)',
'description': 'Resize the element to new dimensions.',
'args': [
('width', 'float', 'New width in pixels'),
('height', 'float', 'New height in pixels')
],
'note': 'For Caption and Sprite, this may not change actual size if determined by content.'
}
},
# Entity-specific methods
'Entity': {
'at': {
'signature': 'at(x, y)',
'description': 'Check if this entity is at the specified grid coordinates.',
'args': [
('x', 'int', 'Grid x coordinate to check'),
('y', 'int', 'Grid y coordinate to check')
],
'returns': 'bool: True if entity is at position (x, y), False otherwise'
},
'die': {
'signature': 'die()',
'description': 'Remove this entity from its parent grid.',
'note': 'The entity object remains valid but is no longer rendered or updated.'
},
'index': {
'signature': 'index()',
'description': 'Get the index of this entity in its parent grid\'s entity list.',
'returns': 'int: Index position, or -1 if not in a grid'
}
},
# Grid-specific methods
'Grid': {
'at': {
'signature': 'at(x, y)',
'description': 'Get the GridPoint at the specified grid coordinates.',
'args': [
('x', 'int', 'Grid x coordinate'),
('y', 'int', 'Grid y coordinate')
],
'returns': 'GridPoint or None: The grid point at (x, y), or None if out of bounds'
}
},
# Collection methods
'EntityCollection': {
'append': {
'signature': 'append(entity)',
'description': 'Add an entity to the end of the collection.',
'args': [('entity', 'Entity', 'The entity to add')]
},
'remove': {
'signature': 'remove(entity)',
'description': 'Remove the first occurrence of an entity from the collection.',
'args': [('entity', 'Entity', 'The entity to remove')],
'raises': 'ValueError: If entity is not in collection'
},
'extend': {
'signature': 'extend(iterable)',
'description': 'Add all entities from an iterable to the collection.',
'args': [('iterable', 'Iterable[Entity]', 'Entities to add')]
},
'count': {
'signature': 'count(entity)',
'description': 'Count the number of occurrences of an entity in the collection.',
'args': [('entity', 'Entity', 'The entity to count')],
'returns': 'int: Number of times entity appears in collection'
},
'index': {
'signature': 'index(entity)',
'description': 'Find the index of the first occurrence of an entity.',
'args': [('entity', 'Entity', 'The entity to find')],
'returns': 'int: Index of entity in collection',
'raises': 'ValueError: If entity is not in collection'
}
},
'UICollection': {
'append': {
'signature': 'append(drawable)',
'description': 'Add a drawable element to the end of the collection.',
'args': [('drawable', 'UIDrawable', 'The drawable element to add')]
},
'remove': {
'signature': 'remove(drawable)',
'description': 'Remove the first occurrence of a drawable from the collection.',
'args': [('drawable', 'UIDrawable', 'The drawable to remove')],
'raises': 'ValueError: If drawable is not in collection'
},
'extend': {
'signature': 'extend(iterable)',
'description': 'Add all drawables from an iterable to the collection.',
'args': [('iterable', 'Iterable[UIDrawable]', 'Drawables to add')]
},
'count': {
'signature': 'count(drawable)',
'description': 'Count the number of occurrences of a drawable in the collection.',
'args': [('drawable', 'UIDrawable', 'The drawable to count')],
'returns': 'int: Number of times drawable appears in collection'
},
'index': {
'signature': 'index(drawable)',
'description': 'Find the index of the first occurrence of a drawable.',
'args': [('drawable', 'UIDrawable', 'The drawable to find')],
'returns': 'int: Index of drawable in collection',
'raises': 'ValueError: If drawable is not in collection'
}
},
# Animation methods
'Animation': {
'get_current_value': {
'signature': 'get_current_value()',
'description': 'Get the current interpolated value of the animation.',
'returns': 'float: Current animation value between start and end'
},
'start': {
'signature': 'start(target)',
'description': 'Start the animation on a target UI element.',
'args': [('target', 'UIDrawable', 'The UI element to animate')],
'note': 'The target must have the property specified in the animation constructor.'
},
'update': {
'signature': 'update(delta_time)',
'description': 'Update the animation by the given time delta.',
'args': [('delta_time', 'float', 'Time elapsed since last update in seconds')],
'returns': 'bool: True if animation is still running, False if finished'
}
},
# Color methods
'Color': {
'from_hex': {
'signature': 'from_hex(hex_string)',
'description': 'Create a Color from a hexadecimal color string.',
'args': [('hex_string', 'str', 'Hex color string (e.g., "#FF0000" or "FF0000")')],
'returns': 'Color: New Color object from hex string',
'example': 'red = Color.from_hex("#FF0000")'
},
'to_hex': {
'signature': 'to_hex()',
'description': 'Convert this Color to a hexadecimal string.',
'returns': 'str: Hex color string in format "#RRGGBB"',
'example': 'hex_str = color.to_hex() # Returns "#FF0000"'
},
'lerp': {
'signature': 'lerp(other, t)',
'description': 'Linearly interpolate between this color and another.',
'args': [
('other', 'Color', 'The color to interpolate towards'),
('t', 'float', 'Interpolation factor from 0.0 to 1.0')
],
'returns': 'Color: New interpolated Color object',
'example': 'mixed = red.lerp(blue, 0.5) # 50% between red and blue'
}
},
# Vector methods
'Vector': {
'magnitude': {
'signature': 'magnitude()',
'description': 'Calculate the length/magnitude of this vector.',
'returns': 'float: The magnitude of the vector',
'example': 'length = vector.magnitude()'
},
'magnitude_squared': {
'signature': 'magnitude_squared()',
'description': 'Calculate the squared magnitude of this vector.',
'returns': 'float: The squared magnitude (faster than magnitude())',
'note': 'Use this for comparisons to avoid expensive square root calculation.'
},
'normalize': {
'signature': 'normalize()',
'description': 'Return a unit vector in the same direction.',
'returns': 'Vector: New normalized vector with magnitude 1.0',
'raises': 'ValueError: If vector has zero magnitude'
},
'dot': {
'signature': 'dot(other)',
'description': 'Calculate the dot product with another vector.',
'args': [('other', 'Vector', 'The other vector')],
'returns': 'float: Dot product of the two vectors'
},
'distance_to': {
'signature': 'distance_to(other)',
'description': 'Calculate the distance to another vector.',
'args': [('other', 'Vector', 'The other vector')],
'returns': 'float: Distance between the two vectors'
},
'angle': {
'signature': 'angle()',
'description': 'Get the angle of this vector in radians.',
'returns': 'float: Angle in radians from positive x-axis'
},
'copy': {
'signature': 'copy()',
'description': 'Create a copy of this vector.',
'returns': 'Vector: New Vector object with same x and y values'
}
},
# Scene methods
'Scene': {
'activate': {
'signature': 'activate()',
'description': 'Make this scene the active scene.',
'note': 'Equivalent to calling setScene() with this scene\'s name.'
},
'get_ui': {
'signature': 'get_ui()',
'description': 'Get the UI element collection for this scene.',
'returns': 'UICollection: Collection of all UI elements in this scene'
},
'keypress': {
'signature': 'keypress(handler)',
'description': 'Register a keyboard handler function for this scene.',
'args': [('handler', 'callable', 'Function that takes (key_name: str, is_pressed: bool)')],
'note': 'Alternative to overriding the on_keypress method.'
},
'register_keyboard': {
'signature': 'register_keyboard(callable)',
'description': 'Register a keyboard event handler function for the scene.',
'args': [('callable', 'callable', 'Function that takes (key: str, action: str) parameters')],
'note': 'Alternative to overriding the on_keypress method when subclassing Scene objects.',
'example': '''def handle_keyboard(key, action):
print(f"Key '{key}' was {action}")
if key == "q" and action == "press":
# Handle quit
pass
scene.register_keyboard(handle_keyboard)'''
}
},
# Timer methods
'Timer': {
'pause': {
'signature': 'pause()',
'description': 'Pause the timer, stopping its callback execution.',
'note': 'Use resume() to continue the timer from where it was paused.'
},
'resume': {
'signature': 'resume()',
'description': 'Resume a paused timer.',
'note': 'Has no effect if timer is not paused.'
},
'cancel': {
'signature': 'cancel()',
'description': 'Cancel the timer and remove it from the system.',
'note': 'After cancelling, the timer object cannot be reused.'
},
'restart': {
'signature': 'restart()',
'description': 'Restart the timer from the beginning.',
'note': 'Resets the timer\'s internal clock to zero.'
}
},
# Window methods
'Window': {
'get': {
'signature': 'get()',
'description': 'Get the Window singleton instance.',
'returns': 'Window: The singleton window object',
'note': 'This is a static method that returns the same instance every time.'
},
'center': {
'signature': 'center()',
'description': 'Center the window on the screen.',
'note': 'Only works if the window is not fullscreen.'
},
'screenshot': {
'signature': 'screenshot(filename)',
'description': 'Take a screenshot and save it to a file.',
'args': [('filename', 'str', 'Path where to save the screenshot')],
'note': 'Supports PNG, JPG, and BMP formats based on file extension.'
}
}
}
def get_complete_function_documentation():
"""Return complete documentation for ALL module functions."""
return {
# Scene Management
'createScene': {
'signature': 'createScene(name: str) -> None',
'description': 'Create a new empty scene with the given name.',
'args': [('name', 'str', 'Unique name for the new scene')],
'raises': 'ValueError: If a scene with this name already exists',
'note': 'The scene is created but not made active. Use setScene() to switch to it.',
'example': 'mcrfpy.createScene("game_over")'
},
'setScene': {
'signature': 'setScene(scene: str, transition: str = None, duration: float = 0.0) -> None',
'description': 'Switch to a different scene with optional transition effect.',
'args': [
('scene', 'str', 'Name of the scene to switch to'),
('transition', 'str', 'Transition type: "fade", "slide_left", "slide_right", "slide_up", "slide_down"'),
('duration', 'float', 'Transition duration in seconds (default: 0.0 for instant)')
],
'raises': 'KeyError: If the scene doesn\'t exist',
'example': 'mcrfpy.setScene("game", "fade", 0.5)'
},
'currentScene': {
'signature': 'currentScene() -> str',
'description': 'Get the name of the currently active scene.',
'returns': 'str: Name of the current scene',
'example': 'scene_name = mcrfpy.currentScene()'
},
'sceneUI': {
'signature': 'sceneUI(scene: str = None) -> UICollection',
'description': 'Get all UI elements for a scene.',
'args': [('scene', 'str', 'Scene name. If None, uses current scene')],
'returns': 'UICollection: All UI elements in the scene',
'raises': 'KeyError: If the specified scene doesn\'t exist',
'example': 'ui_elements = mcrfpy.sceneUI("game")'
},
'keypressScene': {
'signature': 'keypressScene(handler: callable) -> None',
'description': 'Set the keyboard event handler for the current scene.',
'args': [('handler', 'callable', 'Function that receives (key_name: str, is_pressed: bool)')],
'example': '''def on_key(key, pressed):
if key == "SPACE" and pressed:
player.jump()
mcrfpy.keypressScene(on_key)'''
},
# Audio Functions
'createSoundBuffer': {
'signature': 'createSoundBuffer(filename: str) -> int',
'description': 'Load a sound effect from a file and return its buffer ID.',
'args': [('filename', 'str', 'Path to the sound file (WAV, OGG, FLAC)')],
'returns': 'int: Buffer ID for use with playSound()',
'raises': 'RuntimeError: If the file cannot be loaded',
'example': 'jump_sound = mcrfpy.createSoundBuffer("assets/jump.wav")'
},
'loadMusic': {
'signature': 'loadMusic(filename: str, loop: bool = True) -> None',
'description': 'Load and immediately play background music from a file.',
'args': [
('filename', 'str', 'Path to the music file (WAV, OGG, FLAC)'),
('loop', 'bool', 'Whether to loop the music (default: True)')
],
'note': 'Only one music track can play at a time. Loading new music stops the current track.',
'example': 'mcrfpy.loadMusic("assets/background.ogg", True)'
},
'playSound': {
'signature': 'playSound(buffer_id: int) -> None',
'description': 'Play a sound effect using a previously loaded buffer.',
'args': [('buffer_id', 'int', 'Sound buffer ID returned by createSoundBuffer()')],
'raises': 'RuntimeError: If the buffer ID is invalid',
'example': 'mcrfpy.playSound(jump_sound)'
},
'getMusicVolume': {
'signature': 'getMusicVolume() -> int',
'description': 'Get the current music volume level.',
'returns': 'int: Current volume (0-100)',
'example': 'current_volume = mcrfpy.getMusicVolume()'
},
'getSoundVolume': {
'signature': 'getSoundVolume() -> int',
'description': 'Get the current sound effects volume level.',
'returns': 'int: Current volume (0-100)',
'example': 'current_volume = mcrfpy.getSoundVolume()'
},
'setMusicVolume': {
'signature': 'setMusicVolume(volume: int) -> None',
'description': 'Set the global music volume.',
'args': [('volume', 'int', 'Volume level from 0 (silent) to 100 (full volume)')],
'example': 'mcrfpy.setMusicVolume(50) # Set to 50% volume'
},
'setSoundVolume': {
'signature': 'setSoundVolume(volume: int) -> None',
'description': 'Set the global sound effects volume.',
'args': [('volume', 'int', 'Volume level from 0 (silent) to 100 (full volume)')],
'example': 'mcrfpy.setSoundVolume(75) # Set to 75% volume'
},
# UI Utilities
'find': {
'signature': 'find(name: str, scene: str = None) -> UIDrawable | None',
'description': 'Find the first UI element with the specified name.',
'args': [
('name', 'str', 'Exact name to search for'),
('scene', 'str', 'Scene to search in (default: current scene)')
],
'returns': 'UIDrawable or None: The found element, or None if not found',
'note': 'Searches scene UI elements and entities within grids.',
'example': 'button = mcrfpy.find("start_button")'
},
'findAll': {
'signature': 'findAll(pattern: str, scene: str = None) -> list',
'description': 'Find all UI elements matching a name pattern.',
'args': [
('pattern', 'str', 'Name pattern with optional wildcards (* matches any characters)'),
('scene', 'str', 'Scene to search in (default: current scene)')
],
'returns': 'list: All matching UI elements and entities',
'example': 'enemies = mcrfpy.findAll("enemy_*")'
},
# System Functions
'exit': {
'signature': 'exit() -> None',
'description': 'Cleanly shut down the game engine and exit the application.',
'note': 'This immediately closes the window and terminates the program.',
'example': 'mcrfpy.exit()'
},
'getMetrics': {
'signature': 'getMetrics() -> dict',
'description': 'Get current performance metrics.',
'returns': '''dict: Performance data with keys:
- frame_time: Last frame duration in seconds
- avg_frame_time: Average frame time
- fps: Frames per second
- draw_calls: Number of draw calls
- ui_elements: Total UI element count
- visible_elements: Visible element count
- current_frame: Frame counter
- runtime: Total runtime in seconds''',
'example': 'metrics = mcrfpy.getMetrics()'
},
'setTimer': {
'signature': 'setTimer(name: str, handler: callable, interval: int) -> None',
'description': 'Create or update a recurring timer.',
'args': [
('name', 'str', 'Unique identifier for the timer'),
('handler', 'callable', 'Function called with (runtime: float) parameter'),
('interval', 'int', 'Time between calls in milliseconds')
],
'note': 'If a timer with this name exists, it will be replaced.',
'example': '''def update_score(runtime):
score += 1
mcrfpy.setTimer("score_update", update_score, 1000)'''
},
'delTimer': {
'signature': 'delTimer(name: str) -> None',
'description': 'Stop and remove a timer.',
'args': [('name', 'str', 'Timer identifier to remove')],
'note': 'No error is raised if the timer doesn\'t exist.',
'example': 'mcrfpy.delTimer("score_update")'
},
'setScale': {
'signature': 'setScale(multiplier: float) -> None',
'description': 'Scale the game window size.',
'args': [('multiplier', 'float', 'Scale factor (e.g., 2.0 for double size)')],
'note': 'The internal resolution remains 1024x768, but the window is scaled.',
'example': 'mcrfpy.setScale(2.0) # Double the window size'
}
}
def get_complete_property_documentation():
"""Return complete documentation for ALL properties."""
return {
'Animation': {
'property': 'str: Name of the property being animated (e.g., "x", "y", "scale")',
'duration': 'float: Total duration of the animation in seconds',
'elapsed_time': 'float: Time elapsed since animation started (read-only)',
'current_value': 'float: Current interpolated value of the animation (read-only)',
'is_running': 'bool: True if animation is currently running (read-only)',
'is_finished': 'bool: True if animation has completed (read-only)'
},
'GridPoint': {
'x': 'int: Grid x coordinate of this point',
'y': 'int: Grid y coordinate of this point',
'texture_index': 'int: Index of the texture/sprite to display at this point',
'solid': 'bool: Whether this point blocks movement',
'transparent': 'bool: Whether this point allows light/vision through',
'color': 'Color: Color tint applied to the texture at this point'
},
'GridPointState': {
'visible': 'bool: Whether this point is currently visible to the player',
'discovered': 'bool: Whether this point has been discovered/explored',
'custom_flags': 'int: Bitfield for custom game-specific flags'
}
}
def generate_complete_html_documentation():
"""Generate complete HTML documentation with NO missing methods."""
# Get all documentation data
method_docs = get_complete_method_documentation()
function_docs = get_complete_function_documentation()
property_docs = get_complete_property_documentation()
html_parts = []
# HTML header with enhanced styling
html_parts.append('''<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>McRogueFace API Reference - Complete Documentation</title>
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
line-height: 1.6;
color: #333;
max-width: 1200px;
margin: 0 auto;
padding: 20px;
background: #f8f9fa;
}
.container {
background: white;
padding: 30px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
h1 {
color: #2c3e50;
border-bottom: 3px solid #3498db;
padding-bottom: 15px;
margin-bottom: 30px;
}
h2 {
color: #34495e;
border-bottom: 2px solid #ecf0f1;
padding-bottom: 10px;
margin-top: 40px;
}
h3 {
color: #2c3e50;
margin-top: 30px;
}
h4 {
color: #34495e;
margin-top: 20px;
font-size: 1.1em;
}
h5 {
color: #555;
margin-top: 15px;
font-size: 1em;
}
code {
background: #f4f4f4;
padding: 2px 6px;
border-radius: 3px;
font-family: "SF Mono", Monaco, "Cascadia Code", "Roboto Mono", Consolas, monospace;
font-size: 0.9em;
}
pre {
background: #f8f8f8;
border: 1px solid #e1e4e8;
border-radius: 6px;
padding: 16px;
overflow-x: auto;
margin: 15px 0;
}
pre code {
background: none;
padding: 0;
font-size: 0.875em;
line-height: 1.45;
}
.class-name {
color: #8e44ad;
font-weight: bold;
}
.property {
color: #27ae60;
font-weight: 600;
}
.method {
color: #2980b9;
font-weight: 600;
}
.function-signature {
color: #d73a49;
font-weight: 600;
}
.method-section {
margin: 20px 0;
padding: 15px;
background: #f8f9fa;
border-radius: 6px;
border-left: 4px solid #3498db;
}
.arg-list {
margin: 10px 0;
}
.arg-item {
margin: 8px 0;
padding: 8px;
background: #fff;
border-radius: 4px;
border: 1px solid #e1e4e8;
}
.arg-name {
color: #d73a49;
font-weight: 600;
}
.arg-type {
color: #6f42c1;
font-style: italic;
}
.returns {
background: #e8f5e8;
padding: 10px;
border-radius: 4px;
border-left: 4px solid #28a745;
margin: 10px 0;
}
.note {
background: #fff3cd;
padding: 10px;
border-radius: 4px;
border-left: 4px solid #ffc107;
margin: 10px 0;
}
.example {
background: #e7f3ff;
padding: 15px;
border-radius: 4px;
border-left: 4px solid #0366d6;
margin: 15px 0;
}
.toc {
background: #f8f9fa;
border: 1px solid #e1e4e8;
border-radius: 6px;
padding: 20px;
margin: 20px 0;
}
.toc ul {
list-style: none;
padding-left: 0;
}
.toc li {
margin: 8px 0;
}
.toc a {
color: #3498db;
text-decoration: none;
font-weight: 500;
}
.toc a:hover {
text-decoration: underline;
}
</style>
</head>
<body>
<div class="container">
''')
# Title and overview
html_parts.append('<h1>McRogueFace API Reference - Complete Documentation</h1>')
html_parts.append(f'<p><em>Generated on {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}</em></p>')
# Table of contents
html_parts.append('<div class="toc">')
html_parts.append('<h2>Table of Contents</h2>')
html_parts.append('<ul>')
html_parts.append('<li><a href="#functions">Functions</a></li>')
html_parts.append('<li><a href="#classes">Classes</a></li>')
html_parts.append('<li><a href="#automation">Automation Module</a></li>')
html_parts.append('</ul>')
html_parts.append('</div>')
# Functions section
html_parts.append('<h2 id="functions">Functions</h2>')
# Group functions by category
categories = {
'Scene Management': ['createScene', 'setScene', 'currentScene', 'sceneUI', 'keypressScene'],
'Audio': ['createSoundBuffer', 'loadMusic', 'playSound', 'getMusicVolume', 'getSoundVolume', 'setMusicVolume', 'setSoundVolume'],
'UI Utilities': ['find', 'findAll'],
'System': ['exit', 'getMetrics', 'setTimer', 'delTimer', 'setScale']
}
for category, functions in categories.items():
html_parts.append(f'<h3>{category}</h3>')
for func_name in functions:
if func_name in function_docs:
html_parts.append(format_function_html(func_name, function_docs[func_name]))
# Classes section
html_parts.append('<h2 id="classes">Classes</h2>')
# Get all classes from mcrfpy
classes = []
for name in sorted(dir(mcrfpy)):
if not name.startswith('_'):
obj = getattr(mcrfpy, name)
if isinstance(obj, type):
classes.append((name, obj))
# Generate class documentation
for class_name, cls in classes:
html_parts.append(format_class_html_complete(class_name, cls, method_docs, property_docs))
# Automation section
if hasattr(mcrfpy, 'automation'):
html_parts.append('<h2 id="automation">Automation Module</h2>')
html_parts.append('<p>The <code>mcrfpy.automation</code> module provides testing and automation capabilities.</p>')
automation = mcrfpy.automation
for name in sorted(dir(automation)):
if not name.startswith('_'):
obj = getattr(automation, name)
if callable(obj):
html_parts.append(f'<div class="method-section">')
html_parts.append(f'<h4><code class="function-signature">automation.{name}</code></h4>')
if obj.__doc__:
doc_parts = obj.__doc__.split(' - ')
if len(doc_parts) > 1:
html_parts.append(f'<p>{escape_html(doc_parts[1])}</p>')
else:
html_parts.append(f'<p>{escape_html(obj.__doc__)}</p>')
html_parts.append('</div>')
html_parts.append('</div>')
html_parts.append('</body>')
html_parts.append('</html>')
return '\n'.join(html_parts)
def format_function_html(func_name, func_doc):
"""Format a function with complete documentation."""
html_parts = []
html_parts.append('<div class="method-section">')
html_parts.append(f'<h4><code class="function-signature">{func_doc["signature"]}</code></h4>')
html_parts.append(f'<p>{escape_html(func_doc["description"])}</p>')
# Arguments
if 'args' in func_doc:
html_parts.append('<div class="arg-list">')
html_parts.append('<h5>Arguments:</h5>')
for arg in func_doc['args']:
html_parts.append('<div class="arg-item">')
html_parts.append(f'<span class="arg-name">{arg[0]}</span> ')
html_parts.append(f'<span class="arg-type">({arg[1]})</span>: ')
html_parts.append(f'{escape_html(arg[2])}')
html_parts.append('</div>')
html_parts.append('</div>')
# Returns
if 'returns' in func_doc:
html_parts.append('<div class="returns">')
html_parts.append(f'<strong>Returns:</strong> {escape_html(func_doc["returns"])}')
html_parts.append('</div>')
# Raises
if 'raises' in func_doc:
html_parts.append('<div class="note">')
html_parts.append(f'<strong>Raises:</strong> {escape_html(func_doc["raises"])}')
html_parts.append('</div>')
# Note
if 'note' in func_doc:
html_parts.append('<div class="note">')
html_parts.append(f'<strong>Note:</strong> {escape_html(func_doc["note"])}')
html_parts.append('</div>')
# Example
if 'example' in func_doc:
html_parts.append('<div class="example">')
html_parts.append('<h5>Example:</h5>')
html_parts.append('<pre><code>')
html_parts.append(escape_html(func_doc['example']))
html_parts.append('</code></pre>')
html_parts.append('</div>')
html_parts.append('</div>')
return '\n'.join(html_parts)
def format_class_html_complete(class_name, cls, method_docs, property_docs):
"""Format a class with complete documentation."""
html_parts = []
html_parts.append('<div class="method-section">')
html_parts.append(f'<h3><span class="class-name">{class_name}</span></h3>')
# Class description
if cls.__doc__:
html_parts.append(f'<p>{escape_html(cls.__doc__)}</p>')
# Properties
if class_name in property_docs:
html_parts.append('<h4>Properties:</h4>')
for prop_name, prop_desc in property_docs[class_name].items():
html_parts.append(f'<div class="arg-item">')
html_parts.append(f'<span class="property">{prop_name}</span>: {escape_html(prop_desc)}')
html_parts.append('</div>')
# Methods
methods_to_document = []
# Add inherited methods for UI classes
if any(base.__name__ == 'Drawable' for base in cls.__bases__ if hasattr(base, '__name__')):
methods_to_document.extend(['get_bounds', 'move', 'resize'])
# Add class-specific methods
if class_name in method_docs:
methods_to_document.extend(method_docs[class_name].keys())
# Add methods from introspection
for attr_name in dir(cls):
if not attr_name.startswith('_') and callable(getattr(cls, attr_name)):
if attr_name not in methods_to_document:
methods_to_document.append(attr_name)
if methods_to_document:
html_parts.append('<h4>Methods:</h4>')
for method_name in set(methods_to_document):
# Get method documentation
method_doc = None
if class_name in method_docs and method_name in method_docs[class_name]:
method_doc = method_docs[class_name][method_name]
elif method_name in method_docs.get('Drawable', {}):
method_doc = method_docs['Drawable'][method_name]
if method_doc:
html_parts.append(format_method_html(method_name, method_doc))
else:
# Basic method with no documentation
html_parts.append(f'<div class="arg-item">')
html_parts.append(f'<span class="method">{method_name}(...)</span>')
html_parts.append('</div>')
html_parts.append('</div>')
return '\n'.join(html_parts)
def format_method_html(method_name, method_doc):
"""Format a method with complete documentation."""
html_parts = []
html_parts.append('<div style="margin-left: 20px; margin-bottom: 15px;">')
html_parts.append(f'<h5><code class="method">{method_doc["signature"]}</code></h5>')
html_parts.append(f'<p>{escape_html(method_doc["description"])}</p>')
# Arguments
if 'args' in method_doc:
for arg in method_doc['args']:
html_parts.append(f'<div style="margin-left: 20px;">')
html_parts.append(f'<span class="arg-name">{arg[0]}</span> ')
html_parts.append(f'<span class="arg-type">({arg[1]})</span>: ')
html_parts.append(f'{escape_html(arg[2])}')
html_parts.append('</div>')
# Returns
if 'returns' in method_doc:
html_parts.append(f'<div style="margin-left: 20px; color: #28a745;">')
html_parts.append(f'<strong>Returns:</strong> {escape_html(method_doc["returns"])}')
html_parts.append('</div>')
# Note
if 'note' in method_doc:
html_parts.append(f'<div style="margin-left: 20px; color: #856404;">')
html_parts.append(f'<strong>Note:</strong> {escape_html(method_doc["note"])}')
html_parts.append('</div>')
# Example
if 'example' in method_doc:
html_parts.append(f'<div style="margin-left: 20px;">')
html_parts.append('<strong>Example:</strong>')
html_parts.append('<pre><code>')
html_parts.append(escape_html(method_doc['example']))
html_parts.append('</code></pre>')
html_parts.append('</div>')
html_parts.append('</div>')
return '\n'.join(html_parts)
def main():
"""Generate complete HTML documentation with zero missing methods."""
print("Generating COMPLETE HTML API documentation...")
# Generate HTML
html_content = generate_complete_html_documentation()
# Write to file
output_path = Path("docs/api_reference_complete.html")
output_path.parent.mkdir(exist_ok=True)
with open(output_path, 'w', encoding='utf-8') as f:
f.write(html_content)
print(f"✓ Generated {output_path}")
print(f" File size: {len(html_content):,} bytes")
# Count "..." instances
ellipsis_count = html_content.count('...')
print(f" Ellipsis instances: {ellipsis_count}")
if ellipsis_count == 0:
print("✅ SUCCESS: No missing documentation found!")
else:
print(f"❌ WARNING: {ellipsis_count} methods still need documentation")
if __name__ == '__main__':
main()

View File

@ -1,821 +0,0 @@
#!/usr/bin/env python3
"""Generate COMPLETE Markdown API reference documentation for McRogueFace with NO missing methods."""
import os
import sys
import datetime
from pathlib import Path
import mcrfpy
def get_complete_method_documentation():
"""Return complete documentation for ALL methods across all classes."""
return {
# Base Drawable methods (inherited by all UI elements)
'Drawable': {
'get_bounds': {
'signature': 'get_bounds()',
'description': 'Get the bounding rectangle of this drawable element.',
'returns': 'tuple: (x, y, width, height) representing the element\'s bounds',
'note': 'The bounds are in screen coordinates and account for current position and size.'
},
'move': {
'signature': 'move(dx, dy)',
'description': 'Move the element by a relative offset.',
'args': [
('dx', 'float', 'Horizontal offset in pixels'),
('dy', 'float', 'Vertical offset in pixels')
],
'note': 'This modifies the x and y position properties by the given amounts.'
},
'resize': {
'signature': 'resize(width, height)',
'description': 'Resize the element to new dimensions.',
'args': [
('width', 'float', 'New width in pixels'),
('height', 'float', 'New height in pixels')
],
'note': 'For Caption and Sprite, this may not change actual size if determined by content.'
}
},
# Entity-specific methods
'Entity': {
'at': {
'signature': 'at(x, y)',
'description': 'Check if this entity is at the specified grid coordinates.',
'args': [
('x', 'int', 'Grid x coordinate to check'),
('y', 'int', 'Grid y coordinate to check')
],
'returns': 'bool: True if entity is at position (x, y), False otherwise'
},
'die': {
'signature': 'die()',
'description': 'Remove this entity from its parent grid.',
'note': 'The entity object remains valid but is no longer rendered or updated.'
},
'index': {
'signature': 'index()',
'description': 'Get the index of this entity in its parent grid\'s entity list.',
'returns': 'int: Index position, or -1 if not in a grid'
}
},
# Grid-specific methods
'Grid': {
'at': {
'signature': 'at(x, y)',
'description': 'Get the GridPoint at the specified grid coordinates.',
'args': [
('x', 'int', 'Grid x coordinate'),
('y', 'int', 'Grid y coordinate')
],
'returns': 'GridPoint or None: The grid point at (x, y), or None if out of bounds'
}
},
# Collection methods
'EntityCollection': {
'append': {
'signature': 'append(entity)',
'description': 'Add an entity to the end of the collection.',
'args': [('entity', 'Entity', 'The entity to add')]
},
'remove': {
'signature': 'remove(entity)',
'description': 'Remove the first occurrence of an entity from the collection.',
'args': [('entity', 'Entity', 'The entity to remove')],
'raises': 'ValueError: If entity is not in collection'
},
'extend': {
'signature': 'extend(iterable)',
'description': 'Add all entities from an iterable to the collection.',
'args': [('iterable', 'Iterable[Entity]', 'Entities to add')]
},
'count': {
'signature': 'count(entity)',
'description': 'Count the number of occurrences of an entity in the collection.',
'args': [('entity', 'Entity', 'The entity to count')],
'returns': 'int: Number of times entity appears in collection'
},
'index': {
'signature': 'index(entity)',
'description': 'Find the index of the first occurrence of an entity.',
'args': [('entity', 'Entity', 'The entity to find')],
'returns': 'int: Index of entity in collection',
'raises': 'ValueError: If entity is not in collection'
}
},
'UICollection': {
'append': {
'signature': 'append(drawable)',
'description': 'Add a drawable element to the end of the collection.',
'args': [('drawable', 'UIDrawable', 'The drawable element to add')]
},
'remove': {
'signature': 'remove(drawable)',
'description': 'Remove the first occurrence of a drawable from the collection.',
'args': [('drawable', 'UIDrawable', 'The drawable to remove')],
'raises': 'ValueError: If drawable is not in collection'
},
'extend': {
'signature': 'extend(iterable)',
'description': 'Add all drawables from an iterable to the collection.',
'args': [('iterable', 'Iterable[UIDrawable]', 'Drawables to add')]
},
'count': {
'signature': 'count(drawable)',
'description': 'Count the number of occurrences of a drawable in the collection.',
'args': [('drawable', 'UIDrawable', 'The drawable to count')],
'returns': 'int: Number of times drawable appears in collection'
},
'index': {
'signature': 'index(drawable)',
'description': 'Find the index of the first occurrence of a drawable.',
'args': [('drawable', 'UIDrawable', 'The drawable to find')],
'returns': 'int: Index of drawable in collection',
'raises': 'ValueError: If drawable is not in collection'
}
},
# Animation methods
'Animation': {
'get_current_value': {
'signature': 'get_current_value()',
'description': 'Get the current interpolated value of the animation.',
'returns': 'float: Current animation value between start and end'
},
'start': {
'signature': 'start(target)',
'description': 'Start the animation on a target UI element.',
'args': [('target', 'UIDrawable', 'The UI element to animate')],
'note': 'The target must have the property specified in the animation constructor.'
},
'update': {
'signature': 'update(delta_time)',
'description': 'Update the animation by the given time delta.',
'args': [('delta_time', 'float', 'Time elapsed since last update in seconds')],
'returns': 'bool: True if animation is still running, False if finished'
}
},
# Color methods
'Color': {
'from_hex': {
'signature': 'from_hex(hex_string)',
'description': 'Create a Color from a hexadecimal color string.',
'args': [('hex_string', 'str', 'Hex color string (e.g., "#FF0000" or "FF0000")')],
'returns': 'Color: New Color object from hex string',
'example': 'red = Color.from_hex("#FF0000")'
},
'to_hex': {
'signature': 'to_hex()',
'description': 'Convert this Color to a hexadecimal string.',
'returns': 'str: Hex color string in format "#RRGGBB"',
'example': 'hex_str = color.to_hex() # Returns "#FF0000"'
},
'lerp': {
'signature': 'lerp(other, t)',
'description': 'Linearly interpolate between this color and another.',
'args': [
('other', 'Color', 'The color to interpolate towards'),
('t', 'float', 'Interpolation factor from 0.0 to 1.0')
],
'returns': 'Color: New interpolated Color object',
'example': 'mixed = red.lerp(blue, 0.5) # 50% between red and blue'
}
},
# Vector methods
'Vector': {
'magnitude': {
'signature': 'magnitude()',
'description': 'Calculate the length/magnitude of this vector.',
'returns': 'float: The magnitude of the vector'
},
'magnitude_squared': {
'signature': 'magnitude_squared()',
'description': 'Calculate the squared magnitude of this vector.',
'returns': 'float: The squared magnitude (faster than magnitude())',
'note': 'Use this for comparisons to avoid expensive square root calculation.'
},
'normalize': {
'signature': 'normalize()',
'description': 'Return a unit vector in the same direction.',
'returns': 'Vector: New normalized vector with magnitude 1.0',
'raises': 'ValueError: If vector has zero magnitude'
},
'dot': {
'signature': 'dot(other)',
'description': 'Calculate the dot product with another vector.',
'args': [('other', 'Vector', 'The other vector')],
'returns': 'float: Dot product of the two vectors'
},
'distance_to': {
'signature': 'distance_to(other)',
'description': 'Calculate the distance to another vector.',
'args': [('other', 'Vector', 'The other vector')],
'returns': 'float: Distance between the two vectors'
},
'angle': {
'signature': 'angle()',
'description': 'Get the angle of this vector in radians.',
'returns': 'float: Angle in radians from positive x-axis'
},
'copy': {
'signature': 'copy()',
'description': 'Create a copy of this vector.',
'returns': 'Vector: New Vector object with same x and y values'
}
},
# Scene methods
'Scene': {
'activate': {
'signature': 'activate()',
'description': 'Make this scene the active scene.',
'note': 'Equivalent to calling setScene() with this scene\'s name.'
},
'get_ui': {
'signature': 'get_ui()',
'description': 'Get the UI element collection for this scene.',
'returns': 'UICollection: Collection of all UI elements in this scene'
},
'keypress': {
'signature': 'keypress(handler)',
'description': 'Register a keyboard handler function for this scene.',
'args': [('handler', 'callable', 'Function that takes (key_name: str, is_pressed: bool)')],
'note': 'Alternative to overriding the on_keypress method.'
},
'register_keyboard': {
'signature': 'register_keyboard(callable)',
'description': 'Register a keyboard event handler function for the scene.',
'args': [('callable', 'callable', 'Function that takes (key: str, action: str) parameters')],
'note': 'Alternative to overriding the on_keypress method when subclassing Scene objects.',
'example': '''def handle_keyboard(key, action):
print(f"Key '{key}' was {action}")
scene.register_keyboard(handle_keyboard)'''
}
},
# Timer methods
'Timer': {
'pause': {
'signature': 'pause()',
'description': 'Pause the timer, stopping its callback execution.',
'note': 'Use resume() to continue the timer from where it was paused.'
},
'resume': {
'signature': 'resume()',
'description': 'Resume a paused timer.',
'note': 'Has no effect if timer is not paused.'
},
'cancel': {
'signature': 'cancel()',
'description': 'Cancel the timer and remove it from the system.',
'note': 'After cancelling, the timer object cannot be reused.'
},
'restart': {
'signature': 'restart()',
'description': 'Restart the timer from the beginning.',
'note': 'Resets the timer\'s internal clock to zero.'
}
},
# Window methods
'Window': {
'get': {
'signature': 'get()',
'description': 'Get the Window singleton instance.',
'returns': 'Window: The singleton window object',
'note': 'This is a static method that returns the same instance every time.'
},
'center': {
'signature': 'center()',
'description': 'Center the window on the screen.',
'note': 'Only works if the window is not fullscreen.'
},
'screenshot': {
'signature': 'screenshot(filename)',
'description': 'Take a screenshot and save it to a file.',
'args': [('filename', 'str', 'Path where to save the screenshot')],
'note': 'Supports PNG, JPG, and BMP formats based on file extension.'
}
}
}
def get_complete_function_documentation():
"""Return complete documentation for ALL module functions."""
return {
# Scene Management
'createScene': {
'signature': 'createScene(name: str) -> None',
'description': 'Create a new empty scene with the given name.',
'args': [('name', 'str', 'Unique name for the new scene')],
'raises': 'ValueError: If a scene with this name already exists',
'note': 'The scene is created but not made active. Use setScene() to switch to it.',
'example': 'mcrfpy.createScene("game_over")'
},
'setScene': {
'signature': 'setScene(scene: str, transition: str = None, duration: float = 0.0) -> None',
'description': 'Switch to a different scene with optional transition effect.',
'args': [
('scene', 'str', 'Name of the scene to switch to'),
('transition', 'str', 'Transition type: "fade", "slide_left", "slide_right", "slide_up", "slide_down"'),
('duration', 'float', 'Transition duration in seconds (default: 0.0 for instant)')
],
'raises': 'KeyError: If the scene doesn\'t exist',
'example': 'mcrfpy.setScene("game", "fade", 0.5)'
},
'currentScene': {
'signature': 'currentScene() -> str',
'description': 'Get the name of the currently active scene.',
'returns': 'str: Name of the current scene',
'example': 'scene_name = mcrfpy.currentScene()'
},
'sceneUI': {
'signature': 'sceneUI(scene: str = None) -> UICollection',
'description': 'Get all UI elements for a scene.',
'args': [('scene', 'str', 'Scene name. If None, uses current scene')],
'returns': 'UICollection: All UI elements in the scene',
'raises': 'KeyError: If the specified scene doesn\'t exist',
'example': 'ui_elements = mcrfpy.sceneUI("game")'
},
'keypressScene': {
'signature': 'keypressScene(handler: callable) -> None',
'description': 'Set the keyboard event handler for the current scene.',
'args': [('handler', 'callable', 'Function that receives (key_name: str, is_pressed: bool)')],
'example': '''def on_key(key, pressed):
if key == "SPACE" and pressed:
player.jump()
mcrfpy.keypressScene(on_key)'''
},
# Audio Functions
'createSoundBuffer': {
'signature': 'createSoundBuffer(filename: str) -> int',
'description': 'Load a sound effect from a file and return its buffer ID.',
'args': [('filename', 'str', 'Path to the sound file (WAV, OGG, FLAC)')],
'returns': 'int: Buffer ID for use with playSound()',
'raises': 'RuntimeError: If the file cannot be loaded',
'example': 'jump_sound = mcrfpy.createSoundBuffer("assets/jump.wav")'
},
'loadMusic': {
'signature': 'loadMusic(filename: str, loop: bool = True) -> None',
'description': 'Load and immediately play background music from a file.',
'args': [
('filename', 'str', 'Path to the music file (WAV, OGG, FLAC)'),
('loop', 'bool', 'Whether to loop the music (default: True)')
],
'note': 'Only one music track can play at a time. Loading new music stops the current track.',
'example': 'mcrfpy.loadMusic("assets/background.ogg", True)'
},
'playSound': {
'signature': 'playSound(buffer_id: int) -> None',
'description': 'Play a sound effect using a previously loaded buffer.',
'args': [('buffer_id', 'int', 'Sound buffer ID returned by createSoundBuffer()')],
'raises': 'RuntimeError: If the buffer ID is invalid',
'example': 'mcrfpy.playSound(jump_sound)'
},
'getMusicVolume': {
'signature': 'getMusicVolume() -> int',
'description': 'Get the current music volume level.',
'returns': 'int: Current volume (0-100)',
'example': 'current_volume = mcrfpy.getMusicVolume()'
},
'getSoundVolume': {
'signature': 'getSoundVolume() -> int',
'description': 'Get the current sound effects volume level.',
'returns': 'int: Current volume (0-100)',
'example': 'current_volume = mcrfpy.getSoundVolume()'
},
'setMusicVolume': {
'signature': 'setMusicVolume(volume: int) -> None',
'description': 'Set the global music volume.',
'args': [('volume', 'int', 'Volume level from 0 (silent) to 100 (full volume)')],
'example': 'mcrfpy.setMusicVolume(50) # Set to 50% volume'
},
'setSoundVolume': {
'signature': 'setSoundVolume(volume: int) -> None',
'description': 'Set the global sound effects volume.',
'args': [('volume', 'int', 'Volume level from 0 (silent) to 100 (full volume)')],
'example': 'mcrfpy.setSoundVolume(75) # Set to 75% volume'
},
# UI Utilities
'find': {
'signature': 'find(name: str, scene: str = None) -> UIDrawable | None',
'description': 'Find the first UI element with the specified name.',
'args': [
('name', 'str', 'Exact name to search for'),
('scene', 'str', 'Scene to search in (default: current scene)')
],
'returns': 'UIDrawable or None: The found element, or None if not found',
'note': 'Searches scene UI elements and entities within grids.',
'example': 'button = mcrfpy.find("start_button")'
},
'findAll': {
'signature': 'findAll(pattern: str, scene: str = None) -> list',
'description': 'Find all UI elements matching a name pattern.',
'args': [
('pattern', 'str', 'Name pattern with optional wildcards (* matches any characters)'),
('scene', 'str', 'Scene to search in (default: current scene)')
],
'returns': 'list: All matching UI elements and entities',
'example': 'enemies = mcrfpy.findAll("enemy_*")'
},
# System Functions
'exit': {
'signature': 'exit() -> None',
'description': 'Cleanly shut down the game engine and exit the application.',
'note': 'This immediately closes the window and terminates the program.',
'example': 'mcrfpy.exit()'
},
'getMetrics': {
'signature': 'getMetrics() -> dict',
'description': 'Get current performance metrics.',
'returns': '''dict: Performance data with keys:
- frame_time: Last frame duration in seconds
- avg_frame_time: Average frame time
- fps: Frames per second
- draw_calls: Number of draw calls
- ui_elements: Total UI element count
- visible_elements: Visible element count
- current_frame: Frame counter
- runtime: Total runtime in seconds''',
'example': 'metrics = mcrfpy.getMetrics()'
},
'setTimer': {
'signature': 'setTimer(name: str, handler: callable, interval: int) -> None',
'description': 'Create or update a recurring timer.',
'args': [
('name', 'str', 'Unique identifier for the timer'),
('handler', 'callable', 'Function called with (runtime: float) parameter'),
('interval', 'int', 'Time between calls in milliseconds')
],
'note': 'If a timer with this name exists, it will be replaced.',
'example': '''def update_score(runtime):
score += 1
mcrfpy.setTimer("score_update", update_score, 1000)'''
},
'delTimer': {
'signature': 'delTimer(name: str) -> None',
'description': 'Stop and remove a timer.',
'args': [('name', 'str', 'Timer identifier to remove')],
'note': 'No error is raised if the timer doesn\'t exist.',
'example': 'mcrfpy.delTimer("score_update")'
},
'setScale': {
'signature': 'setScale(multiplier: float) -> None',
'description': 'Scale the game window size.',
'args': [('multiplier', 'float', 'Scale factor (e.g., 2.0 for double size)')],
'note': 'The internal resolution remains 1024x768, but the window is scaled.',
'example': 'mcrfpy.setScale(2.0) # Double the window size'
}
}
def get_complete_property_documentation():
"""Return complete documentation for ALL properties."""
return {
'Animation': {
'property': 'str: Name of the property being animated (e.g., "x", "y", "scale")',
'duration': 'float: Total duration of the animation in seconds',
'elapsed_time': 'float: Time elapsed since animation started (read-only)',
'current_value': 'float: Current interpolated value of the animation (read-only)',
'is_running': 'bool: True if animation is currently running (read-only)',
'is_finished': 'bool: True if animation has completed (read-only)'
},
'GridPoint': {
'x': 'int: Grid x coordinate of this point',
'y': 'int: Grid y coordinate of this point',
'texture_index': 'int: Index of the texture/sprite to display at this point',
'solid': 'bool: Whether this point blocks movement',
'transparent': 'bool: Whether this point allows light/vision through',
'color': 'Color: Color tint applied to the texture at this point'
},
'GridPointState': {
'visible': 'bool: Whether this point is currently visible to the player',
'discovered': 'bool: Whether this point has been discovered/explored',
'custom_flags': 'int: Bitfield for custom game-specific flags'
}
}
def format_method_markdown(method_name, method_doc):
"""Format a method as markdown."""
lines = []
lines.append(f"#### `{method_doc['signature']}`")
lines.append("")
lines.append(method_doc['description'])
lines.append("")
# Arguments
if 'args' in method_doc:
lines.append("**Arguments:**")
for arg in method_doc['args']:
lines.append(f"- `{arg[0]}` (*{arg[1]}*): {arg[2]}")
lines.append("")
# Returns
if 'returns' in method_doc:
lines.append(f"**Returns:** {method_doc['returns']}")
lines.append("")
# Raises
if 'raises' in method_doc:
lines.append(f"**Raises:** {method_doc['raises']}")
lines.append("")
# Note
if 'note' in method_doc:
lines.append(f"**Note:** {method_doc['note']}")
lines.append("")
# Example
if 'example' in method_doc:
lines.append("**Example:**")
lines.append("```python")
lines.append(method_doc['example'])
lines.append("```")
lines.append("")
return lines
def format_function_markdown(func_name, func_doc):
"""Format a function as markdown."""
lines = []
lines.append(f"### `{func_doc['signature']}`")
lines.append("")
lines.append(func_doc['description'])
lines.append("")
# Arguments
if 'args' in func_doc:
lines.append("**Arguments:**")
for arg in func_doc['args']:
lines.append(f"- `{arg[0]}` (*{arg[1]}*): {arg[2]}")
lines.append("")
# Returns
if 'returns' in func_doc:
lines.append(f"**Returns:** {func_doc['returns']}")
lines.append("")
# Raises
if 'raises' in func_doc:
lines.append(f"**Raises:** {func_doc['raises']}")
lines.append("")
# Note
if 'note' in func_doc:
lines.append(f"**Note:** {func_doc['note']}")
lines.append("")
# Example
if 'example' in func_doc:
lines.append("**Example:**")
lines.append("```python")
lines.append(func_doc['example'])
lines.append("```")
lines.append("")
lines.append("---")
lines.append("")
return lines
def generate_complete_markdown_documentation():
"""Generate complete markdown documentation with NO missing methods."""
# Get all documentation data
method_docs = get_complete_method_documentation()
function_docs = get_complete_function_documentation()
property_docs = get_complete_property_documentation()
lines = []
# Header
lines.append("# McRogueFace API Reference")
lines.append("")
lines.append(f"*Generated on {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*")
lines.append("")
# Overview
if mcrfpy.__doc__:
lines.append("## Overview")
lines.append("")
# Process the docstring properly
doc_text = mcrfpy.__doc__.replace('\\n', '\n')
lines.append(doc_text)
lines.append("")
# Table of Contents
lines.append("## Table of Contents")
lines.append("")
lines.append("- [Functions](#functions)")
lines.append(" - [Scene Management](#scene-management)")
lines.append(" - [Audio](#audio)")
lines.append(" - [UI Utilities](#ui-utilities)")
lines.append(" - [System](#system)")
lines.append("- [Classes](#classes)")
lines.append(" - [UI Components](#ui-components)")
lines.append(" - [Collections](#collections)")
lines.append(" - [System Types](#system-types)")
lines.append(" - [Other Classes](#other-classes)")
lines.append("- [Automation Module](#automation-module)")
lines.append("")
# Functions section
lines.append("## Functions")
lines.append("")
# Group functions by category
categories = {
'Scene Management': ['createScene', 'setScene', 'currentScene', 'sceneUI', 'keypressScene'],
'Audio': ['createSoundBuffer', 'loadMusic', 'playSound', 'getMusicVolume', 'getSoundVolume', 'setMusicVolume', 'setSoundVolume'],
'UI Utilities': ['find', 'findAll'],
'System': ['exit', 'getMetrics', 'setTimer', 'delTimer', 'setScale']
}
for category, functions in categories.items():
lines.append(f"### {category}")
lines.append("")
for func_name in functions:
if func_name in function_docs:
lines.extend(format_function_markdown(func_name, function_docs[func_name]))
# Classes section
lines.append("## Classes")
lines.append("")
# Get all classes from mcrfpy
classes = []
for name in sorted(dir(mcrfpy)):
if not name.startswith('_'):
obj = getattr(mcrfpy, name)
if isinstance(obj, type):
classes.append((name, obj))
# Group classes
ui_classes = ['Frame', 'Caption', 'Sprite', 'Grid', 'Entity']
collection_classes = ['EntityCollection', 'UICollection', 'UICollectionIter', 'UIEntityCollectionIter']
system_classes = ['Color', 'Vector', 'Texture', 'Font']
other_classes = [name for name, _ in classes if name not in ui_classes + collection_classes + system_classes]
# UI Components
lines.append("### UI Components")
lines.append("")
for class_name in ui_classes:
if any(name == class_name for name, _ in classes):
lines.extend(format_class_markdown(class_name, method_docs, property_docs))
# Collections
lines.append("### Collections")
lines.append("")
for class_name in collection_classes:
if any(name == class_name for name, _ in classes):
lines.extend(format_class_markdown(class_name, method_docs, property_docs))
# System Types
lines.append("### System Types")
lines.append("")
for class_name in system_classes:
if any(name == class_name for name, _ in classes):
lines.extend(format_class_markdown(class_name, method_docs, property_docs))
# Other Classes
lines.append("### Other Classes")
lines.append("")
for class_name in other_classes:
lines.extend(format_class_markdown(class_name, method_docs, property_docs))
# Automation section
if hasattr(mcrfpy, 'automation'):
lines.append("## Automation Module")
lines.append("")
lines.append("The `mcrfpy.automation` module provides testing and automation capabilities.")
lines.append("")
automation = mcrfpy.automation
for name in sorted(dir(automation)):
if not name.startswith('_'):
obj = getattr(automation, name)
if callable(obj):
lines.append(f"### `automation.{name}`")
lines.append("")
if obj.__doc__:
doc_parts = obj.__doc__.split(' - ')
if len(doc_parts) > 1:
lines.append(doc_parts[1])
else:
lines.append(obj.__doc__)
lines.append("")
lines.append("---")
lines.append("")
return '\n'.join(lines)
def format_class_markdown(class_name, method_docs, property_docs):
"""Format a class as markdown."""
lines = []
lines.append(f"### class `{class_name}`")
lines.append("")
# Class description from known info
class_descriptions = {
'Frame': 'A rectangular frame UI element that can contain other drawable elements.',
'Caption': 'A text display UI element with customizable font and styling.',
'Sprite': 'A sprite UI element that displays a texture or portion of a texture atlas.',
'Grid': 'A grid-based tilemap UI element for rendering tile-based levels and game worlds.',
'Entity': 'Game entity that can be placed in a Grid.',
'EntityCollection': 'Container for Entity objects in a Grid. Supports iteration and indexing.',
'UICollection': 'Container for UI drawable elements. Supports iteration and indexing.',
'UICollectionIter': 'Iterator for UICollection. Automatically created when iterating over a UICollection.',
'UIEntityCollectionIter': 'Iterator for EntityCollection. Automatically created when iterating over an EntityCollection.',
'Color': 'RGBA color representation.',
'Vector': '2D vector for positions and directions.',
'Font': 'Font object for text rendering.',
'Texture': 'Texture object for image data.',
'Animation': 'Animate UI element properties over time.',
'GridPoint': 'Represents a single tile in a Grid.',
'GridPointState': 'State information for a GridPoint.',
'Scene': 'Base class for object-oriented scenes.',
'Timer': 'Timer object for scheduled callbacks.',
'Window': 'Window singleton for accessing and modifying the game window properties.',
'Drawable': 'Base class for all drawable UI elements.'
}
if class_name in class_descriptions:
lines.append(class_descriptions[class_name])
lines.append("")
# Properties
if class_name in property_docs:
lines.append("#### Properties")
lines.append("")
for prop_name, prop_desc in property_docs[class_name].items():
lines.append(f"- **`{prop_name}`**: {prop_desc}")
lines.append("")
# Methods
methods_to_document = []
# Add inherited methods for UI classes
if class_name in ['Frame', 'Caption', 'Sprite', 'Grid', 'Entity']:
methods_to_document.extend(['get_bounds', 'move', 'resize'])
# Add class-specific methods
if class_name in method_docs:
methods_to_document.extend(method_docs[class_name].keys())
if methods_to_document:
lines.append("#### Methods")
lines.append("")
for method_name in set(methods_to_document):
# Get method documentation
method_doc = None
if class_name in method_docs and method_name in method_docs[class_name]:
method_doc = method_docs[class_name][method_name]
elif method_name in method_docs.get('Drawable', {}):
method_doc = method_docs['Drawable'][method_name]
if method_doc:
lines.extend(format_method_markdown(method_name, method_doc))
lines.append("---")
lines.append("")
return lines
def main():
"""Generate complete markdown documentation with zero missing methods."""
print("Generating COMPLETE Markdown API documentation...")
# Generate markdown
markdown_content = generate_complete_markdown_documentation()
# Write to file
output_path = Path("docs/API_REFERENCE_COMPLETE.md")
output_path.parent.mkdir(exist_ok=True)
with open(output_path, 'w', encoding='utf-8') as f:
f.write(markdown_content)
print(f"✓ Generated {output_path}")
print(f" File size: {len(markdown_content):,} bytes")
# Count "..." instances
ellipsis_count = markdown_content.count('...')
print(f" Ellipsis instances: {ellipsis_count}")
if ellipsis_count == 0:
print("✅ SUCCESS: No missing documentation found!")
else:
print(f"❌ WARNING: {ellipsis_count} methods still need documentation")
if __name__ == '__main__':
main()

View File

@ -1,574 +0,0 @@
#!/usr/bin/env python3
"""Generate .pyi type stub files for McRogueFace Python API - Version 2.
This script creates properly formatted type stubs by manually defining
the API based on the documentation we've created.
"""
import os
import mcrfpy
def generate_mcrfpy_stub():
"""Generate the main mcrfpy.pyi stub file."""
return '''"""Type stubs for McRogueFace Python API.
Core game engine interface for creating roguelike games with Python.
"""
from typing import Any, List, Dict, Tuple, Optional, Callable, Union, overload
# Type aliases
UIElement = Union['Frame', 'Caption', 'Sprite', 'Grid']
Transition = Union[str, None]
# Classes
class Color:
"""SFML Color Object for RGBA colors."""
r: int
g: int
b: int
a: int
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, r: int, g: int, b: int, a: int = 255) -> None: ...
def from_hex(self, hex_string: str) -> 'Color':
"""Create color from hex string (e.g., '#FF0000' or 'FF0000')."""
...
def to_hex(self) -> str:
"""Convert color to hex string format."""
...
def lerp(self, other: 'Color', t: float) -> 'Color':
"""Linear interpolation between two colors."""
...
class Vector:
"""SFML Vector Object for 2D coordinates."""
x: float
y: float
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float, y: float) -> None: ...
def add(self, other: 'Vector') -> 'Vector': ...
def subtract(self, other: 'Vector') -> 'Vector': ...
def multiply(self, scalar: float) -> 'Vector': ...
def divide(self, scalar: float) -> 'Vector': ...
def distance(self, other: 'Vector') -> float: ...
def normalize(self) -> 'Vector': ...
def dot(self, other: 'Vector') -> float: ...
class Texture:
"""SFML Texture Object for images."""
def __init__(self, filename: str) -> None: ...
filename: str
width: int
height: int
sprite_count: int
class Font:
"""SFML Font Object for text rendering."""
def __init__(self, filename: str) -> None: ...
filename: str
family: str
class Drawable:
"""Base class for all drawable UI elements."""
x: float
y: float
visible: bool
z_index: int
name: str
pos: Vector
def get_bounds(self) -> Tuple[float, float, float, float]:
"""Get bounding box as (x, y, width, height)."""
...
def move(self, dx: float, dy: float) -> None:
"""Move by relative offset (dx, dy)."""
...
def resize(self, width: float, height: float) -> None:
"""Resize to new dimensions (width, height)."""
...
class Frame(Drawable):
"""Frame(x=0, y=0, w=0, h=0, fill_color=None, outline_color=None, outline=0, click=None, children=None)
A rectangular frame UI element that can contain other drawable elements.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float = 0, y: float = 0, w: float = 0, h: float = 0,
fill_color: Optional[Color] = None, outline_color: Optional[Color] = None,
outline: float = 0, click: Optional[Callable] = None,
children: Optional[List[UIElement]] = None) -> None: ...
w: float
h: float
fill_color: Color
outline_color: Color
outline: float
click: Optional[Callable[[float, float, int], None]]
children: 'UICollection'
clip_children: bool
class Caption(Drawable):
"""Caption(text='', x=0, y=0, font=None, fill_color=None, outline_color=None, outline=0, click=None)
A text display UI element with customizable font and styling.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, text: str = '', x: float = 0, y: float = 0,
font: Optional[Font] = None, fill_color: Optional[Color] = None,
outline_color: Optional[Color] = None, outline: float = 0,
click: Optional[Callable] = None) -> None: ...
text: str
font: Font
fill_color: Color
outline_color: Color
outline: float
click: Optional[Callable[[float, float, int], None]]
w: float # Read-only, computed from text
h: float # Read-only, computed from text
class Sprite(Drawable):
"""Sprite(x=0, y=0, texture=None, sprite_index=0, scale=1.0, click=None)
A sprite UI element that displays a texture or portion of a texture atlas.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float = 0, y: float = 0, texture: Optional[Texture] = None,
sprite_index: int = 0, scale: float = 1.0,
click: Optional[Callable] = None) -> None: ...
texture: Texture
sprite_index: int
scale: float
click: Optional[Callable[[float, float, int], None]]
w: float # Read-only, computed from texture
h: float # Read-only, computed from texture
class Grid(Drawable):
"""Grid(x=0, y=0, grid_size=(20, 20), texture=None, tile_width=16, tile_height=16, scale=1.0, click=None)
A grid-based tilemap UI element for rendering tile-based levels and game worlds.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float = 0, y: float = 0, grid_size: Tuple[int, int] = (20, 20),
texture: Optional[Texture] = None, tile_width: int = 16, tile_height: int = 16,
scale: float = 1.0, click: Optional[Callable] = None) -> None: ...
grid_size: Tuple[int, int]
tile_width: int
tile_height: int
texture: Texture
scale: float
points: List[List['GridPoint']]
entities: 'EntityCollection'
background_color: Color
click: Optional[Callable[[int, int, int], None]]
def at(self, x: int, y: int) -> 'GridPoint':
"""Get grid point at tile coordinates."""
...
class GridPoint:
"""Grid point representing a single tile."""
texture_index: int
solid: bool
color: Color
class GridPointState:
"""State information for a grid point."""
texture_index: int
color: Color
class Entity(Drawable):
"""Entity(grid_x=0, grid_y=0, texture=None, sprite_index=0, name='')
Game entity that lives within a Grid.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, grid_x: float = 0, grid_y: float = 0, texture: Optional[Texture] = None,
sprite_index: int = 0, name: str = '') -> None: ...
grid_x: float
grid_y: float
texture: Texture
sprite_index: int
grid: Optional[Grid]
def at(self, grid_x: float, grid_y: float) -> None:
"""Move entity to grid position."""
...
def die(self) -> None:
"""Remove entity from its grid."""
...
def index(self) -> int:
"""Get index in parent grid's entity collection."""
...
class UICollection:
"""Collection of UI drawable elements (Frame, Caption, Sprite, Grid)."""
def __len__(self) -> int: ...
def __getitem__(self, index: int) -> UIElement: ...
def __setitem__(self, index: int, value: UIElement) -> None: ...
def __delitem__(self, index: int) -> None: ...
def __contains__(self, item: UIElement) -> bool: ...
def __iter__(self) -> Any: ...
def __add__(self, other: 'UICollection') -> 'UICollection': ...
def __iadd__(self, other: 'UICollection') -> 'UICollection': ...
def append(self, item: UIElement) -> None: ...
def extend(self, items: List[UIElement]) -> None: ...
def remove(self, item: UIElement) -> None: ...
def index(self, item: UIElement) -> int: ...
def count(self, item: UIElement) -> int: ...
class EntityCollection:
"""Collection of Entity objects."""
def __len__(self) -> int: ...
def __getitem__(self, index: int) -> Entity: ...
def __setitem__(self, index: int, value: Entity) -> None: ...
def __delitem__(self, index: int) -> None: ...
def __contains__(self, item: Entity) -> bool: ...
def __iter__(self) -> Any: ...
def __add__(self, other: 'EntityCollection') -> 'EntityCollection': ...
def __iadd__(self, other: 'EntityCollection') -> 'EntityCollection': ...
def append(self, item: Entity) -> None: ...
def extend(self, items: List[Entity]) -> None: ...
def remove(self, item: Entity) -> None: ...
def index(self, item: Entity) -> int: ...
def count(self, item: Entity) -> int: ...
class Scene:
"""Base class for object-oriented scenes."""
name: str
def __init__(self, name: str) -> None: ...
def activate(self) -> None:
"""Called when scene becomes active."""
...
def deactivate(self) -> None:
"""Called when scene becomes inactive."""
...
def get_ui(self) -> UICollection:
"""Get UI elements collection."""
...
def on_keypress(self, key: str, pressed: bool) -> None:
"""Handle keyboard events."""
...
def on_click(self, x: float, y: float, button: int) -> None:
"""Handle mouse clicks."""
...
def on_enter(self) -> None:
"""Called when entering the scene."""
...
def on_exit(self) -> None:
"""Called when leaving the scene."""
...
def on_resize(self, width: int, height: int) -> None:
"""Handle window resize events."""
...
def update(self, dt: float) -> None:
"""Update scene logic."""
...
class Timer:
"""Timer object for scheduled callbacks."""
name: str
interval: int
active: bool
def __init__(self, name: str, callback: Callable[[float], None], interval: int) -> None: ...
def pause(self) -> None:
"""Pause the timer."""
...
def resume(self) -> None:
"""Resume the timer."""
...
def cancel(self) -> None:
"""Cancel and remove the timer."""
...
class Window:
"""Window singleton for managing the game window."""
resolution: Tuple[int, int]
fullscreen: bool
vsync: bool
title: str
fps_limit: int
game_resolution: Tuple[int, int]
scaling_mode: str
@staticmethod
def get() -> 'Window':
"""Get the window singleton instance."""
...
class Animation:
"""Animation object for animating UI properties."""
target: Any
property: str
duration: float
easing: str
loop: bool
on_complete: Optional[Callable]
def __init__(self, target: Any, property: str, start_value: Any, end_value: Any,
duration: float, easing: str = 'linear', loop: bool = False,
on_complete: Optional[Callable] = None) -> None: ...
def start(self) -> None:
"""Start the animation."""
...
def update(self, dt: float) -> bool:
"""Update animation, returns True if still running."""
...
def get_current_value(self) -> Any:
"""Get the current interpolated value."""
...
# Module functions
def createSoundBuffer(filename: str) -> int:
"""Load a sound effect from a file and return its buffer ID."""
...
def loadMusic(filename: str) -> None:
"""Load and immediately play background music from a file."""
...
def setMusicVolume(volume: int) -> None:
"""Set the global music volume (0-100)."""
...
def setSoundVolume(volume: int) -> None:
"""Set the global sound effects volume (0-100)."""
...
def playSound(buffer_id: int) -> None:
"""Play a sound effect using a previously loaded buffer."""
...
def getMusicVolume() -> int:
"""Get the current music volume level (0-100)."""
...
def getSoundVolume() -> int:
"""Get the current sound effects volume level (0-100)."""
...
def sceneUI(scene: Optional[str] = None) -> UICollection:
"""Get all UI elements for a scene."""
...
def currentScene() -> str:
"""Get the name of the currently active scene."""
...
def setScene(scene: str, transition: Optional[str] = None, duration: float = 0.0) -> None:
"""Switch to a different scene with optional transition effect."""
...
def createScene(name: str) -> None:
"""Create a new empty scene."""
...
def keypressScene(handler: Callable[[str, bool], None]) -> None:
"""Set the keyboard event handler for the current scene."""
...
def setTimer(name: str, handler: Callable[[float], None], interval: int) -> None:
"""Create or update a recurring timer."""
...
def delTimer(name: str) -> None:
"""Stop and remove a timer."""
...
def exit() -> None:
"""Cleanly shut down the game engine and exit the application."""
...
def setScale(multiplier: float) -> None:
"""Scale the game window size (deprecated - use Window.resolution)."""
...
def find(name: str, scene: Optional[str] = None) -> Optional[UIElement]:
"""Find the first UI element with the specified name."""
...
def findAll(pattern: str, scene: Optional[str] = None) -> List[UIElement]:
"""Find all UI elements matching a name pattern (supports * wildcards)."""
...
def getMetrics() -> Dict[str, Union[int, float]]:
"""Get current performance metrics."""
...
# Submodule
class automation:
"""Automation API for testing and scripting."""
@staticmethod
def screenshot(filename: str) -> bool:
"""Save a screenshot to the specified file."""
...
@staticmethod
def position() -> Tuple[int, int]:
"""Get current mouse position as (x, y) tuple."""
...
@staticmethod
def size() -> Tuple[int, int]:
"""Get screen size as (width, height) tuple."""
...
@staticmethod
def onScreen(x: int, y: int) -> bool:
"""Check if coordinates are within screen bounds."""
...
@staticmethod
def moveTo(x: int, y: int, duration: float = 0.0) -> None:
"""Move mouse to absolute position."""
...
@staticmethod
def moveRel(xOffset: int, yOffset: int, duration: float = 0.0) -> None:
"""Move mouse relative to current position."""
...
@staticmethod
def dragTo(x: int, y: int, duration: float = 0.0, button: str = 'left') -> None:
"""Drag mouse to position."""
...
@staticmethod
def dragRel(xOffset: int, yOffset: int, duration: float = 0.0, button: str = 'left') -> None:
"""Drag mouse relative to current position."""
...
@staticmethod
def click(x: Optional[int] = None, y: Optional[int] = None, clicks: int = 1,
interval: float = 0.0, button: str = 'left') -> None:
"""Click mouse at position."""
...
@staticmethod
def mouseDown(x: Optional[int] = None, y: Optional[int] = None, button: str = 'left') -> None:
"""Press mouse button down."""
...
@staticmethod
def mouseUp(x: Optional[int] = None, y: Optional[int] = None, button: str = 'left') -> None:
"""Release mouse button."""
...
@staticmethod
def keyDown(key: str) -> None:
"""Press key down."""
...
@staticmethod
def keyUp(key: str) -> None:
"""Release key."""
...
@staticmethod
def press(key: str) -> None:
"""Press and release a key."""
...
@staticmethod
def typewrite(text: str, interval: float = 0.0) -> None:
"""Type text with optional interval between characters."""
...
'''
def main():
"""Generate type stubs."""
print("Generating comprehensive type stubs for McRogueFace...")
# Create stubs directory
os.makedirs('stubs', exist_ok=True)
# Write main stub file
with open('stubs/mcrfpy.pyi', 'w') as f:
f.write(generate_mcrfpy_stub())
print("Generated stubs/mcrfpy.pyi")
# Create py.typed marker
with open('stubs/py.typed', 'w') as f:
f.write('')
print("Created py.typed marker")
print("\nType stubs generated successfully!")
print("\nTo use in your IDE:")
print("1. Add the 'stubs' directory to your project")
print("2. Most IDEs will automatically detect the .pyi files")
print("3. For VS Code: add to python.analysis.extraPaths in settings.json")
print("4. For PyCharm: mark 'stubs' directory as Sources Root")
if __name__ == '__main__':
main()

View File

@ -1,253 +0,0 @@
# Part 0 - Setting Up McRogueFace
Welcome to the McRogueFace Roguelike Tutorial! This tutorial will teach you how to create a complete roguelike game using the McRogueFace game engine. Unlike traditional Python libraries, McRogueFace is a complete, portable game engine that includes everything you need to make and distribute games.
## What is McRogueFace?
McRogueFace is a high-performance game engine with Python scripting support. Think of it like Unity or Godot, but specifically designed for roguelikes and 2D games. It includes:
- A complete Python 3.12 runtime (no installation needed!)
- High-performance C++ rendering and entity management
- Built-in UI components and scene management
- Integrated audio system
- Professional sprite-based graphics
- Easy distribution - your players don't need Python installed!
## Prerequisites
Before starting this tutorial, you should:
- Have basic Python knowledge (variables, functions, classes)
- Be comfortable editing text files
- Have a text editor (VS Code, Sublime Text, Notepad++, etc.)
That's it! Unlike other roguelike tutorials, you don't need Python installed - McRogueFace includes everything.
## Getting McRogueFace
### Step 1: Download the Engine
1. Visit the McRogueFace releases page
2. Download the version for your operating system:
- `McRogueFace-Windows.zip` for Windows
- `McRogueFace-MacOS.zip` for macOS
- `McRogueFace-Linux.zip` for Linux
### Step 2: Extract the Archive
Extract the downloaded archive to a folder where you want to develop your game. You should see this structure:
```
McRogueFace/
├── mcrogueface (or mcrogueface.exe on Windows)
├── scripts/
│ └── game.py
├── assets/
│ ├── sprites/
│ ├── fonts/
│ └── audio/
└── lib/
```
### Step 3: Run the Engine
Run the McRogueFace executable:
- **Windows**: Double-click `mcrogueface.exe`
- **Mac/Linux**: Open a terminal in the folder and run `./mcrogueface`
You should see a window open with the default McRogueFace demo. This shows the engine is working correctly!
## Your First McRogueFace Script
Let's modify the engine to display "Hello Roguelike!" instead of the default demo.
### Step 1: Open game.py
Open `scripts/game.py` in your text editor. You'll see the default demo code. Replace it entirely with:
```python
import mcrfpy
# Create a new scene called "hello"
mcrfpy.createScene("hello")
# Switch to our new scene
mcrfpy.setScene("hello")
# Get the UI container for our scene
ui = mcrfpy.sceneUI("hello")
# Create a text caption
caption = mcrfpy.Caption("Hello Roguelike!", 400, 300)
caption.font_size = 32
caption.fill_color = mcrfpy.Color(255, 255, 255) # White text
# Add the caption to our scene
ui.append(caption)
# Create a smaller instruction caption
instruction = mcrfpy.Caption("Press ESC to exit", 400, 350)
instruction.font_size = 16
instruction.fill_color = mcrfpy.Color(200, 200, 200) # Light gray
ui.append(instruction)
# Set up a simple key handler
def handle_keys(key, state):
if state == "start" and key == "Escape":
mcrfpy.setScene(None) # This exits the game
mcrfpy.keypressScene(handle_keys)
print("Hello Roguelike is running!")
```
### Step 2: Save and Run
1. Save the file
2. If McRogueFace is still running, it will automatically reload!
3. If not, run the engine again
You should now see "Hello Roguelike!" displayed in the window.
### Step 3: Understanding the Code
Let's break down what we just wrote:
1. **Import mcrfpy**: This is McRogueFace's Python API
2. **Create a scene**: Scenes are like game states (menu, gameplay, inventory, etc.)
3. **UI elements**: We create Caption objects for text display
4. **Colors**: McRogueFace uses RGB colors (0-255 for each component)
5. **Input handling**: We set up a callback for keyboard input
6. **Scene switching**: Setting the scene to None exits the game
## Key Differences from Pure Python Development
### The Game Loop
Unlike typical Python scripts, McRogueFace runs your code inside its game loop:
1. The engine starts and loads `scripts/game.py`
2. Your script sets up scenes, UI elements, and callbacks
3. The engine runs at 60 FPS, handling rendering and input
4. Your callbacks are triggered by game events
### Hot Reloading
McRogueFace can reload your scripts while running! Just save your changes and the engine will reload automatically. This makes development incredibly fast.
### Asset Pipeline
McRogueFace includes a complete asset system:
- **Sprites**: Place images in `assets/sprites/`
- **Fonts**: TrueType fonts in `assets/fonts/`
- **Audio**: Sound effects and music in `assets/audio/`
We'll explore these in later lessons.
## Testing Your Setup
Let's create a more interactive test to ensure everything is working properly:
```python
import mcrfpy
# Create our test scene
mcrfpy.createScene("test")
mcrfpy.setScene("test")
ui = mcrfpy.sceneUI("test")
# Create a background frame
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(20, 20, 30) # Dark blue-gray
ui.append(background)
# Title text
title = mcrfpy.Caption("McRogueFace Setup Test", 512, 100)
title.font_size = 36
title.fill_color = mcrfpy.Color(255, 255, 100) # Yellow
ui.append(title)
# Status text that will update
status_text = mcrfpy.Caption("Press any key to test input...", 512, 300)
status_text.font_size = 20
status_text.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(status_text)
# Instructions
instructions = [
"Arrow Keys: Test movement input",
"Space: Test action input",
"Mouse Click: Test mouse input",
"ESC: Exit"
]
y_offset = 400
for instruction in instructions:
inst_caption = mcrfpy.Caption(instruction, 512, y_offset)
inst_caption.font_size = 16
inst_caption.fill_color = mcrfpy.Color(150, 150, 150)
ui.append(inst_caption)
y_offset += 30
# Input handler
def handle_input(key, state):
if state != "start":
return
if key == "Escape":
mcrfpy.setScene(None)
else:
status_text.text = f"You pressed: {key}"
status_text.fill_color = mcrfpy.Color(100, 255, 100) # Green
# Set up input handling
mcrfpy.keypressScene(handle_input)
print("Setup test is running! Try pressing different keys.")
```
## Troubleshooting
### Engine Won't Start
- **Windows**: Make sure you extracted all files, not just the .exe
- **Mac**: You may need to right-click and select "Open" the first time
- **Linux**: Make sure the file is executable: `chmod +x mcrogueface`
### Scripts Not Loading
- Ensure your script is named exactly `game.py` in the `scripts/` folder
- Check the console output for Python errors
- Make sure you're using Python 3 syntax
### Performance Issues
- McRogueFace should run smoothly at 60 FPS
- If not, check if your graphics drivers are updated
- The engine shows FPS in the window title
## What's Next?
Congratulations! You now have McRogueFace set up and running. You've learned:
- How to download and run the McRogueFace engine
- The basic structure of a McRogueFace project
- How to create scenes and UI elements
- How to handle keyboard input
- The development workflow with hot reloading
In Part 1, we'll create our player character and implement movement. We'll explore McRogueFace's entity system and learn how to create a game world.
## Why McRogueFace?
Before we continue, let's highlight why McRogueFace is excellent for roguelike development:
1. **No Installation Hassles**: Your players just download and run - no Python needed!
2. **Professional Performance**: C++ engine core means smooth gameplay even with hundreds of entities
3. **Built-in Features**: UI, audio, scenes, and animations are already there
4. **Easy Distribution**: Just zip your game folder and share it
5. **Rapid Development**: Hot reloading and Python scripting for quick iteration
Ready to make a roguelike? Let's continue to Part 1!

View File

@ -1,33 +0,0 @@
import mcrfpy
# Create a new scene called "hello"
mcrfpy.createScene("hello")
# Switch to our new scene
mcrfpy.setScene("hello")
# Get the UI container for our scene
ui = mcrfpy.sceneUI("hello")
# Create a text caption
caption = mcrfpy.Caption("Hello Roguelike!", 400, 300)
caption.font_size = 32
caption.fill_color = mcrfpy.Color(255, 255, 255) # White text
# Add the caption to our scene
ui.append(caption)
# Create a smaller instruction caption
instruction = mcrfpy.Caption("Press ESC to exit", 400, 350)
instruction.font_size = 16
instruction.fill_color = mcrfpy.Color(200, 200, 200) # Light gray
ui.append(instruction)
# Set up a simple key handler
def handle_keys(key, state):
if state == "start" and key == "Escape":
mcrfpy.setScene(None) # This exits the game
mcrfpy.keypressScene(handle_keys)
print("Hello Roguelike is running!")

View File

@ -1,55 +0,0 @@
import mcrfpy
# Create our test scene
mcrfpy.createScene("test")
mcrfpy.setScene("test")
ui = mcrfpy.sceneUI("test")
# Create a background frame
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(20, 20, 30) # Dark blue-gray
ui.append(background)
# Title text
title = mcrfpy.Caption("McRogueFace Setup Test", 512, 100)
title.font_size = 36
title.fill_color = mcrfpy.Color(255, 255, 100) # Yellow
ui.append(title)
# Status text that will update
status_text = mcrfpy.Caption("Press any key to test input...", 512, 300)
status_text.font_size = 20
status_text.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(status_text)
# Instructions
instructions = [
"Arrow Keys: Test movement input",
"Space: Test action input",
"Mouse Click: Test mouse input",
"ESC: Exit"
]
y_offset = 400
for instruction in instructions:
inst_caption = mcrfpy.Caption(instruction, 512, y_offset)
inst_caption.font_size = 16
inst_caption.fill_color = mcrfpy.Color(150, 150, 150)
ui.append(inst_caption)
y_offset += 30
# Input handler
def handle_input(key, state):
if state != "start":
return
if key == "Escape":
mcrfpy.setScene(None)
else:
status_text.text = f"You pressed: {key}"
status_text.fill_color = mcrfpy.Color(100, 255, 100) # Green
# Set up input handling
mcrfpy.keypressScene(handle_input)
print("Setup test is running! Try pressing different keys.")

View File

@ -1,457 +0,0 @@
# Part 1 - Drawing the '@' Symbol and Moving It Around
In Part 0, we set up McRogueFace and created a simple "Hello Roguelike" scene. Now it's time to create the foundation of our game: a player character that can move around the screen.
In traditional roguelikes, the player is represented by the '@' symbol. We'll honor that tradition while taking advantage of McRogueFace's powerful sprite-based rendering system.
## Understanding McRogueFace's Architecture
Before we dive into code, let's understand two key concepts in McRogueFace:
### Grid - The Game World
A `Grid` represents your game world. It's a 2D array of tiles where each tile can be:
- **Walkable or not** (for collision detection)
- **Transparent or not** (for field of view, which we'll cover later)
- **Have a visual appearance** (sprite index and color)
Think of the Grid as the dungeon floor, walls, and other static elements.
### Entity - Things That Move
An `Entity` represents anything that can move around on the Grid:
- The player character
- Monsters
- Items (if you want them to be thrown or moved)
- Projectiles
Entities exist "on top of" the Grid and automatically handle smooth movement animation between tiles.
## Creating Our Game World
Let's start by creating a simple room for our player to move around in. Create a new `game.py`:
```python
import mcrfpy
# Define some constants for our tile types
FLOOR_TILE = 0
WALL_TILE = 1
PLAYER_SPRITE = 2
# Window configuration
mcrfpy.createScene("game")
mcrfpy.setScene("game")
# Configure window properties
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 1"
# Get the UI container for our scene
ui = mcrfpy.sceneUI("game")
# Create a dark background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
ui.append(background)
```
Now we need to set up our tileset. For this tutorial, we'll use ASCII-style sprites. McRogueFace comes with a built-in ASCII tileset:
```python
# Load the ASCII tileset
# This tileset has characters mapped to sprite indices
# For example: @ = 64, # = 35, . = 46
tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game grid
# 50x30 tiles is a good size for a roguelike
GRID_WIDTH = 50
GRID_HEIGHT = 30
grid = mcrfpy.Grid(grid_x=GRID_WIDTH, grid_y=GRID_HEIGHT, texture=tileset)
grid.position = (100, 100) # Position on screen
grid.size = (800, 480) # Size in pixels
# Add the grid to our UI
ui.append(grid)
```
## Initializing the Game World
Now let's fill our grid with a simple room:
```python
def create_room():
"""Create a room with walls around the edges"""
# Fill everything with floor tiles first
for y in range(GRID_HEIGHT):
for x in range(GRID_WIDTH):
cell = grid.at(x, y)
cell.walkable = True
cell.transparent = True
cell.sprite_index = 46 # '.' character
cell.color = mcrfpy.Color(50, 50, 50) # Dark gray floor
# Create walls around the edges
for x in range(GRID_WIDTH):
# Top wall
cell = grid.at(x, 0)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100) # Gray walls
# Bottom wall
cell = grid.at(x, GRID_HEIGHT - 1)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
for y in range(GRID_HEIGHT):
# Left wall
cell = grid.at(0, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Right wall
cell = grid.at(GRID_WIDTH - 1, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Create the room
create_room()
```
## Creating the Player
Now let's add our player character:
```python
# Create the player entity
player = mcrfpy.Entity(x=GRID_WIDTH // 2, y=GRID_HEIGHT // 2, grid=grid)
player.sprite_index = 64 # '@' character
player.color = mcrfpy.Color(255, 255, 255) # White
# The entity is automatically added to the grid when we pass grid= parameter
# This is equivalent to: grid.entities.append(player)
```
## Handling Input
McRogueFace uses a callback system for input. For a turn-based roguelike, we only care about key presses, not releases:
```python
def handle_input(key, state):
"""Handle keyboard input for player movement"""
# Only process key presses, not releases
if state != "start":
return
# Movement deltas
dx, dy = 0, 0
# Arrow keys
if key == "Up":
dy = -1
elif key == "Down":
dy = 1
elif key == "Left":
dx = -1
elif key == "Right":
dx = 1
# Numpad movement (for true roguelike feel!)
elif key == "Num7": # Northwest
dx, dy = -1, -1
elif key == "Num8": # North
dy = -1
elif key == "Num9": # Northeast
dx, dy = 1, -1
elif key == "Num4": # West
dx = -1
elif key == "Num6": # East
dx = 1
elif key == "Num1": # Southwest
dx, dy = -1, 1
elif key == "Num2": # South
dy = 1
elif key == "Num3": # Southeast
dx, dy = 1, 1
# Escape to quit
elif key == "Escape":
mcrfpy.setScene(None)
return
# If there's movement, try to move the player
if dx != 0 or dy != 0:
move_player(dx, dy)
# Register the input handler
mcrfpy.keypressScene(handle_input)
```
## Implementing Movement with Collision Detection
Now let's implement the movement function with proper collision detection:
```python
def move_player(dx, dy):
"""Move the player if the destination is walkable"""
# Calculate new position
new_x = player.x + dx
new_y = player.y + dy
# Check bounds
if new_x < 0 or new_x >= GRID_WIDTH or new_y < 0 or new_y >= GRID_HEIGHT:
return
# Check if the destination is walkable
destination = grid.at(new_x, new_y)
if destination.walkable:
# Move the player
player.x = new_x
player.y = new_y
# The entity will automatically animate to the new position!
```
## Adding Visual Polish
Let's add some UI elements to make our game look more polished:
```python
# Add a title
title = mcrfpy.Caption("McRogueFace Roguelike", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100) # Yellow
ui.append(title)
# Add instructions
instructions = mcrfpy.Caption("Arrow Keys or Numpad to move, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200) # Light gray
ui.append(instructions)
# Add a status line at the bottom
status = mcrfpy.Caption("@ You", 100, 600)
status.font_size = 18
status.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(status)
```
## Complete Code
Here's the complete `game.py` for Part 1:
```python
import mcrfpy
# Window configuration
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 1"
# Get the UI container for our scene
ui = mcrfpy.sceneUI("game")
# Create a dark background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
ui.append(background)
# Load the ASCII tileset
tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game grid
GRID_WIDTH = 50
GRID_HEIGHT = 30
grid = mcrfpy.Grid(grid_x=GRID_WIDTH, grid_y=GRID_HEIGHT, texture=tileset)
grid.position = (100, 100)
grid.size = (800, 480)
ui.append(grid)
def create_room():
"""Create a room with walls around the edges"""
# Fill everything with floor tiles first
for y in range(GRID_HEIGHT):
for x in range(GRID_WIDTH):
cell = grid.at(x, y)
cell.walkable = True
cell.transparent = True
cell.sprite_index = 46 # '.' character
cell.color = mcrfpy.Color(50, 50, 50) # Dark gray floor
# Create walls around the edges
for x in range(GRID_WIDTH):
# Top wall
cell = grid.at(x, 0)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100) # Gray walls
# Bottom wall
cell = grid.at(x, GRID_HEIGHT - 1)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
for y in range(GRID_HEIGHT):
# Left wall
cell = grid.at(0, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Right wall
cell = grid.at(GRID_WIDTH - 1, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Create the room
create_room()
# Create the player entity
player = mcrfpy.Entity(x=GRID_WIDTH // 2, y=GRID_HEIGHT // 2, grid=grid)
player.sprite_index = 64 # '@' character
player.color = mcrfpy.Color(255, 255, 255) # White
def move_player(dx, dy):
"""Move the player if the destination is walkable"""
# Calculate new position
new_x = player.x + dx
new_y = player.y + dy
# Check bounds
if new_x < 0 or new_x >= GRID_WIDTH or new_y < 0 or new_y >= GRID_HEIGHT:
return
# Check if the destination is walkable
destination = grid.at(new_x, new_y)
if destination.walkable:
# Move the player
player.x = new_x
player.y = new_y
def handle_input(key, state):
"""Handle keyboard input for player movement"""
# Only process key presses, not releases
if state != "start":
return
# Movement deltas
dx, dy = 0, 0
# Arrow keys
if key == "Up":
dy = -1
elif key == "Down":
dy = 1
elif key == "Left":
dx = -1
elif key == "Right":
dx = 1
# Numpad movement (for true roguelike feel!)
elif key == "Num7": # Northwest
dx, dy = -1, -1
elif key == "Num8": # North
dy = -1
elif key == "Num9": # Northeast
dx, dy = 1, -1
elif key == "Num4": # West
dx = -1
elif key == "Num6": # East
dx = 1
elif key == "Num1": # Southwest
dx, dy = -1, 1
elif key == "Num2": # South
dy = 1
elif key == "Num3": # Southeast
dx, dy = 1, 1
# Escape to quit
elif key == "Escape":
mcrfpy.setScene(None)
return
# If there's movement, try to move the player
if dx != 0 or dy != 0:
move_player(dx, dy)
# Register the input handler
mcrfpy.keypressScene(handle_input)
# Add UI elements
title = mcrfpy.Caption("McRogueFace Roguelike", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
ui.append(title)
instructions = mcrfpy.Caption("Arrow Keys or Numpad to move, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(instructions)
status = mcrfpy.Caption("@ You", 100, 600)
status.font_size = 18
status.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(status)
print("Part 1: The @ symbol moves!")
```
## Understanding What We've Built
Let's review the key concepts we've implemented:
1. **Grid-Entity Architecture**: The Grid represents our static world (floors and walls), while the Entity (player) moves on top of it.
2. **Collision Detection**: By checking the `walkable` property of grid cells, we prevent the player from walking through walls.
3. **Turn-Based Input**: By only responding to key presses (not releases), we've created true turn-based movement.
4. **Visual Feedback**: The Entity system automatically animates movement between tiles, giving smooth visual feedback.
## Exercises
Try these modifications to deepen your understanding:
1. **Add More Rooms**: Create multiple rooms connected by corridors
2. **Different Tile Types**: Add doors (walkable but different appearance)
3. **Sprint Movement**: Hold Shift to move multiple tiles at once
4. **Mouse Support**: Click a tile to pathfind to it (we'll cover pathfinding properly later)
## ASCII Sprite Reference
Here are some useful ASCII character indices for the default tileset:
- @ (player): 64
- # (wall): 35
- . (floor): 46
- + (door): 43
- ~ (water): 126
- % (item): 37
- ! (potion): 33
## What's Next?
In Part 2, we'll expand our world with:
- A proper Entity system for managing multiple objects
- NPCs that can also move around
- A more interesting map layout
- The beginning of our game architecture
The foundation is set - you have a player character that can move around a world with collision detection. This is the core of any roguelike game!

View File

@ -1,162 +0,0 @@
import mcrfpy
# Window configuration
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 1"
# Get the UI container for our scene
ui = mcrfpy.sceneUI("game")
# Create a dark background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
ui.append(background)
# Load the ASCII tileset
tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game grid
GRID_WIDTH = 50
GRID_HEIGHT = 30
grid = mcrfpy.Grid(grid_x=GRID_WIDTH, grid_y=GRID_HEIGHT, texture=tileset)
grid.position = (100, 100)
grid.size = (800, 480)
ui.append(grid)
def create_room():
"""Create a room with walls around the edges"""
# Fill everything with floor tiles first
for y in range(GRID_HEIGHT):
for x in range(GRID_WIDTH):
cell = grid.at(x, y)
cell.walkable = True
cell.transparent = True
cell.sprite_index = 46 # '.' character
cell.color = mcrfpy.Color(50, 50, 50) # Dark gray floor
# Create walls around the edges
for x in range(GRID_WIDTH):
# Top wall
cell = grid.at(x, 0)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100) # Gray walls
# Bottom wall
cell = grid.at(x, GRID_HEIGHT - 1)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
for y in range(GRID_HEIGHT):
# Left wall
cell = grid.at(0, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Right wall
cell = grid.at(GRID_WIDTH - 1, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Create the room
create_room()
# Create the player entity
player = mcrfpy.Entity(x=GRID_WIDTH // 2, y=GRID_HEIGHT // 2, grid=grid)
player.sprite_index = 64 # '@' character
player.color = mcrfpy.Color(255, 255, 255) # White
def move_player(dx, dy):
"""Move the player if the destination is walkable"""
# Calculate new position
new_x = player.x + dx
new_y = player.y + dy
# Check bounds
if new_x < 0 or new_x >= GRID_WIDTH or new_y < 0 or new_y >= GRID_HEIGHT:
return
# Check if the destination is walkable
destination = grid.at(new_x, new_y)
if destination.walkable:
# Move the player
player.x = new_x
player.y = new_y
def handle_input(key, state):
"""Handle keyboard input for player movement"""
# Only process key presses, not releases
if state != "start":
return
# Movement deltas
dx, dy = 0, 0
# Arrow keys
if key == "Up":
dy = -1
elif key == "Down":
dy = 1
elif key == "Left":
dx = -1
elif key == "Right":
dx = 1
# Numpad movement (for true roguelike feel!)
elif key == "Num7": # Northwest
dx, dy = -1, -1
elif key == "Num8": # North
dy = -1
elif key == "Num9": # Northeast
dx, dy = 1, -1
elif key == "Num4": # West
dx = -1
elif key == "Num6": # East
dx = 1
elif key == "Num1": # Southwest
dx, dy = -1, 1
elif key == "Num2": # South
dy = 1
elif key == "Num3": # Southeast
dx, dy = 1, 1
# Escape to quit
elif key == "Escape":
mcrfpy.setScene(None)
return
# If there's movement, try to move the player
if dx != 0 or dy != 0:
move_player(dx, dy)
# Register the input handler
mcrfpy.keypressScene(handle_input)
# Add UI elements
title = mcrfpy.Caption("McRogueFace Roguelike", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
ui.append(title)
instructions = mcrfpy.Caption("Arrow Keys or Numpad to move, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(instructions)
status = mcrfpy.Caption("@ You", 100, 600)
status.font_size = 18
status.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(status)
print("Part 1: The @ symbol moves!")

View File

@ -1,562 +0,0 @@
# Part 2 - The Generic Entity, the Render Functions, and the Map
In Part 1, we created a player character that could move around a simple room. Now it's time to build a proper architecture for our roguelike. We'll create a flexible entity system, a proper map structure, and organize our code for future expansion.
## Understanding Game Architecture
Before diving into code, let's understand the architecture we're building:
1. **Entities**: Anything that can exist in the game world (player, monsters, items)
2. **Game Map**: The dungeon structure with tiles that can be walls or floors
3. **Game Engine**: Coordinates everything - entities, map, input, and rendering
In McRogueFace, we'll adapt these concepts to work with the engine's scene-based architecture.
## Creating a Flexible Entity System
While McRogueFace provides a built-in `Entity` class, we'll create a wrapper to add game-specific functionality:
```python
class GameObject:
"""Base class for all game objects (player, monsters, items)"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks # Does this entity block movement?
self._entity = None # The McRogueFace entity
self.grid = None # Reference to the grid
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = self.color
def move(self, dx, dy):
"""Move by the given amount if possible"""
if not self.grid:
return
new_x = self.x + dx
new_y = self.y + dy
# Update our position
self.x = new_x
self.y = new_y
# Update the visual entity
if self._entity:
self._entity.x = new_x
self._entity.y = new_y
def destroy(self):
"""Remove this entity from the game"""
if self._entity and self.grid:
# Find and remove from grid's entity list
for i, entity in enumerate(self.grid.entities):
if entity == self._entity:
del self.grid.entities[i]
break
self._entity = None
```
## Building the Game Map
Let's create a proper map class that manages our dungeon:
```python
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = [] # List of GameObjects
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Initialize all tiles as walls
self.fill_with_walls()
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def create_room(self, x1, y1, x2, y2):
"""Carve out a room in the map"""
# Make sure coordinates are in the right order
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
# Carve out floor tiles
for y in range(y1, y2 + 1):
for x in range(x1, x2 + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_h(self, x1, x2, y):
"""Create a horizontal tunnel"""
for x in range(min(x1, x2), max(x1, x2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_v(self, y1, y2, x):
"""Create a vertical tunnel"""
for y in range(min(y1, y2), max(y1, y2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
# Check map boundaries
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
# Check if tile is walkable
if not self.grid.at(x, y).walkable:
return True
# Check if any blocking entity is at this position
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
```
## Creating the Game Engine
Now let's build our game engine to tie everything together:
```python
class Engine:
"""Main game engine that manages game state"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
# Create the game scene
mcrfpy.createScene("game")
mcrfpy.setScene("game")
# Configure window
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 2"
# Get UI container
self.ui = mcrfpy.sceneUI("game")
# Add background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
# Load tileset
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game world
self.setup_game()
# Setup input handling
self.setup_input()
# Add UI elements
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
# Create the map
self.game_map = GameMap(50, 30)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create some rooms
self.game_map.create_room(10, 10, 20, 20)
self.game_map.create_room(30, 15, 40, 25)
self.game_map.create_room(15, 22, 25, 28)
# Connect rooms with tunnels
self.game_map.create_tunnel_h(20, 30, 15)
self.game_map.create_tunnel_v(20, 22, 20)
# Create player
self.player = GameObject(15, 15, 64, (255, 255, 255), "Player", blocks=True)
self.game_map.add_entity(self.player)
# Create an NPC
npc = GameObject(35, 20, 64, (255, 255, 0), "NPC", blocks=True)
self.game_map.add_entity(npc)
self.entities.append(npc)
# Create some items (non-blocking)
potion = GameObject(12, 12, 33, (255, 0, 255), "Potion", blocks=False)
self.game_map.add_entity(potion)
self.entities.append(potion)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
# Check if movement is blocked
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
else:
# Check if we bumped into an entity
target = self.game_map.get_blocking_entity_at(new_x, new_y)
if target:
print(f"You bump into the {target.name}!")
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
# Movement keys
movement = {
"Up": (0, -1),
"Down": (0, 1),
"Left": (-1, 0),
"Right": (1, 0),
"Num7": (-1, -1),
"Num8": (0, -1),
"Num9": (1, -1),
"Num4": (-1, 0),
"Num6": (1, 0),
"Num1": (-1, 1),
"Num2": (0, 1),
"Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
# Title
title = mcrfpy.Caption("McRogueFace Roguelike - Part 2", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
# Instructions
instructions = mcrfpy.Caption("Explore the dungeon! ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
```
## Putting It All Together
Here's the complete `game.py` file:
```python
import mcrfpy
class GameObject:
"""Base class for all game objects (player, monsters, items)"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount if possible"""
if not self.grid:
return
new_x = self.x + dx
new_y = self.y + dy
self.x = new_x
self.y = new_y
if self._entity:
self._entity.x = new_x
self._entity.y = new_y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
self.fill_with_walls()
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def create_room(self, x1, y1, x2, y2):
"""Carve out a room in the map"""
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
for y in range(y1, y2 + 1):
for x in range(x1, x2 + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_h(self, x1, x2, y):
"""Create a horizontal tunnel"""
for x in range(min(x1, x2), max(x1, x2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_v(self, y1, y2, x):
"""Create a vertical tunnel"""
for y in range(min(y1, y2), max(y1, y2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
class Engine:
"""Main game engine that manages game state"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 2"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(50, 30)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
self.game_map.create_room(10, 10, 20, 20)
self.game_map.create_room(30, 15, 40, 25)
self.game_map.create_room(15, 22, 25, 28)
self.game_map.create_tunnel_h(20, 30, 15)
self.game_map.create_tunnel_v(20, 22, 20)
self.player = GameObject(15, 15, 64, (255, 255, 255), "Player", blocks=True)
self.game_map.add_entity(self.player)
npc = GameObject(35, 20, 64, (255, 255, 0), "NPC", blocks=True)
self.game_map.add_entity(npc)
self.entities.append(npc)
potion = GameObject(12, 12, 33, (255, 0, 255), "Potion", blocks=False)
self.game_map.add_entity(potion)
self.entities.append(potion)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
else:
target = self.game_map.get_blocking_entity_at(new_x, new_y)
if target:
print(f"You bump into the {target.name}!")
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("McRogueFace Roguelike - Part 2", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Explore the dungeon! ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 2: Entities and Maps!")
```
## Understanding the Architecture
### GameObject Class
Our `GameObject` class wraps McRogueFace's `Entity` and adds:
- Game logic properties (name, blocking)
- Position tracking independent of the visual entity
- Easy attachment/detachment from grids
### GameMap Class
The `GameMap` manages:
- The McRogueFace `Grid` for visual representation
- A list of all entities in the map
- Collision detection including entity blocking
- Map generation utilities (rooms, tunnels)
### Engine Class
The `Engine` coordinates everything:
- Scene and UI setup
- Game state management
- Input handling
- Entity-map interactions
## Key Improvements from Part 1
1. **Proper Entity Management**: Multiple entities can exist and interact
2. **Blocking Entities**: Some entities block movement, others don't
3. **Map Generation**: Tools for creating rooms and tunnels
4. **Collision System**: Checks both tiles and entities
5. **Organized Code**: Clear separation of concerns
## Exercises
1. **Add More Entity Types**: Create different sprites for monsters, items, and NPCs
2. **Entity Interactions**: Make items disappear when walked over
3. **Random Map Generation**: Place rooms and tunnels randomly
4. **Entity Properties**: Add health, damage, or other attributes to GameObjects
## What's Next?
In Part 3, we'll implement proper dungeon generation with:
- Procedurally generated rooms
- Smart tunnel routing
- Entity spawning
- The beginning of a real roguelike dungeon!
We now have a solid foundation with proper entity management and map structure. This architecture will serve us well as we add more complex features to our roguelike!

View File

@ -1,217 +0,0 @@
import mcrfpy
class GameObject:
"""Base class for all game objects (player, monsters, items)"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount if possible"""
if not self.grid:
return
new_x = self.x + dx
new_y = self.y + dy
self.x = new_x
self.y = new_y
if self._entity:
self._entity.x = new_x
self._entity.y = new_y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
self.fill_with_walls()
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def create_room(self, x1, y1, x2, y2):
"""Carve out a room in the map"""
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
for y in range(y1, y2 + 1):
for x in range(x1, x2 + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_h(self, x1, x2, y):
"""Create a horizontal tunnel"""
for x in range(min(x1, x2), max(x1, x2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_v(self, y1, y2, x):
"""Create a vertical tunnel"""
for y in range(min(y1, y2), max(y1, y2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
class Engine:
"""Main game engine that manages game state"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 2"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(50, 30)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
self.game_map.create_room(10, 10, 20, 20)
self.game_map.create_room(30, 15, 40, 25)
self.game_map.create_room(15, 22, 25, 28)
self.game_map.create_tunnel_h(20, 30, 15)
self.game_map.create_tunnel_v(20, 22, 20)
self.player = GameObject(15, 15, 64, (255, 255, 255), "Player", blocks=True)
self.game_map.add_entity(self.player)
npc = GameObject(35, 20, 64, (255, 255, 0), "NPC", blocks=True)
self.game_map.add_entity(npc)
self.entities.append(npc)
potion = GameObject(12, 12, 33, (255, 0, 255), "Potion", blocks=False)
self.game_map.add_entity(potion)
self.entities.append(potion)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
else:
target = self.game_map.get_blocking_entity_at(new_x, new_y)
if target:
print(f"You bump into the {target.name}!")
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("McRogueFace Roguelike - Part 2", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Explore the dungeon! ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 2: Entities and Maps!")

View File

@ -1,548 +0,0 @@
# Part 3 - Generating a Dungeon
In Parts 1 and 2, we created a player that could move around and interact with a hand-crafted dungeon. Now it's time to generate dungeons procedurally - a core feature of any roguelike game!
## The Plan
We'll create a dungeon generator that:
1. Places rectangular rooms randomly
2. Ensures rooms don't overlap
3. Connects rooms with tunnels
4. Places the player in the first room
This is a classic approach used by many roguelikes, and it creates interesting, playable dungeons.
## Creating a Room Class
First, let's create a class to represent rectangular rooms:
```python
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
"""Return the inner area of the room as a tuple of slices
This property returns the area inside the walls.
We'll add 1 to min coordinates and subtract 1 from max coordinates.
"""
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
"""Return True if this room overlaps with another RectangularRoom"""
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
```
## Implementing Tunnel Generation
Since McRogueFace doesn't include line-drawing algorithms, let's implement simple L-shaped tunnels:
```python
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
# Randomly decide whether to go horizontal first or vertical first
if random.random() < 0.5:
# Horizontal, then vertical
corner_x = x2
corner_y = y1
else:
# Vertical, then horizontal
corner_x = x1
corner_y = y2
# Generate the coordinates
# First line: from start to corner
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
# Second line: from corner to end
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
```
## The Dungeon Generator
Now let's update our GameMap class to generate dungeons:
```python
import random
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = [] # Keep track of rooms for game logic
def generate_dungeon(
self,
max_rooms,
room_min_size,
room_max_size,
player
):
"""Generate a new dungeon map"""
# Start with everything as walls
self.fill_with_walls()
for r in range(max_rooms):
# Random width and height
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
# Random position without going out of bounds
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
# Create the room
new_room = RectangularRoom(x, y, room_width, room_height)
# Check if it intersects with any existing room
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue # This room intersects, so go to the next attempt
# If we get here, it's a valid room
# Carve out this room
self.carve_room(new_room)
# Place the player in the center of the first room
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All rooms after the first:
# Tunnel between this room and the previous one
self.carve_tunnel(self.rooms[-1].center, new_room.center)
# Finally, append the new room to the list
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(30, 30, 40)) # Slightly different color for tunnels
```
## Complete Code
Here's the complete `game.py` with procedural dungeon generation:
```python
import mcrfpy
import random
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
"""Return the inner area of the room"""
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
"""Return True if this room overlaps with another"""
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
# Generate the coordinates
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(30, 30, 40))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 3"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player (before dungeon generation)
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add some monsters in random rooms
for i in range(5):
if i < len(self.game_map.rooms) - 1: # Don't spawn in first room
room = self.game_map.rooms[i + 1]
x, y = room.center
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "Space":
# Regenerate the dungeon
self.regenerate_dungeon()
mcrfpy.keypressScene(handle_keys)
def regenerate_dungeon(self):
"""Generate a new dungeon"""
# Clear existing entities
self.game_map.entities.clear()
self.game_map.rooms.clear()
self.entities.clear()
# Clear the entity list in the grid
if self.game_map.grid:
self.game_map.grid.entities.clear()
# Regenerate
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Re-add player
self.game_map.add_entity(self.player)
# Add new monsters
for i in range(5):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Procedural Dungeon Generation", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move, SPACE to regenerate, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 3: Procedural Dungeon Generation!")
print("Press SPACE to generate a new dungeon")
```
## Understanding the Algorithm
Our dungeon generation algorithm is simple but effective:
1. **Start with solid walls** - The entire map begins filled with wall tiles
2. **Try to place rooms** - Generate random rooms and check for overlaps
3. **Connect with tunnels** - Each new room connects to the previous one
4. **Place entities** - The player starts in the first room, monsters in others
### Room Placement
The algorithm attempts to place `max_rooms` rooms, but may place fewer if many attempts result in overlapping rooms. This is called "rejection sampling" - we generate random rooms and reject ones that don't fit.
### Tunnel Design
Our L-shaped tunnels are simple but effective. They either go:
- Horizontal first, then vertical
- Vertical first, then horizontal
This creates variety while ensuring all rooms are connected.
## Experimenting with Parameters
Try adjusting these parameters to create different dungeon styles:
```python
# Sparse dungeon with large rooms
self.game_map.generate_dungeon(
max_rooms=10,
room_min_size=10,
room_max_size=15,
player=self.player
)
# Dense dungeon with small rooms
self.game_map.generate_dungeon(
max_rooms=50,
room_min_size=4,
room_max_size=6,
player=self.player
)
```
## Visual Enhancements
Notice how we gave tunnels a slightly different color:
- Rooms: `color=(50, 50, 50)` - Medium gray
- Tunnels: `color=(30, 30, 40)` - Darker with blue tint
This subtle difference helps players understand the dungeon layout.
## Exercises
1. **Different Room Shapes**: Create circular or cross-shaped rooms
2. **Better Tunnel Routing**: Implement A* pathfinding for more natural tunnels
3. **Room Types**: Create special rooms (treasure rooms, trap rooms)
4. **Dungeon Themes**: Use different tile sets and colors for different dungeon levels
## What's Next?
In Part 4, we'll implement Field of View (FOV) so the player can only see parts of the dungeon they've explored. This will add mystery and atmosphere to our procedurally generated dungeons!
Our dungeon generator is now creating unique, playable levels every time. The foundation of a true roguelike is taking shape!

View File

@ -1,312 +0,0 @@
import mcrfpy
import random
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
"""Return the inner area of the room"""
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
"""Return True if this room overlaps with another"""
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
# Generate the coordinates
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(30, 30, 40))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 3"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player (before dungeon generation)
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add some monsters in random rooms
for i in range(5):
if i < len(self.game_map.rooms) - 1: # Don't spawn in first room
room = self.game_map.rooms[i + 1]
x, y = room.center
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "Space":
# Regenerate the dungeon
self.regenerate_dungeon()
mcrfpy.keypressScene(handle_keys)
def regenerate_dungeon(self):
"""Generate a new dungeon"""
# Clear existing entities
self.game_map.entities.clear()
self.game_map.rooms.clear()
self.entities.clear()
# Clear the entity list in the grid
if self.game_map.grid:
self.game_map.grid.entities.clear()
# Regenerate
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Re-add player
self.game_map.add_entity(self.player)
# Add new monsters
for i in range(5):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Procedural Dungeon Generation", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move, SPACE to regenerate, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 3: Procedural Dungeon Generation!")
print("Press SPACE to generate a new dungeon")

View File

@ -1,520 +0,0 @@
# Part 4 - Field of View
One of the defining features of roguelikes is exploration and discovery. In Part 3, we could see the entire dungeon at once. Now we'll implement Field of View (FOV) so players can only see what their character can actually see, adding mystery and tactical depth to our game.
## Understanding Field of View
Field of View creates three distinct visibility states for each tile:
1. **Visible**: Currently in the player's line of sight
2. **Explored**: Previously seen but not currently visible
3. **Unexplored**: Never seen (completely hidden)
This creates the classic "fog of war" effect where you remember the layout of areas you've explored, but can't see current enemy positions unless they're in your view.
## McRogueFace's FOV System
Good news! McRogueFace includes built-in FOV support through its C++ engine. We just need to enable and configure it. The engine uses an efficient shadowcasting algorithm that provides smooth, realistic line-of-sight calculations.
Let's update our code to use FOV:
```python
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
```
## Configuring Visibility Rendering
McRogueFace automatically handles the rendering of visible/explored/unexplored tiles. We need to set up our grid to use perspective-based rendering:
```python
class GameMap:
"""Manages the game world"""
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering (0 = first entity = player)
self.grid.perspective = 0
return self.grid
```
## Visual Appearance Configuration
Let's define how our tiles look in different visibility states:
```python
# Color configurations for visibility states
COLORS_VISIBLE = {
'wall': (100, 100, 100), # Light gray
'floor': (50, 50, 50), # Dark gray
'tunnel': (30, 30, 40), # Dark blue-gray
}
COLORS_EXPLORED = {
'wall': (50, 50, 70), # Darker, bluish
'floor': (20, 20, 30), # Very dark
'tunnel': (15, 15, 25), # Almost black
}
# Update the tile-setting methods to store the tile type
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
# Store both visible and explored colors
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
# The engine will automatically darken explored tiles
```
## Complete Implementation
Here's the complete updated `game.py` with FOV:
```python
import mcrfpy
import random
# Color configurations for visibility
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering (0 = first entity = player)
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.fov_radius = 8
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 4"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add monsters in random rooms
for i in range(10):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
# Randomly offset from center
x += random.randint(-2, 2)
y += random.randint(-2, 2)
# Make sure position is walkable
if self.game_map.grid.at(x, y).walkable:
if i % 2 == 0:
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
else:
# Create a troll
troll = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
self.game_map.add_entity(troll)
self.entities.append(troll)
# Initial FOV calculation
self.player.update_fov()
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "v":
# Toggle FOV on/off
if self.game_map.grid.perspective == 0:
self.game_map.grid.perspective = -1 # Omniscient
print("FOV disabled - omniscient view")
else:
self.game_map.grid.perspective = 0 # Player perspective
print("FOV enabled - player perspective")
elif key == "Plus" or key == "Equals":
# Increase FOV radius
self.fov_radius = min(self.fov_radius + 1, 20)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
elif key == "Minus":
# Decrease FOV radius
self.fov_radius = max(self.fov_radius - 1, 3)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Field of View", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | V to toggle FOV | +/- to adjust radius | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# FOV indicator
self.fov_text = mcrfpy.Caption(f"FOV Radius: {self.fov_radius}", 900, 100)
self.fov_text.font_size = 14
self.fov_text.fill_color = mcrfpy.Color(150, 200, 255)
self.ui.append(self.fov_text)
# Create and run the game
engine = Engine()
print("Part 4: Field of View!")
print("Press V to toggle FOV on/off")
print("Press +/- to adjust FOV radius")
```
## How FOV Works
McRogueFace's built-in FOV system uses a shadowcasting algorithm that:
1. **Casts rays** from the player's position to tiles within the radius
2. **Checks transparency** along each ray path
3. **Marks tiles as visible** if the ray reaches them unobstructed
4. **Remembers explored tiles** automatically
The engine handles all the complex calculations in C++ for optimal performance.
## Visibility States in Detail
### Visible Tiles
- Currently in the player's line of sight
- Rendered at full brightness
- Show current entity positions
### Explored Tiles
- Previously seen but not currently visible
- Rendered darker/muted
- Show remembered terrain but not entities
### Unexplored Tiles
- Never been in the player's FOV
- Rendered as black/invisible
- Complete mystery to the player
## FOV Parameters
You can customize FOV behavior:
```python
# Basic FOV update
entity.update_fov(radius=8)
# The grid's perspective property controls rendering:
grid.perspective = 0 # Use first entity's FOV (player)
grid.perspective = 1 # Use second entity's FOV
grid.perspective = -1 # Omniscient (no FOV, see everything)
```
## Performance Considerations
McRogueFace's C++ FOV implementation is highly optimized:
- Uses efficient shadowcasting algorithm
- Only recalculates when needed
- Handles large maps smoothly
- Automatically culls entities outside FOV
## Visual Polish
The engine automatically handles visual transitions:
- Smooth color changes between visibility states
- Entities fade in/out of view
- Explored areas remain visible but dimmed
## Exercises
1. **Variable Vision**: Give different entities different FOV radii
2. **Light Sources**: Create torches that expand local FOV
3. **Blind Spots**: Add pillars that create interesting shadows
4. **X-Ray Vision**: Temporary power-up to see through walls
## What's Next?
In Part 5, we'll place enemies throughout the dungeon and implement basic interactions. With FOV in place, enemies will appear and disappear as you explore, creating tension and surprise!
Field of View transforms our dungeon from a tactical puzzle into a mysterious world to explore. The fog of war adds atmosphere and gameplay depth that's essential to the roguelike experience.

View File

@ -1,334 +0,0 @@
import mcrfpy
import random
# Color configurations for visibility
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering (0 = first entity = player)
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.fov_radius = 8
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 4"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add monsters in random rooms
for i in range(10):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
# Randomly offset from center
x += random.randint(-2, 2)
y += random.randint(-2, 2)
# Make sure position is walkable
if self.game_map.grid.at(x, y).walkable:
if i % 2 == 0:
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
else:
# Create a troll
troll = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
self.game_map.add_entity(troll)
self.entities.append(troll)
# Initial FOV calculation
self.player.update_fov()
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "v":
# Toggle FOV on/off
if self.game_map.grid.perspective == 0:
self.game_map.grid.perspective = -1 # Omniscient
print("FOV disabled - omniscient view")
else:
self.game_map.grid.perspective = 0 # Player perspective
print("FOV enabled - player perspective")
elif key == "Plus" or key == "Equals":
# Increase FOV radius
self.fov_radius = min(self.fov_radius + 1, 20)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
elif key == "Minus":
# Decrease FOV radius
self.fov_radius = max(self.fov_radius - 1, 3)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Field of View", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | V to toggle FOV | +/- to adjust radius | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# FOV indicator
self.fov_text = mcrfpy.Caption(f"FOV Radius: {self.fov_radius}", 900, 100)
self.fov_text.font_size = 14
self.fov_text.fill_color = mcrfpy.Color(150, 200, 255)
self.ui.append(self.fov_text)
# Create and run the game
engine = Engine()
print("Part 4: Field of View!")
print("Press V to toggle FOV on/off")
print("Press +/- to adjust FOV radius")

View File

@ -1,570 +0,0 @@
# Part 5 - Placing Enemies and Kicking Them (Harmlessly)
Now that we have Field of View working, it's time to populate our dungeon with enemies! In this part, we'll:
- Place enemies randomly in rooms
- Implement entity-to-entity collision detection
- Create basic interactions (bumping into enemies)
- Set the stage for combat in Part 6
## Enemy Spawning System
First, let's create a system to spawn enemies in our dungeon rooms. We'll avoid placing them in the first room (where the player starts) to give players a safe starting area.
```python
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
import random
number_of_enemies = random.randint(0, max_enemies)
for i in range(number_of_enemies):
# Try to find a valid position
attempts = 10
while attempts > 0:
# Random position within room bounds
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
# Check if position is valid
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
else:
enemy = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
game_map.add_entity(enemy)
break
attempts -= 1
```
## Enhanced Collision Detection
We need to improve our collision detection to check for entities, not just walls:
```python
class GameMap:
"""Manages the game world"""
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
# Check boundaries
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
# Check walls
if not self.grid.at(x, y).walkable:
return True
# Check entities
if self.get_blocking_entity_at(x, y):
return True
return False
```
## Action System Introduction
Let's create a simple action system to handle different types of interactions:
```python
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class BumpAction(Action):
"""Action for bumping into something"""
def __init__(self, dx, dy, target=None):
self.dx = dx
self.dy = dy
self.target = target
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
```
## Handling Player Actions
Now let's update our movement handling to support bumping into enemies:
```python
def handle_player_turn(self, action):
"""Process the player's action"""
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# We bumped into something!
print(f"You kick the {target.name} in the shins, much to its annoyance!")
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
# Update message
self.status_text.text = "Exploring the dungeon..."
else:
# Bumped into a wall
self.status_text.text = "Ouch! You bump into a wall."
elif isinstance(action, WaitAction):
self.status_text.text = "You wait..."
```
## Complete Updated Code
Here's the complete `game.py` with enemy placement and interactions:
```python
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
# Try to find a valid position
attempts = 10
while attempts > 0:
# Random position within room bounds
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
# Check if position is valid
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
else:
enemy = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 5"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
def handle_player_turn(self, action):
"""Process the player's action"""
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# We bumped into something!
print(f"You kick the {target.name} in the shins, much to its annoyance!")
self.status_text.text = f"You kick the {target.name}!"
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
self.status_text.text = ""
else:
# Bumped into a wall
self.status_text.text = "Blocked!"
elif isinstance(action, WaitAction):
self.status_text.text = "You wait..."
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Placing Enemies", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | . to wait | Bump into enemies! | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Status text
self.status_text = mcrfpy.Caption("", 512, 600)
self.status_text.font_size = 18
self.status_text.fill_color = mcrfpy.Color(255, 200, 200)
self.ui.append(self.status_text)
# Entity count
entity_count = len(self.entities)
count_text = mcrfpy.Caption(f"Enemies: {entity_count}", 900, 100)
count_text.font_size = 14
count_text.fill_color = mcrfpy.Color(150, 150, 255)
self.ui.append(count_text)
# Create and run the game
engine = Engine()
print("Part 5: Placing Enemies!")
print("Try bumping into enemies - combat coming in Part 6!")
```
## Understanding Entity Interactions
### Collision Detection
Our system now checks three things when the player tries to move:
1. **Map boundaries** - Can't move outside the map
2. **Wall tiles** - Can't walk through walls
3. **Blocking entities** - Can't walk through enemies
### The Action System
We've introduced a simple action system that will grow in Part 6:
- `Action` - Base class for all actions
- `MovementAction` - Represents attempted movement
- `WaitAction` - Skip a turn (important for turn-based games)
### Entity Spawning
Enemies are placed randomly in rooms with these rules:
- Never in the first room (player's starting room)
- Random number between 0 and max per room
- 80% orcs, 20% trolls
- Must be placed on walkable, unoccupied tiles
## Visual Feedback
With FOV enabled, enemies will appear and disappear as you explore:
- Enemies in sight are fully visible
- Enemies in explored but dark areas are hidden
- Creates tension and surprise encounters
## Exercises
1. **More Enemy Types**: Add different sprites and names (goblins, skeletons)
2. **Enemy Density**: Adjust spawn rates based on dungeon depth
3. **Special Rooms**: Create rooms with guaranteed enemies or treasures
4. **Better Feedback**: Add sound effects or visual effects for bumping
## What's Next?
In Part 6, we'll transform those harmless kicks into a real combat system! We'll add:
- Health points for all entities
- Damage calculations
- Death and corpses
- Combat messages
- The beginning of a real roguelike!
Right now our enemies are just obstacles. Soon they'll fight back!

View File

@ -1,388 +0,0 @@
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
# Try to find a valid position
attempts = 10
while attempts > 0:
# Random position within room bounds
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
# Check if position is valid
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
else:
enemy = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 5"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
def handle_player_turn(self, action):
"""Process the player's action"""
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# We bumped into something!
print(f"You kick the {target.name} in the shins, much to its annoyance!")
self.status_text.text = f"You kick the {target.name}!"
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
self.status_text.text = ""
else:
# Bumped into a wall
self.status_text.text = "Blocked!"
elif isinstance(action, WaitAction):
self.status_text.text = "You wait..."
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Placing Enemies", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | . to wait | Bump into enemies! | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Status text
self.status_text = mcrfpy.Caption("", 512, 600)
self.status_text.font_size = 18
self.status_text.fill_color = mcrfpy.Color(255, 200, 200)
self.ui.append(self.status_text)
# Entity count
entity_count = len(self.entities)
count_text = mcrfpy.Caption(f"Enemies: {entity_count}", 900, 100)
count_text.font_size = 14
count_text.fill_color = mcrfpy.Color(150, 150, 255)
self.ui.append(count_text)
# Create and run the game
engine = Engine()
print("Part 5: Placing Enemies!")
print("Try bumping into enemies - combat coming in Part 6!")

View File

@ -1,743 +0,0 @@
# Part 6 - Doing (and Taking) Some Damage
It's time to turn our harmless kicks into real combat! In this part, we'll implement:
- Health points for all entities
- A damage calculation system
- Death and corpse mechanics
- Combat feedback messages
- The foundation of tactical roguelike combat
## Adding Combat Stats
First, let's enhance our GameObject class with combat capabilities:
```python
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name,
blocks=False, hp=0, defense=0, power=0):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
# Combat stats
self.max_hp = hp
self.hp = hp
self.defense = defense
self.power = power
@property
def is_alive(self):
"""Returns True if this entity can act"""
return self.hp > 0
def take_damage(self, amount):
"""Apply damage to this entity"""
damage = amount - self.defense
if damage > 0:
self.hp -= damage
# Check for death
if self.hp <= 0 and self.hp + damage > 0:
self.die()
return damage
def die(self):
"""Handle entity death"""
if self.name == "Player":
# Player death is special - we'll handle it differently
self.sprite_index = 64 # Stay as @ but change color
self.color = (127, 0, 0) # Dark red
if self._entity:
self._entity.color = mcrfpy.Color(127, 0, 0)
print("You have died!")
else:
# Enemy death
self.sprite_index = 37 # % character for corpse
self.color = (127, 0, 0) # Dark red
self.blocks = False # Corpses don't block
self.name = f"remains of {self.name}"
if self._entity:
self._entity.sprite_index = 37
self._entity.color = mcrfpy.Color(127, 0, 0)
```
## The Combat System
Now let's implement actual combat when entities bump into each other:
```python
class MeleeAction(Action):
"""Action for melee attacks"""
def __init__(self, attacker, target):
self.attacker = attacker
self.target = target
def perform(self):
"""Execute the attack"""
if not self.target.is_alive:
return # Can't attack the dead
damage = self.attacker.power - self.target.defense
if damage > 0:
attack_desc = f"{self.attacker.name} attacks {self.target.name} for {damage} damage!"
self.target.take_damage(damage)
else:
attack_desc = f"{self.attacker.name} attacks {self.target.name} but does no damage."
return attack_desc
```
## Entity Factories
Let's create factory functions for consistent entity creation:
```python
def create_player(x, y):
"""Create the player entity"""
return GameObject(
x=x, y=y,
sprite_index=64, # @
color=(255, 255, 255),
name="Player",
blocks=True,
hp=30,
defense=2,
power=5
)
def create_orc(x, y):
"""Create an orc enemy"""
return GameObject(
x=x, y=y,
sprite_index=111, # o
color=(63, 127, 63),
name="Orc",
blocks=True,
hp=10,
defense=0,
power=3
)
def create_troll(x, y):
"""Create a troll enemy"""
return GameObject(
x=x, y=y,
sprite_index=84, # T
color=(0, 127, 0),
name="Troll",
blocks=True,
hp=16,
defense=1,
power=4
)
```
## The Message Log
Combat needs feedback! Let's create a simple message log:
```python
class MessageLog:
"""Manages game messages"""
def __init__(self, max_messages=5):
self.messages = []
self.max_messages = max_messages
def add_message(self, text, color=(255, 255, 255)):
"""Add a message to the log"""
self.messages.append((text, color))
# Keep only recent messages
if len(self.messages) > self.max_messages:
self.messages.pop(0)
def render(self, ui, x, y, line_height=20):
"""Render messages to the UI"""
for i, (text, color) in enumerate(self.messages):
caption = mcrfpy.Caption(text, x, y + i * line_height)
caption.font_size = 14
caption.fill_color = mcrfpy.Color(*color)
ui.append(caption)
```
## Complete Implementation
Here's the complete `game.py` with combat:
```python
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Message colors
COLOR_PLAYER_ATK = (230, 230, 230)
COLOR_ENEMY_ATK = (255, 200, 200)
COLOR_PLAYER_DIE = (255, 100, 100)
COLOR_ENEMY_DIE = (255, 165, 0)
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class MeleeAction(Action):
"""Action for melee attacks"""
def __init__(self, attacker, target):
self.attacker = attacker
self.target = target
def perform(self):
"""Execute the attack"""
if not self.target.is_alive:
return None
damage = self.attacker.power - self.target.defense
if damage > 0:
attack_desc = f"{self.attacker.name} attacks {self.target.name} for {damage} damage!"
self.target.take_damage(damage)
# Choose color based on attacker
if self.attacker.name == "Player":
color = COLOR_PLAYER_ATK
else:
color = COLOR_ENEMY_ATK
return attack_desc, color
else:
attack_desc = f"{self.attacker.name} attacks {self.target.name} but does no damage."
return attack_desc, (150, 150, 150)
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name,
blocks=False, hp=0, defense=0, power=0):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
# Combat stats
self.max_hp = hp
self.hp = hp
self.defense = defense
self.power = power
@property
def is_alive(self):
"""Returns True if this entity can act"""
return self.hp > 0
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
def take_damage(self, amount):
"""Apply damage to this entity"""
self.hp -= amount
# Check for death
if self.hp <= 0:
self.die()
def die(self):
"""Handle entity death"""
if self.name == "Player":
# Player death
self.sprite_index = 64 # Stay as @
self.color = (127, 0, 0) # Dark red
if self._entity:
self._entity.color = mcrfpy.Color(127, 0, 0)
else:
# Enemy death
self.sprite_index = 37 # % character for corpse
self.color = (127, 0, 0) # Dark red
self.blocks = False # Corpses don't block
self.name = f"remains of {self.name}"
if self._entity:
self._entity.sprite_index = 37
self._entity.color = mcrfpy.Color(127, 0, 0)
# Entity factories
def create_player(x, y):
"""Create the player entity"""
return GameObject(
x=x, y=y,
sprite_index=64, # @
color=(255, 255, 255),
name="Player",
blocks=True,
hp=30,
defense=2,
power=5
)
def create_orc(x, y):
"""Create an orc enemy"""
return GameObject(
x=x, y=y,
sprite_index=111, # o
color=(63, 127, 63),
name="Orc",
blocks=True,
hp=10,
defense=0,
power=3
)
def create_troll(x, y):
"""Create a troll enemy"""
return GameObject(
x=x, y=y,
sprite_index=84, # T
color=(0, 127, 0),
name="Troll",
blocks=True,
hp=16,
defense=1,
power=4
)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
attempts = 10
while attempts > 0:
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = create_orc(x, y)
else:
enemy = create_troll(x, y)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.messages = [] # Simple message log
self.max_messages = 5
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 6"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def add_message(self, text, color=(255, 255, 255)):
"""Add a message to the log"""
self.messages.append((text, color))
if len(self.messages) > self.max_messages:
self.messages.pop(0)
self.update_message_display()
def update_message_display(self):
"""Update the message display"""
# Clear old messages
for caption in self.message_captions:
# Remove from UI (McRogueFace doesn't have remove, so we hide it)
caption.text = ""
# Display current messages
for i, (text, color) in enumerate(self.messages):
if i < len(self.message_captions):
self.message_captions[i].text = text
self.message_captions[i].fill_color = mcrfpy.Color(*color)
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = create_player(0, 0)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
# Welcome message
self.add_message("Welcome to the dungeon!", (100, 100, 255))
def handle_player_turn(self, action):
"""Process the player's action"""
if not self.player.is_alive:
return
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# Attack!
attack = MeleeAction(self.player, target)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if target died
if not target.is_alive:
death_msg = f"The {target.name.replace('remains of ', '')} is dead!"
self.add_message(death_msg, COLOR_ENEMY_DIE)
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
elif isinstance(action, WaitAction):
pass # Do nothing
# Enemy turns
self.handle_enemy_turns()
def handle_enemy_turns(self):
"""Let all enemies take their turn"""
for entity in self.entities:
if entity.is_alive:
# Simple AI: if player is adjacent, attack. Otherwise, do nothing.
dx = entity.x - self.player.x
dy = entity.y - self.player.y
distance = abs(dx) + abs(dy)
if distance == 1: # Adjacent to player
attack = MeleeAction(entity, self.player)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if player died
if not self.player.is_alive:
self.add_message("You have died!", COLOR_PLAYER_DIE)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Combat System", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Attack enemies by bumping into them!", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Player stats
self.hp_text = mcrfpy.Caption(f"HP: {self.player.hp}/{self.player.max_hp}", 50, 100)
self.hp_text.font_size = 18
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
self.ui.append(self.hp_text)
# Message log
self.message_captions = []
for i in range(self.max_messages):
caption = mcrfpy.Caption("", 50, 620 + i * 20)
caption.font_size = 14
caption.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(caption)
self.message_captions.append(caption)
# Timer to update HP display
def update_stats(dt):
self.hp_text.text = f"HP: {self.player.hp}/{self.player.max_hp}"
if self.player.hp <= 0:
self.hp_text.fill_color = mcrfpy.Color(127, 0, 0)
elif self.player.hp < self.player.max_hp // 3:
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
else:
self.hp_text.fill_color = mcrfpy.Color(0, 255, 0)
mcrfpy.setTimer("update_stats", update_stats, 100)
# Create and run the game
engine = Engine()
print("Part 6: Combat System!")
print("Attack enemies to defeat them, but watch your HP!")

View File

@ -1,568 +0,0 @@
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Message colors
COLOR_PLAYER_ATK = (230, 230, 230)
COLOR_ENEMY_ATK = (255, 200, 200)
COLOR_PLAYER_DIE = (255, 100, 100)
COLOR_ENEMY_DIE = (255, 165, 0)
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class MeleeAction(Action):
"""Action for melee attacks"""
def __init__(self, attacker, target):
self.attacker = attacker
self.target = target
def perform(self):
"""Execute the attack"""
if not self.target.is_alive:
return None
damage = self.attacker.power - self.target.defense
if damage > 0:
attack_desc = f"{self.attacker.name} attacks {self.target.name} for {damage} damage!"
self.target.take_damage(damage)
# Choose color based on attacker
if self.attacker.name == "Player":
color = COLOR_PLAYER_ATK
else:
color = COLOR_ENEMY_ATK
return attack_desc, color
else:
attack_desc = f"{self.attacker.name} attacks {self.target.name} but does no damage."
return attack_desc, (150, 150, 150)
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name,
blocks=False, hp=0, defense=0, power=0):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
# Combat stats
self.max_hp = hp
self.hp = hp
self.defense = defense
self.power = power
@property
def is_alive(self):
"""Returns True if this entity can act"""
return self.hp > 0
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
def take_damage(self, amount):
"""Apply damage to this entity"""
self.hp -= amount
# Check for death
if self.hp <= 0:
self.die()
def die(self):
"""Handle entity death"""
if self.name == "Player":
# Player death
self.sprite_index = 64 # Stay as @
self.color = (127, 0, 0) # Dark red
if self._entity:
self._entity.color = mcrfpy.Color(127, 0, 0)
else:
# Enemy death
self.sprite_index = 37 # % character for corpse
self.color = (127, 0, 0) # Dark red
self.blocks = False # Corpses don't block
self.name = f"remains of {self.name}"
if self._entity:
self._entity.sprite_index = 37
self._entity.color = mcrfpy.Color(127, 0, 0)
# Entity factories
def create_player(x, y):
"""Create the player entity"""
return GameObject(
x=x, y=y,
sprite_index=64, # @
color=(255, 255, 255),
name="Player",
blocks=True,
hp=30,
defense=2,
power=5
)
def create_orc(x, y):
"""Create an orc enemy"""
return GameObject(
x=x, y=y,
sprite_index=111, # o
color=(63, 127, 63),
name="Orc",
blocks=True,
hp=10,
defense=0,
power=3
)
def create_troll(x, y):
"""Create a troll enemy"""
return GameObject(
x=x, y=y,
sprite_index=84, # T
color=(0, 127, 0),
name="Troll",
blocks=True,
hp=16,
defense=1,
power=4
)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
attempts = 10
while attempts > 0:
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = create_orc(x, y)
else:
enemy = create_troll(x, y)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.messages = [] # Simple message log
self.max_messages = 5
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 6"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def add_message(self, text, color=(255, 255, 255)):
"""Add a message to the log"""
self.messages.append((text, color))
if len(self.messages) > self.max_messages:
self.messages.pop(0)
self.update_message_display()
def update_message_display(self):
"""Update the message display"""
# Clear old messages
for caption in self.message_captions:
# Remove from UI (McRogueFace doesn't have remove, so we hide it)
caption.text = ""
# Display current messages
for i, (text, color) in enumerate(self.messages):
if i < len(self.message_captions):
self.message_captions[i].text = text
self.message_captions[i].fill_color = mcrfpy.Color(*color)
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = create_player(0, 0)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
# Welcome message
self.add_message("Welcome to the dungeon!", (100, 100, 255))
def handle_player_turn(self, action):
"""Process the player's action"""
if not self.player.is_alive:
return
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# Attack!
attack = MeleeAction(self.player, target)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if target died
if not target.is_alive:
death_msg = f"The {target.name.replace('remains of ', '')} is dead!"
self.add_message(death_msg, COLOR_ENEMY_DIE)
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
elif isinstance(action, WaitAction):
pass # Do nothing
# Enemy turns
self.handle_enemy_turns()
def handle_enemy_turns(self):
"""Let all enemies take their turn"""
for entity in self.entities:
if entity.is_alive:
# Simple AI: if player is adjacent, attack. Otherwise, do nothing.
dx = entity.x - self.player.x
dy = entity.y - self.player.y
distance = abs(dx) + abs(dy)
if distance == 1: # Adjacent to player
attack = MeleeAction(entity, self.player)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if player died
if not self.player.is_alive:
self.add_message("You have died!", COLOR_PLAYER_DIE)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Combat System", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Attack enemies by bumping into them!", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Player stats
self.hp_text = mcrfpy.Caption(f"HP: {self.player.hp}/{self.player.max_hp}", 50, 100)
self.hp_text.font_size = 18
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
self.ui.append(self.hp_text)
# Message log
self.message_captions = []
for i in range(self.max_messages):
caption = mcrfpy.Caption("", 50, 620 + i * 20)
caption.font_size = 14
caption.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(caption)
self.message_captions.append(caption)
# Timer to update HP display
def update_stats(dt):
self.hp_text.text = f"HP: {self.player.hp}/{self.player.max_hp}"
if self.player.hp <= 0:
self.hp_text.fill_color = mcrfpy.Color(127, 0, 0)
elif self.player.hp < self.player.max_hp // 3:
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
else:
self.hp_text.fill_color = mcrfpy.Color(0, 255, 0)
mcrfpy.setTimer("update_stats", update_stats, 100)
# Create and run the game
engine = Engine()
print("Part 6: Combat System!")
print("Attack enemies to defeat them, but watch your HP!")

View File

@ -11,10 +11,10 @@ public:
const static int WHEEL_NUM = 4; const static int WHEEL_NUM = 4;
const static int WHEEL_NEG = 2; const static int WHEEL_NEG = 2;
const static int WHEEL_DEL = 1; const static int WHEEL_DEL = 1;
static int keycode(const sf::Keyboard::Key& k) { return KEY + (int)k; } static int keycode(sf::Keyboard::Key& k) { return KEY + (int)k; }
static int keycode(const sf::Mouse::Button& b) { return MOUSEBUTTON + (int)b; } static int keycode(sf::Mouse::Button& b) { return MOUSEBUTTON + (int)b; }
//static int keycode(sf::Mouse::Wheel& w, float d) { return MOUSEWHEEL + (((int)w)<<12) + int(d*16) + 512; } //static int keycode(sf::Mouse::Wheel& w, float d) { return MOUSEWHEEL + (((int)w)<<12) + int(d*16) + 512; }
static int keycode(const sf::Mouse::Wheel& w, float d) { static int keycode(sf::Mouse::Wheel& w, float d) {
int neg = 0; int neg = 0;
if (d < 0) { neg = 1; } if (d < 0) { neg = 1; }
return MOUSEWHEEL + (w * WHEEL_NUM) + (neg * WHEEL_NEG) + 1; return MOUSEWHEEL + (w * WHEEL_NUM) + (neg * WHEEL_NEG) + 1;
@ -32,7 +32,7 @@ public:
return (a & WHEEL_DEL) * factor; return (a & WHEEL_DEL) * factor;
} }
static std::string key_str(const sf::Keyboard::Key& keycode) static std::string key_str(sf::Keyboard::Key& keycode)
{ {
switch(keycode) switch(keycode)
{ {

View File

@ -1,527 +0,0 @@
#include "Animation.h"
#include "UIDrawable.h"
#include "UIEntity.h"
#include <cmath>
#include <algorithm>
#include <unordered_map>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// Animation implementation
Animation::Animation(const std::string& targetProperty,
const AnimationValue& targetValue,
float duration,
EasingFunction easingFunc,
bool delta)
: targetProperty(targetProperty)
, targetValue(targetValue)
, duration(duration)
, easingFunc(easingFunc)
, delta(delta)
{
}
void Animation::start(UIDrawable* target) {
currentTarget = target;
elapsed = 0.0f;
// Capture startValue from target based on targetProperty
if (!currentTarget) return;
// Try to get the current value based on the expected type
std::visit([this](const auto& targetVal) {
using T = std::decay_t<decltype(targetVal)>;
if constexpr (std::is_same_v<T, float>) {
float value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, int>) {
int value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// For sprite animation, get current sprite index
int value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, sf::Color>) {
sf::Color value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
sf::Vector2f value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, std::string>) {
std::string value;
if (currentTarget->getProperty(targetProperty, value)) {
startValue = value;
}
}
}, targetValue);
}
void Animation::startEntity(UIEntity* target) {
currentEntityTarget = target;
currentTarget = nullptr; // Clear drawable target
elapsed = 0.0f;
// Capture the starting value from the entity
std::visit([this, target](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
float value = 0.0f;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, int>) {
// For entities, we might need to handle sprite_index differently
if (targetProperty == "sprite_index" || targetProperty == "sprite_number") {
startValue = target->sprite.getSpriteIndex();
}
}
// Entities don't support other types yet
}, targetValue);
}
bool Animation::update(float deltaTime) {
if ((!currentTarget && !currentEntityTarget) || isComplete()) {
return false;
}
elapsed += deltaTime;
elapsed = std::min(elapsed, duration);
// Calculate easing value (0.0 to 1.0)
float t = duration > 0 ? elapsed / duration : 1.0f;
float easedT = easingFunc(t);
// Get interpolated value
AnimationValue currentValue = interpolate(easedT);
// Apply currentValue to target (either drawable or entity)
std::visit([this](const auto& value) {
using T = std::decay_t<decltype(value)>;
if (currentTarget) {
// Handle UIDrawable targets
if constexpr (std::is_same_v<T, float>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, int>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, std::string>) {
currentTarget->setProperty(targetProperty, value);
}
}
else if (currentEntityTarget) {
// Handle UIEntity targets
if constexpr (std::is_same_v<T, float>) {
currentEntityTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, int>) {
currentEntityTarget->setProperty(targetProperty, value);
}
// Entities don't support other types yet
}
}, currentValue);
return !isComplete();
}
AnimationValue Animation::getCurrentValue() const {
float t = duration > 0 ? elapsed / duration : 1.0f;
float easedT = easingFunc(t);
return interpolate(easedT);
}
AnimationValue Animation::interpolate(float t) const {
// Visit the variant to perform type-specific interpolation
return std::visit([this, t](const auto& target) -> AnimationValue {
using T = std::decay_t<decltype(target)>;
if constexpr (std::is_same_v<T, float>) {
// Interpolate float
const float* start = std::get_if<float>(&startValue);
if (!start) return target; // Type mismatch
if (delta) {
return *start + target * t;
} else {
return *start + (target - *start) * t;
}
}
else if constexpr (std::is_same_v<T, int>) {
// Interpolate integer
const int* start = std::get_if<int>(&startValue);
if (!start) return target;
float result;
if (delta) {
result = *start + target * t;
} else {
result = *start + (target - *start) * t;
}
return static_cast<int>(std::round(result));
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// For sprite animation, interpolate through the list
if (target.empty()) return target;
// Map t to an index in the vector
size_t index = static_cast<size_t>(t * (target.size() - 1));
index = std::min(index, target.size() - 1);
return static_cast<int>(target[index]);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
// Interpolate color
const sf::Color* start = std::get_if<sf::Color>(&startValue);
if (!start) return target;
sf::Color result;
if (delta) {
result.r = std::clamp(start->r + target.r * t, 0.0f, 255.0f);
result.g = std::clamp(start->g + target.g * t, 0.0f, 255.0f);
result.b = std::clamp(start->b + target.b * t, 0.0f, 255.0f);
result.a = std::clamp(start->a + target.a * t, 0.0f, 255.0f);
} else {
result.r = start->r + (target.r - start->r) * t;
result.g = start->g + (target.g - start->g) * t;
result.b = start->b + (target.b - start->b) * t;
result.a = start->a + (target.a - start->a) * t;
}
return result;
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
// Interpolate vector
const sf::Vector2f* start = std::get_if<sf::Vector2f>(&startValue);
if (!start) return target;
if (delta) {
return sf::Vector2f(start->x + target.x * t,
start->y + target.y * t);
} else {
return sf::Vector2f(start->x + (target.x - start->x) * t,
start->y + (target.y - start->y) * t);
}
}
else if constexpr (std::is_same_v<T, std::string>) {
// For text, show characters based on t
const std::string* start = std::get_if<std::string>(&startValue);
if (!start) return target;
// If delta mode, append characters from target
if (delta) {
size_t chars = static_cast<size_t>(target.length() * t);
return *start + target.substr(0, chars);
} else {
// Transition from start text to target text
if (t < 0.5f) {
// First half: remove characters from start
size_t chars = static_cast<size_t>(start->length() * (1.0f - t * 2.0f));
return start->substr(0, chars);
} else {
// Second half: add characters to target
size_t chars = static_cast<size_t>(target.length() * ((t - 0.5f) * 2.0f));
return target.substr(0, chars);
}
}
}
return target; // Fallback
}, targetValue);
}
// Easing functions implementation
namespace EasingFunctions {
float linear(float t) {
return t;
}
float easeIn(float t) {
return t * t;
}
float easeOut(float t) {
return t * (2.0f - t);
}
float easeInOut(float t) {
return t < 0.5f ? 2.0f * t * t : -1.0f + (4.0f - 2.0f * t) * t;
}
// Quadratic
float easeInQuad(float t) {
return t * t;
}
float easeOutQuad(float t) {
return t * (2.0f - t);
}
float easeInOutQuad(float t) {
return t < 0.5f ? 2.0f * t * t : -1.0f + (4.0f - 2.0f * t) * t;
}
// Cubic
float easeInCubic(float t) {
return t * t * t;
}
float easeOutCubic(float t) {
float t1 = t - 1.0f;
return t1 * t1 * t1 + 1.0f;
}
float easeInOutCubic(float t) {
return t < 0.5f ? 4.0f * t * t * t : (t - 1.0f) * (2.0f * t - 2.0f) * (2.0f * t - 2.0f) + 1.0f;
}
// Quartic
float easeInQuart(float t) {
return t * t * t * t;
}
float easeOutQuart(float t) {
float t1 = t - 1.0f;
return 1.0f - t1 * t1 * t1 * t1;
}
float easeInOutQuart(float t) {
return t < 0.5f ? 8.0f * t * t * t * t : 1.0f - 8.0f * (t - 1.0f) * (t - 1.0f) * (t - 1.0f) * (t - 1.0f);
}
// Sine
float easeInSine(float t) {
return 1.0f - std::cos(t * M_PI / 2.0f);
}
float easeOutSine(float t) {
return std::sin(t * M_PI / 2.0f);
}
float easeInOutSine(float t) {
return 0.5f * (1.0f - std::cos(M_PI * t));
}
// Exponential
float easeInExpo(float t) {
return t == 0.0f ? 0.0f : std::pow(2.0f, 10.0f * (t - 1.0f));
}
float easeOutExpo(float t) {
return t == 1.0f ? 1.0f : 1.0f - std::pow(2.0f, -10.0f * t);
}
float easeInOutExpo(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
if (t < 0.5f) {
return 0.5f * std::pow(2.0f, 20.0f * t - 10.0f);
} else {
return 1.0f - 0.5f * std::pow(2.0f, -20.0f * t + 10.0f);
}
}
// Circular
float easeInCirc(float t) {
return 1.0f - std::sqrt(1.0f - t * t);
}
float easeOutCirc(float t) {
float t1 = t - 1.0f;
return std::sqrt(1.0f - t1 * t1);
}
float easeInOutCirc(float t) {
if (t < 0.5f) {
return 0.5f * (1.0f - std::sqrt(1.0f - 4.0f * t * t));
} else {
return 0.5f * (std::sqrt(1.0f - (2.0f * t - 2.0f) * (2.0f * t - 2.0f)) + 1.0f);
}
}
// Elastic
float easeInElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.3f;
float a = 1.0f;
float s = p / 4.0f;
float t1 = t - 1.0f;
return -(a * std::pow(2.0f, 10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p));
}
float easeOutElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.3f;
float a = 1.0f;
float s = p / 4.0f;
return a * std::pow(2.0f, -10.0f * t) * std::sin((t - s) * (2.0f * M_PI) / p) + 1.0f;
}
float easeInOutElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.45f;
float a = 1.0f;
float s = p / 4.0f;
if (t < 0.5f) {
float t1 = 2.0f * t - 1.0f;
return -0.5f * (a * std::pow(2.0f, 10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p));
} else {
float t1 = 2.0f * t - 1.0f;
return a * std::pow(2.0f, -10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p) * 0.5f + 1.0f;
}
}
// Back (overshooting)
float easeInBack(float t) {
const float s = 1.70158f;
return t * t * ((s + 1.0f) * t - s);
}
float easeOutBack(float t) {
const float s = 1.70158f;
float t1 = t - 1.0f;
return t1 * t1 * ((s + 1.0f) * t1 + s) + 1.0f;
}
float easeInOutBack(float t) {
const float s = 1.70158f * 1.525f;
if (t < 0.5f) {
return 0.5f * (4.0f * t * t * ((s + 1.0f) * 2.0f * t - s));
} else {
float t1 = 2.0f * t - 2.0f;
return 0.5f * (t1 * t1 * ((s + 1.0f) * t1 + s) + 2.0f);
}
}
// Bounce
float easeOutBounce(float t) {
if (t < 1.0f / 2.75f) {
return 7.5625f * t * t;
} else if (t < 2.0f / 2.75f) {
float t1 = t - 1.5f / 2.75f;
return 7.5625f * t1 * t1 + 0.75f;
} else if (t < 2.5f / 2.75f) {
float t1 = t - 2.25f / 2.75f;
return 7.5625f * t1 * t1 + 0.9375f;
} else {
float t1 = t - 2.625f / 2.75f;
return 7.5625f * t1 * t1 + 0.984375f;
}
}
float easeInBounce(float t) {
return 1.0f - easeOutBounce(1.0f - t);
}
float easeInOutBounce(float t) {
if (t < 0.5f) {
return 0.5f * easeInBounce(2.0f * t);
} else {
return 0.5f * easeOutBounce(2.0f * t - 1.0f) + 0.5f;
}
}
// Get easing function by name
EasingFunction getByName(const std::string& name) {
static std::unordered_map<std::string, EasingFunction> easingMap = {
{"linear", linear},
{"easeIn", easeIn},
{"easeOut", easeOut},
{"easeInOut", easeInOut},
{"easeInQuad", easeInQuad},
{"easeOutQuad", easeOutQuad},
{"easeInOutQuad", easeInOutQuad},
{"easeInCubic", easeInCubic},
{"easeOutCubic", easeOutCubic},
{"easeInOutCubic", easeInOutCubic},
{"easeInQuart", easeInQuart},
{"easeOutQuart", easeOutQuart},
{"easeInOutQuart", easeInOutQuart},
{"easeInSine", easeInSine},
{"easeOutSine", easeOutSine},
{"easeInOutSine", easeInOutSine},
{"easeInExpo", easeInExpo},
{"easeOutExpo", easeOutExpo},
{"easeInOutExpo", easeInOutExpo},
{"easeInCirc", easeInCirc},
{"easeOutCirc", easeOutCirc},
{"easeInOutCirc", easeInOutCirc},
{"easeInElastic", easeInElastic},
{"easeOutElastic", easeOutElastic},
{"easeInOutElastic", easeInOutElastic},
{"easeInBack", easeInBack},
{"easeOutBack", easeOutBack},
{"easeInOutBack", easeInOutBack},
{"easeInBounce", easeInBounce},
{"easeOutBounce", easeOutBounce},
{"easeInOutBounce", easeInOutBounce}
};
auto it = easingMap.find(name);
if (it != easingMap.end()) {
return it->second;
}
return linear; // Default to linear
}
} // namespace EasingFunctions
// AnimationManager implementation
AnimationManager& AnimationManager::getInstance() {
static AnimationManager instance;
return instance;
}
void AnimationManager::addAnimation(std::shared_ptr<Animation> animation) {
activeAnimations.push_back(animation);
}
void AnimationManager::update(float deltaTime) {
for (auto& anim : activeAnimations) {
anim->update(deltaTime);
}
cleanup();
}
void AnimationManager::cleanup() {
activeAnimations.erase(
std::remove_if(activeAnimations.begin(), activeAnimations.end(),
[](const std::shared_ptr<Animation>& anim) {
return anim->isComplete();
}),
activeAnimations.end()
);
}
void AnimationManager::clear() {
activeAnimations.clear();
}

View File

@ -1,146 +0,0 @@
#pragma once
#include <string>
#include <functional>
#include <memory>
#include <variant>
#include <vector>
#include <SFML/Graphics.hpp>
// Forward declarations
class UIDrawable;
class UIEntity;
// Forward declare namespace
namespace EasingFunctions {
float linear(float t);
}
// Easing function type
typedef std::function<float(float)> EasingFunction;
// Animation target value can be various types
typedef std::variant<
float, // Single float value
int, // Single integer value
std::vector<int>, // List of integers (for sprite animation)
sf::Color, // Color animation
sf::Vector2f, // Vector animation
std::string // String animation (for text)
> AnimationValue;
class Animation {
public:
// Constructor
Animation(const std::string& targetProperty,
const AnimationValue& targetValue,
float duration,
EasingFunction easingFunc = EasingFunctions::linear,
bool delta = false);
// Apply this animation to a drawable
void start(UIDrawable* target);
// Apply this animation to an entity (special case since Entity doesn't inherit from UIDrawable)
void startEntity(UIEntity* target);
// Update animation (called each frame)
// Returns true if animation is still running, false if complete
bool update(float deltaTime);
// Get current interpolated value
AnimationValue getCurrentValue() const;
// Animation properties
std::string getTargetProperty() const { return targetProperty; }
float getDuration() const { return duration; }
float getElapsed() const { return elapsed; }
bool isComplete() const { return elapsed >= duration; }
bool isDelta() const { return delta; }
private:
std::string targetProperty; // Property name to animate (e.g., "x", "color.r", "sprite_number")
AnimationValue startValue; // Starting value (captured when animation starts)
AnimationValue targetValue; // Target value to animate to
float duration; // Animation duration in seconds
float elapsed = 0.0f; // Elapsed time
EasingFunction easingFunc; // Easing function to use
bool delta; // If true, targetValue is relative to start
UIDrawable* currentTarget = nullptr; // Current target being animated
UIEntity* currentEntityTarget = nullptr; // Current entity target (alternative to drawable)
// Helper to interpolate between values
AnimationValue interpolate(float t) const;
};
// Easing functions library
namespace EasingFunctions {
// Basic easing functions
float linear(float t);
float easeIn(float t);
float easeOut(float t);
float easeInOut(float t);
// Advanced easing functions
float easeInQuad(float t);
float easeOutQuad(float t);
float easeInOutQuad(float t);
float easeInCubic(float t);
float easeOutCubic(float t);
float easeInOutCubic(float t);
float easeInQuart(float t);
float easeOutQuart(float t);
float easeInOutQuart(float t);
float easeInSine(float t);
float easeOutSine(float t);
float easeInOutSine(float t);
float easeInExpo(float t);
float easeOutExpo(float t);
float easeInOutExpo(float t);
float easeInCirc(float t);
float easeOutCirc(float t);
float easeInOutCirc(float t);
float easeInElastic(float t);
float easeOutElastic(float t);
float easeInOutElastic(float t);
float easeInBack(float t);
float easeOutBack(float t);
float easeInOutBack(float t);
float easeInBounce(float t);
float easeOutBounce(float t);
float easeInOutBounce(float t);
// Get easing function by name
EasingFunction getByName(const std::string& name);
}
// Animation manager to handle active animations
class AnimationManager {
public:
static AnimationManager& getInstance();
// Add an animation to be managed
void addAnimation(std::shared_ptr<Animation> animation);
// Update all animations
void update(float deltaTime);
// Remove completed animations
void cleanup();
// Clear all animations
void clear();
private:
AnimationManager() = default;
std::vector<std::shared_ptr<Animation>> activeAnimations;
};

View File

@ -1,172 +0,0 @@
#include "CommandLineParser.h"
#include <iostream>
#include <filesystem>
#include <algorithm>
CommandLineParser::CommandLineParser(int argc, char* argv[])
: argc(argc), argv(argv) {}
CommandLineParser::ParseResult CommandLineParser::parse(McRogueFaceConfig& config) {
ParseResult result;
current_arg = 1; // Reset for each parse
// Detect if running as Python interpreter
std::filesystem::path exec_name = std::filesystem::path(argv[0]).filename();
if (exec_name.string().find("python") == 0) {
config.headless = true;
config.python_mode = true;
}
while (current_arg < argc) {
std::string arg = argv[current_arg];
// Handle Python-style single-letter flags
if (arg == "-h" || arg == "--help") {
print_help();
result.should_exit = true;
result.exit_code = 0;
return result;
}
if (arg == "-V" || arg == "--version") {
print_version();
result.should_exit = true;
result.exit_code = 0;
return result;
}
// Python execution modes
if (arg == "-c") {
config.python_mode = true;
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the -c option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.python_command = argv[current_arg];
current_arg++;
continue;
}
if (arg == "-m") {
config.python_mode = true;
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the -m option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.python_module = argv[current_arg];
current_arg++;
// Collect remaining args as module args
while (current_arg < argc) {
config.script_args.push_back(argv[current_arg]);
current_arg++;
}
continue;
}
if (arg == "-i") {
config.interactive_mode = true;
config.python_mode = true;
current_arg++;
continue;
}
// McRogueFace specific flags
if (arg == "--headless") {
config.headless = true;
config.audio_enabled = false;
current_arg++;
continue;
}
if (arg == "--audio-off") {
config.audio_enabled = false;
current_arg++;
continue;
}
if (arg == "--audio-on") {
config.audio_enabled = true;
current_arg++;
continue;
}
if (arg == "--screenshot") {
config.take_screenshot = true;
current_arg++;
if (current_arg < argc && argv[current_arg][0] != '-') {
config.screenshot_path = argv[current_arg];
current_arg++;
} else {
config.screenshot_path = "screenshot.png";
}
continue;
}
if (arg == "--exec") {
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the --exec option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.exec_scripts.push_back(argv[current_arg]);
config.python_mode = true;
current_arg++;
continue;
}
// If no flags matched, treat as positional argument (script name)
if (arg[0] != '-') {
config.script_path = arg;
config.python_mode = true;
current_arg++;
// Remaining args are script args
while (current_arg < argc) {
config.script_args.push_back(argv[current_arg]);
current_arg++;
}
break;
}
// Unknown flag
std::cerr << "Unknown option: " << arg << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
return result;
}
void CommandLineParser::print_help() {
std::cout << "usage: mcrogueface [option] ... [-c cmd | -m mod | file | -] [arg] ...\n"
<< "Options:\n"
<< " -c cmd : program passed in as string (terminates option list)\n"
<< " -h : print this help message and exit (also --help)\n"
<< " -i : inspect interactively after running script\n"
<< " -m mod : run library module as a script (terminates option list)\n"
<< " -V : print the Python version number and exit (also --version)\n"
<< "\n"
<< "McRogueFace specific options:\n"
<< " --exec file : execute script before main program (can be used multiple times)\n"
<< " --headless : run without creating a window (implies --audio-off)\n"
<< " --audio-off : disable audio\n"
<< " --audio-on : enable audio (even in headless mode)\n"
<< " --screenshot [path] : take a screenshot in headless mode\n"
<< "\n"
<< "Arguments:\n"
<< " file : program read from script file\n"
<< " - : program read from stdin\n"
<< " arg ...: arguments passed to program in sys.argv[1:]\n";
}
void CommandLineParser::print_version() {
std::cout << "Python 3.12.0 (McRogueFace embedded)\n";
}

View File

@ -1,30 +0,0 @@
#ifndef COMMAND_LINE_PARSER_H
#define COMMAND_LINE_PARSER_H
#include <string>
#include <vector>
#include "McRogueFaceConfig.h"
class CommandLineParser {
public:
struct ParseResult {
bool should_exit = false;
int exit_code = 0;
};
CommandLineParser(int argc, char* argv[]);
ParseResult parse(McRogueFaceConfig& config);
private:
int argc;
char** argv;
int current_arg = 1; // Skip program name
bool has_flag(const std::string& short_flag, const std::string& long_flag = "");
std::string get_next_arg(const std::string& flag_name);
void parse_positional_args(McRogueFaceConfig& config);
void print_help();
void print_version();
};
#endif // COMMAND_LINE_PARSER_H

View File

@ -4,281 +4,67 @@
#include "PyScene.h" #include "PyScene.h"
#include "UITestScene.h" #include "UITestScene.h"
#include "Resources.h" #include "Resources.h"
#include "Animation.h"
#include <cmath>
GameEngine::GameEngine() : GameEngine(McRogueFaceConfig{}) GameEngine::GameEngine()
{
}
GameEngine::GameEngine(const McRogueFaceConfig& cfg)
: config(cfg), headless(cfg.headless)
{ {
Resources::font.loadFromFile("./assets/JetbrainsMono.ttf"); Resources::font.loadFromFile("./assets/JetbrainsMono.ttf");
Resources::game = this; Resources::game = this;
window_title = "Crypt of Sokoban - 7DRL 2025, McRogueface Engine"; window_title = "McRogueFace - 7DRL 2024 Engine Demo";
window.create(sf::VideoMode(1024, 768), window_title, sf::Style::Titlebar | sf::Style::Close);
// Initialize rendering based on headless mode visible = window.getDefaultView();
if (headless) { window.setFramerateLimit(30);
headless_renderer = std::make_unique<HeadlessRenderer>();
if (!headless_renderer->init(1024, 768)) {
throw std::runtime_error("Failed to initialize headless renderer");
}
render_target = &headless_renderer->getRenderTarget();
} else {
window = std::make_unique<sf::RenderWindow>();
window->create(sf::VideoMode(1024, 768), window_title, sf::Style::Titlebar | sf::Style::Close | sf::Style::Resize);
window->setFramerateLimit(60);
render_target = window.get();
}
visible = render_target->getDefaultView();
// Initialize the game view
gameView.setSize(static_cast<float>(gameResolution.x), static_cast<float>(gameResolution.y));
// Use integer center coordinates for pixel-perfect rendering
gameView.setCenter(std::floor(gameResolution.x / 2.0f), std::floor(gameResolution.y / 2.0f));
updateViewport();
scene = "uitest"; scene = "uitest";
scenes["uitest"] = new UITestScene(this); scenes["uitest"] = new UITestScene(this);
McRFPy_API::game = this; McRFPy_API::game = this;
// Only load game.py if no custom script/command/module/exec is specified
bool should_load_game = config.script_path.empty() &&
config.python_command.empty() &&
config.python_module.empty() &&
config.exec_scripts.empty() &&
!config.interactive_mode &&
!config.python_mode;
if (should_load_game) {
if (!Py_IsInitialized()) {
McRFPy_API::api_init(); McRFPy_API::api_init();
}
McRFPy_API::executePyString("import mcrfpy"); McRFPy_API::executePyString("import mcrfpy");
McRFPy_API::executeScript("scripts/game.py"); McRFPy_API::executeScript("scripts/game.py");
}
// Execute any --exec scripts in order
if (!config.exec_scripts.empty()) {
if (!Py_IsInitialized()) {
McRFPy_API::api_init();
}
McRFPy_API::executePyString("import mcrfpy");
for (const auto& exec_script : config.exec_scripts) {
std::cout << "Executing script: " << exec_script << std::endl;
McRFPy_API::executeScript(exec_script.string());
}
std::cout << "All --exec scripts completed" << std::endl;
}
clock.restart(); clock.restart();
runtime.restart(); runtime.restart();
} }
GameEngine::~GameEngine()
{
cleanup();
for (auto& [name, scene] : scenes) {
delete scene;
}
}
void GameEngine::cleanup()
{
if (cleaned_up) return;
cleaned_up = true;
// Clear Python references before destroying C++ objects
// Clear all timers (they hold Python callables)
timers.clear();
// Clear McRFPy_API's reference to this game engine
if (McRFPy_API::game == this) {
McRFPy_API::game = nullptr;
}
// Force close the window if it's still open
if (window && window->isOpen()) {
window->close();
}
}
Scene* GameEngine::currentScene() { return scenes[scene]; } Scene* GameEngine::currentScene() { return scenes[scene]; }
void GameEngine::changeScene(std::string s) void GameEngine::changeScene(std::string s)
{ {
changeScene(s, TransitionType::None, 0.0f); /*std::cout << "Current scene is now '" << s << "'\n";*/
} if (scenes.find(s) != scenes.end())
scene = s;
void GameEngine::changeScene(std::string sceneName, TransitionType transitionType, float duration)
{
if (scenes.find(sceneName) == scenes.end())
{
std::cout << "Attempted to change to a scene that doesn't exist (`" << sceneName << "`)" << std::endl;
return;
}
if (transitionType == TransitionType::None || duration <= 0.0f)
{
// Immediate scene change
std::string old_scene = scene;
scene = sceneName;
// Trigger Python scene lifecycle events
McRFPy_API::triggerSceneChange(old_scene, sceneName);
}
else else
{ std::cout << "Attempted to change to a scene that doesn't exist (`" << s << "`)" << std::endl;
// Start transition
transition.start(transitionType, scene, sceneName, duration);
// Render current scene to texture
sf::RenderTarget* original_target = render_target;
render_target = transition.oldSceneTexture.get();
transition.oldSceneTexture->clear();
currentScene()->render();
transition.oldSceneTexture->display();
// Change to new scene
std::string old_scene = scene;
scene = sceneName;
// Render new scene to texture
render_target = transition.newSceneTexture.get();
transition.newSceneTexture->clear();
currentScene()->render();
transition.newSceneTexture->display();
// Restore original render target and scene
render_target = original_target;
scene = old_scene;
}
} }
void GameEngine::quit() { running = false; } void GameEngine::quit() { running = false; }
void GameEngine::setPause(bool p) { paused = p; } void GameEngine::setPause(bool p) { paused = p; }
sf::Font & GameEngine::getFont() { /*return font; */ return Resources::font; } sf::Font & GameEngine::getFont() { /*return font; */ return Resources::font; }
sf::RenderWindow & GameEngine::getWindow() { sf::RenderWindow & GameEngine::getWindow() { return window; }
if (!window) {
throw std::runtime_error("Window not available in headless mode");
}
return *window;
}
sf::RenderTarget & GameEngine::getRenderTarget() {
return *render_target;
}
void GameEngine::createScene(std::string s) { scenes[s] = new PyScene(this); } void GameEngine::createScene(std::string s) { scenes[s] = new PyScene(this); }
void GameEngine::setWindowScale(float multiplier) void GameEngine::setWindowScale(float multiplier)
{ {
if (!headless && window) { window.setSize(sf::Vector2u(1024 * multiplier, 768 * multiplier)); // 7DRL 2024: window scaling
window->setSize(sf::Vector2u(gameResolution.x * multiplier, gameResolution.y * multiplier)); //window.create(sf::VideoMode(1024 * multiplier, 768 * multiplier), window_title, sf::Style::Titlebar | sf::Style::Close);
updateViewport();
}
} }
void GameEngine::run() void GameEngine::run()
{ {
std::cout << "GameEngine::run() starting main loop..." << std::endl;
float fps = 0.0; float fps = 0.0;
frameTime = 0.016f; // Initialize to ~60 FPS
clock.restart(); clock.restart();
while (running) while (running)
{ {
// Reset per-frame metrics
metrics.resetPerFrame();
currentScene()->update(); currentScene()->update();
testTimers(); testTimers();
// Update Python scenes
McRFPy_API::updatePythonScenes(frameTime);
// Update animations (only if frameTime is valid)
if (frameTime > 0.0f && frameTime < 1.0f) {
AnimationManager::getInstance().update(frameTime);
}
if (!headless) {
sUserInput(); sUserInput();
}
if (!paused) if (!paused)
{ {
} }
currentScene()->sRender();
// Handle scene transitions
if (transition.type != TransitionType::None)
{
transition.update(frameTime);
if (transition.isComplete())
{
// Transition complete - finalize scene change
scene = transition.toScene;
transition.type = TransitionType::None;
// Trigger Python scene lifecycle events
McRFPy_API::triggerSceneChange(transition.fromScene, transition.toScene);
}
else
{
// Render transition
render_target->clear();
transition.render(*render_target);
}
}
else
{
// Normal scene rendering
currentScene()->render();
}
// Display the frame
if (headless) {
headless_renderer->display();
// Take screenshot if requested
if (config.take_screenshot) {
headless_renderer->saveScreenshot(config.screenshot_path.empty() ? "screenshot.png" : config.screenshot_path);
config.take_screenshot = false; // Only take one screenshot
}
} else {
window->display();
}
currentFrame++; currentFrame++;
frameTime = clock.restart().asSeconds(); frameTime = clock.restart().asSeconds();
fps = 1 / frameTime; fps = 1 / frameTime;
window.setTitle(window_title + " " + std::to_string(fps) + " FPS");
// Update profiling metrics
metrics.updateFrameTime(frameTime * 1000.0f); // Convert to milliseconds
int whole_fps = metrics.fps;
int tenth_fps = (metrics.fps * 10) % 10;
if (!headless && window) {
window->setTitle(window_title + " " + std::to_string(whole_fps) + "." + std::to_string(tenth_fps) + " FPS");
} }
// In windowed mode, check if window was closed
if (!headless && window && !window->isOpen()) {
running = false;
}
}
// Clean up before exiting the run loop
cleanup();
}
std::shared_ptr<PyTimerCallable> GameEngine::getTimer(const std::string& name)
{
auto it = timers.find(name);
if (it != timers.end()) {
return it->second;
}
return nullptr;
} }
void GameEngine::manageTimer(std::string name, PyObject* target, int interval) void GameEngine::manageTimer(std::string name, PyObject* target, int interval)
@ -319,19 +105,29 @@ void GameEngine::testTimers()
} }
} }
void GameEngine::processEvent(const sf::Event& event) void GameEngine::sUserInput()
{
sf::Event event;
while (window.pollEvent(event))
{ {
std::string actionType; std::string actionType;
int actionCode = 0; int actionCode = 0;
if (event.type == sf::Event::Closed) { running = false; return; } if (event.type == sf::Event::Closed) { running = false; continue; }
// Handle window resize events // TODO: add resize event to Scene to react; call it after constructor too, maybe
else if (event.type == sf::Event::Resized) { else if (event.type == sf::Event::Resized) {
// Update the viewport to handle the new window size continue; // 7DRL short circuit. Resizing manually disabled
updateViewport(); /*
sf::FloatRect area(0.f, 0.f, event.size.width, event.size.height);
// Notify Python scenes about the resize //sf::FloatRect area(0.f, 0.f, 1024.f, 768.f); // 7DRL 2024: attempt to set scale appropriately
McRFPy_API::triggerResize(event.size.width, event.size.height); //sf::FloatRect area(0.f, 0.f, event.size.width, event.size.width * 0.75);
visible = sf::View(area);
window.setView(visible);
//window.setSize(sf::Vector2u(event.size.width, event.size.width * 0.75)); // 7DRL 2024: window scaling
std::cout << "Visible area set to (0, 0, " << event.size.width << ", " << event.size.height <<")"<<std::endl;
actionType = "resize";
//window.setSize(sf::Vector2u(event.size.width, event.size.width * 0.75)); // 7DRL 2024: window scaling
*/
} }
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseWheelScrolled) actionType = "start"; else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseWheelScrolled) actionType = "start";
@ -343,34 +139,52 @@ void GameEngine::processEvent(const sf::Event& event)
actionCode = ActionCode::keycode(event.key.code); actionCode = ActionCode::keycode(event.key.code);
else if (event.type == sf::Event::MouseWheelScrolled) else if (event.type == sf::Event::MouseWheelScrolled)
{ {
// //sf::Mouse::Wheel w = event.MouseWheelScrollEvent.wheel;
if (event.mouseWheelScroll.wheel == sf::Mouse::VerticalWheel) if (event.mouseWheelScroll.wheel == sf::Mouse::VerticalWheel)
{ {
int delta = 1; int delta = 1;
if (event.mouseWheelScroll.delta < 0) delta = -1; if (event.mouseWheelScroll.delta < 0) delta = -1;
actionCode = ActionCode::keycode(event.mouseWheelScroll.wheel, delta ); actionCode = ActionCode::keycode(event.mouseWheelScroll.wheel, delta );
/*
std::cout << "[GameEngine] Generated MouseWheel code w(" << (int)event.mouseWheelScroll.wheel << ") d(" << event.mouseWheelScroll.delta << ") D(" << delta << ") = " << actionCode << std::endl;
std::cout << " test decode: isMouseWheel=" << ActionCode::isMouseWheel(actionCode) << ", wheel=" << ActionCode::wheel(actionCode) << ", delta=" << ActionCode::delta(actionCode) << std::endl;
std::cout << " math test: actionCode && WHEEL_NEG -> " << (actionCode && ActionCode::WHEEL_NEG) << "; actionCode && WHEEL_DEL -> " << (actionCode && ActionCode::WHEEL_DEL) << ";" << std::endl;
*/
} }
// float d = event.MouseWheelScrollEvent.delta;
// actionCode = ActionCode::keycode(0, d);
} }
else else
return; continue;
//std::cout << "Event produced action code " << actionCode << ": " << actionType << std::endl;
if (currentScene()->hasAction(actionCode)) if (currentScene()->hasAction(actionCode))
{ {
std::string name = currentScene()->action(actionCode); std::string name = currentScene()->action(actionCode);
currentScene()->doAction(name, actionType); currentScene()->doAction(name, actionType);
} }
else if (currentScene()->key_callable && else if (currentScene()->key_callable)
(event.type == sf::Event::KeyPressed || event.type == sf::Event::KeyReleased))
{ {
currentScene()->key_callable->call(ActionCode::key_str(event.key.code), actionType); currentScene()->key_callable->call(ActionCode::key_str(event.key.code), actionType);
} /*
} PyObject* args = Py_BuildValue("(ss)", ActionCode::key_str(event.key.code).c_str(), actionType.c_str());
PyObject* retval = PyObject_Call(currentScene()->key_callable, args, NULL);
void GameEngine::sUserInput() if (!retval)
{ {
sf::Event event; std::cout << "key_callable has raised an exception. It's going to STDERR and being dropped:" << std::endl;
while (window && window->pollEvent(event)) PyErr_Print();
PyErr_Clear();
} else if (retval != Py_None)
{ {
processEvent(event); std::cout << "key_callable returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
}
*/
}
else
{
//std::cout << "[GameEngine] Action not registered for input: " << actionCode << ": " << actionType << std::endl;
}
} }
} }
@ -391,123 +205,3 @@ std::shared_ptr<std::vector<std::shared_ptr<UIDrawable>>> GameEngine::scene_ui(s
if (scenes.count(target) == 0) return NULL; if (scenes.count(target) == 0) return NULL;
return scenes[target]->ui_elements; return scenes[target]->ui_elements;
} }
void GameEngine::setWindowTitle(const std::string& title)
{
window_title = title;
if (!headless && window) {
window->setTitle(title);
}
}
void GameEngine::setVSync(bool enabled)
{
vsync_enabled = enabled;
if (!headless && window) {
window->setVerticalSyncEnabled(enabled);
}
}
void GameEngine::setFramerateLimit(unsigned int limit)
{
framerate_limit = limit;
if (!headless && window) {
window->setFramerateLimit(limit);
}
}
void GameEngine::setGameResolution(unsigned int width, unsigned int height) {
gameResolution = sf::Vector2u(width, height);
gameView.setSize(static_cast<float>(width), static_cast<float>(height));
// Use integer center coordinates for pixel-perfect rendering
gameView.setCenter(std::floor(width / 2.0f), std::floor(height / 2.0f));
updateViewport();
}
void GameEngine::setViewportMode(ViewportMode mode) {
viewportMode = mode;
updateViewport();
}
std::string GameEngine::getViewportModeString() const {
switch (viewportMode) {
case ViewportMode::Center: return "center";
case ViewportMode::Stretch: return "stretch";
case ViewportMode::Fit: return "fit";
}
return "unknown";
}
void GameEngine::updateViewport() {
if (!render_target) return;
auto windowSize = render_target->getSize();
switch (viewportMode) {
case ViewportMode::Center: {
// 1:1 pixels, centered in window
float viewportWidth = std::min(static_cast<float>(gameResolution.x), static_cast<float>(windowSize.x));
float viewportHeight = std::min(static_cast<float>(gameResolution.y), static_cast<float>(windowSize.y));
// Floor offsets to ensure integer pixel alignment
float offsetX = std::floor((windowSize.x - viewportWidth) / 2.0f);
float offsetY = std::floor((windowSize.y - viewportHeight) / 2.0f);
gameView.setViewport(sf::FloatRect(
offsetX / windowSize.x,
offsetY / windowSize.y,
viewportWidth / windowSize.x,
viewportHeight / windowSize.y
));
break;
}
case ViewportMode::Stretch: {
// Fill entire window, ignore aspect ratio
gameView.setViewport(sf::FloatRect(0, 0, 1, 1));
break;
}
case ViewportMode::Fit: {
// Maintain aspect ratio with black bars
float windowAspect = static_cast<float>(windowSize.x) / windowSize.y;
float gameAspect = static_cast<float>(gameResolution.x) / gameResolution.y;
float viewportWidth, viewportHeight;
float offsetX = 0, offsetY = 0;
if (windowAspect > gameAspect) {
// Window is wider - black bars on sides
// Calculate viewport size in pixels and floor for pixel-perfect scaling
float pixelHeight = static_cast<float>(windowSize.y);
float pixelWidth = std::floor(pixelHeight * gameAspect);
viewportHeight = 1.0f;
viewportWidth = pixelWidth / windowSize.x;
offsetX = (1.0f - viewportWidth) / 2.0f;
} else {
// Window is taller - black bars on top/bottom
// Calculate viewport size in pixels and floor for pixel-perfect scaling
float pixelWidth = static_cast<float>(windowSize.x);
float pixelHeight = std::floor(pixelWidth / gameAspect);
viewportWidth = 1.0f;
viewportHeight = pixelHeight / windowSize.y;
offsetY = (1.0f - viewportHeight) / 2.0f;
}
gameView.setViewport(sf::FloatRect(offsetX, offsetY, viewportWidth, viewportHeight));
break;
}
}
// Apply the view
render_target->setView(gameView);
}
sf::Vector2f GameEngine::windowToGameCoords(const sf::Vector2f& windowPos) const {
if (!render_target) return windowPos;
// Convert window coordinates to game coordinates using the view
return render_target->mapPixelToCoords(sf::Vector2i(windowPos), gameView);
}

View File

@ -6,26 +6,10 @@
#include "IndexTexture.h" #include "IndexTexture.h"
#include "Timer.h" #include "Timer.h"
#include "PyCallable.h" #include "PyCallable.h"
#include "McRogueFaceConfig.h"
#include "HeadlessRenderer.h"
#include "SceneTransition.h"
#include <memory>
class GameEngine class GameEngine
{ {
public: sf::RenderWindow window;
// Viewport modes (moved here so private section can use it)
enum class ViewportMode {
Center, // 1:1 pixels, viewport centered in window
Stretch, // viewport size = window size, doesn't respect aspect ratio
Fit // maintains original aspect ratio, leaves black bars
};
private:
std::unique_ptr<sf::RenderWindow> window;
std::unique_ptr<HeadlessRenderer> headless_renderer;
sf::RenderTarget* render_target;
sf::Font font; sf::Font font;
std::map<std::string, Scene*> scenes; std::map<std::string, Scene*> scenes;
bool running = true; bool running = true;
@ -36,106 +20,28 @@ private:
float frameTime; float frameTime;
std::string window_title; std::string window_title;
bool headless = false;
McRogueFaceConfig config;
bool cleaned_up = false;
// Window state tracking
bool vsync_enabled = false;
unsigned int framerate_limit = 60;
// Scene transition state
SceneTransition transition;
// Viewport system
sf::Vector2u gameResolution{1024, 768}; // Fixed game resolution
sf::View gameView; // View for the game content
ViewportMode viewportMode = ViewportMode::Fit;
void updateViewport();
void testTimers();
public:
sf::Clock runtime; sf::Clock runtime;
//std::map<std::string, Timer> timers; //std::map<std::string, Timer> timers;
std::map<std::string, std::shared_ptr<PyTimerCallable>> timers; std::map<std::string, std::shared_ptr<PyTimerCallable>> timers;
void testTimers();
public:
std::string scene; std::string scene;
// Profiling metrics
struct ProfilingMetrics {
float frameTime = 0.0f; // Current frame time in milliseconds
float avgFrameTime = 0.0f; // Average frame time over last N frames
int fps = 0; // Frames per second
int drawCalls = 0; // Draw calls per frame
int uiElements = 0; // Number of UI elements rendered
int visibleElements = 0; // Number of visible elements
// Frame time history for averaging
static constexpr int HISTORY_SIZE = 60;
float frameTimeHistory[HISTORY_SIZE] = {0};
int historyIndex = 0;
void updateFrameTime(float deltaMs) {
frameTime = deltaMs;
frameTimeHistory[historyIndex] = deltaMs;
historyIndex = (historyIndex + 1) % HISTORY_SIZE;
// Calculate average
float sum = 0.0f;
for (int i = 0; i < HISTORY_SIZE; ++i) {
sum += frameTimeHistory[i];
}
avgFrameTime = sum / HISTORY_SIZE;
fps = avgFrameTime > 0 ? static_cast<int>(1000.0f / avgFrameTime) : 0;
}
void resetPerFrame() {
drawCalls = 0;
uiElements = 0;
visibleElements = 0;
}
} metrics;
GameEngine(); GameEngine();
GameEngine(const McRogueFaceConfig& cfg);
~GameEngine();
Scene* currentScene(); Scene* currentScene();
void changeScene(std::string); void changeScene(std::string);
void changeScene(std::string sceneName, TransitionType transitionType, float duration);
void createScene(std::string); void createScene(std::string);
void quit(); void quit();
void setPause(bool); void setPause(bool);
sf::Font & getFont(); sf::Font & getFont();
sf::RenderWindow & getWindow(); sf::RenderWindow & getWindow();
sf::RenderTarget & getRenderTarget();
sf::RenderTarget* getRenderTargetPtr() { return render_target; }
void run(); void run();
void sUserInput(); void sUserInput();
void cleanup(); // Clean up Python references before destruction
int getFrame() { return currentFrame; } int getFrame() { return currentFrame; }
float getFrameTime() { return frameTime; } float getFrameTime() { return frameTime; }
sf::View getView() { return visible; } sf::View getView() { return visible; }
void manageTimer(std::string, PyObject*, int); void manageTimer(std::string, PyObject*, int);
std::shared_ptr<PyTimerCallable> getTimer(const std::string& name);
void setWindowScale(float); void setWindowScale(float);
bool isHeadless() const { return headless; }
void processEvent(const sf::Event& event);
// Window property accessors
const std::string& getWindowTitle() const { return window_title; }
void setWindowTitle(const std::string& title);
bool getVSync() const { return vsync_enabled; }
void setVSync(bool enabled);
unsigned int getFramerateLimit() const { return framerate_limit; }
void setFramerateLimit(unsigned int limit);
// Viewport system
void setGameResolution(unsigned int width, unsigned int height);
sf::Vector2u getGameResolution() const { return gameResolution; }
void setViewportMode(ViewportMode mode);
ViewportMode getViewportMode() const { return viewportMode; }
std::string getViewportModeString() const;
sf::Vector2f windowToGameCoords(const sf::Vector2f& windowPos) const;
// global textures for scripts to access // global textures for scripts to access
std::vector<IndexTexture> textures; std::vector<IndexTexture> textures;

View File

@ -1,27 +0,0 @@
#include "HeadlessRenderer.h"
#include <iostream>
bool HeadlessRenderer::init(int width, int height) {
if (!render_texture.create(width, height)) {
std::cerr << "Failed to create headless render texture" << std::endl;
return false;
}
return true;
}
sf::RenderTarget& HeadlessRenderer::getRenderTarget() {
return render_texture;
}
void HeadlessRenderer::saveScreenshot(const std::string& path) {
sf::Image screenshot = render_texture.getTexture().copyToImage();
if (!screenshot.saveToFile(path)) {
std::cerr << "Failed to save screenshot to: " << path << std::endl;
} else {
std::cout << "Screenshot saved to: " << path << std::endl;
}
}
void HeadlessRenderer::display() {
render_texture.display();
}

View File

@ -1,20 +0,0 @@
#ifndef HEADLESS_RENDERER_H
#define HEADLESS_RENDERER_H
#include <SFML/Graphics.hpp>
#include <memory>
#include <string>
class HeadlessRenderer {
private:
sf::RenderTexture render_texture;
public:
bool init(int width = 1024, int height = 768);
sf::RenderTarget& getRenderTarget();
void saveScreenshot(const std::string& path);
void display(); // Finalize the current frame
bool isOpen() const { return true; } // Always "open" in headless mode
};
#endif // HEADLESS_RENDERER_H

File diff suppressed because it is too large Load Diff

View File

@ -5,7 +5,6 @@
#include "PyFont.h" #include "PyFont.h"
#include "PyTexture.h" #include "PyTexture.h"
#include "McRogueFaceConfig.h"
class GameEngine; // forward declared (circular members) class GameEngine; // forward declared (circular members)
@ -28,18 +27,19 @@ public:
//static void setSpriteTexture(int); //static void setSpriteTexture(int);
inline static GameEngine* game; inline static GameEngine* game;
static void api_init(); static void api_init();
static void api_init(const McRogueFaceConfig& config, int argc, char** argv);
static PyStatus init_python_with_config(const McRogueFaceConfig& config, int argc, char** argv);
static void api_shutdown(); static void api_shutdown();
// Python API functionality - use mcrfpy.* in scripts // Python API functionality - use mcrfpy.* in scripts
//static PyObject* _drawSprite(PyObject*, PyObject*); //static PyObject* _drawSprite(PyObject*, PyObject*);
static void REPL_device(FILE * fp, const char *filename); static void REPL_device(FILE * fp, const char *filename);
static void REPL(); static void REPL();
static std::vector<sf::SoundBuffer>* soundbuffers; static std::vector<sf::SoundBuffer> soundbuffers;
static sf::Music* music; static sf::Music music;
static sf::Sound* sfx; static sf::Sound sfx;
static std::map<std::string, PyObject*> callbacks;
static PyObject* _registerPyAction(PyObject*, PyObject*);
static PyObject* _registerInputAction(PyObject*, PyObject*);
static PyObject* _createSoundBuffer(PyObject*, PyObject*); static PyObject* _createSoundBuffer(PyObject*, PyObject*);
static PyObject* _loadMusic(PyObject*, PyObject*); static PyObject* _loadMusic(PyObject*, PyObject*);
@ -66,23 +66,12 @@ public:
// accept keyboard input from scene // accept keyboard input from scene
static sf::Vector2i cursor_position; static sf::Vector2i cursor_position;
static void player_input(int, int);
static void computerTurn();
static void playerTurn();
static void doAction(std::string);
static void executeScript(std::string); static void executeScript(std::string);
static void executePyString(std::string); static void executePyString(std::string);
// Helper to mark scenes as needing z_index resort
static void markSceneNeedsSort();
// Name-based finding methods
static PyObject* _find(PyObject*, PyObject*);
static PyObject* _findAll(PyObject*, PyObject*);
// Profiling/metrics
static PyObject* _getMetrics(PyObject*, PyObject*);
// Scene lifecycle management for Python Scene objects
static void triggerSceneChange(const std::string& from_scene, const std::string& to_scene);
static void updatePythonScenes(float dt);
static void triggerResize(int width, int height);
}; };

View File

@ -1,817 +0,0 @@
#include "McRFPy_Automation.h"
#include "McRFPy_API.h"
#include "GameEngine.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <unordered_map>
// Helper function to get game engine
GameEngine* McRFPy_Automation::getGameEngine() {
return McRFPy_API::game;
}
// Sleep helper
void McRFPy_Automation::sleep_ms(int milliseconds) {
std::this_thread::sleep_for(std::chrono::milliseconds(milliseconds));
}
// Convert string to SFML key code
sf::Keyboard::Key McRFPy_Automation::stringToKey(const std::string& keyName) {
static const std::unordered_map<std::string, sf::Keyboard::Key> keyMap = {
// Letters
{"a", sf::Keyboard::A}, {"b", sf::Keyboard::B}, {"c", sf::Keyboard::C},
{"d", sf::Keyboard::D}, {"e", sf::Keyboard::E}, {"f", sf::Keyboard::F},
{"g", sf::Keyboard::G}, {"h", sf::Keyboard::H}, {"i", sf::Keyboard::I},
{"j", sf::Keyboard::J}, {"k", sf::Keyboard::K}, {"l", sf::Keyboard::L},
{"m", sf::Keyboard::M}, {"n", sf::Keyboard::N}, {"o", sf::Keyboard::O},
{"p", sf::Keyboard::P}, {"q", sf::Keyboard::Q}, {"r", sf::Keyboard::R},
{"s", sf::Keyboard::S}, {"t", sf::Keyboard::T}, {"u", sf::Keyboard::U},
{"v", sf::Keyboard::V}, {"w", sf::Keyboard::W}, {"x", sf::Keyboard::X},
{"y", sf::Keyboard::Y}, {"z", sf::Keyboard::Z},
// Numbers
{"0", sf::Keyboard::Num0}, {"1", sf::Keyboard::Num1}, {"2", sf::Keyboard::Num2},
{"3", sf::Keyboard::Num3}, {"4", sf::Keyboard::Num4}, {"5", sf::Keyboard::Num5},
{"6", sf::Keyboard::Num6}, {"7", sf::Keyboard::Num7}, {"8", sf::Keyboard::Num8},
{"9", sf::Keyboard::Num9},
// Function keys
{"f1", sf::Keyboard::F1}, {"f2", sf::Keyboard::F2}, {"f3", sf::Keyboard::F3},
{"f4", sf::Keyboard::F4}, {"f5", sf::Keyboard::F5}, {"f6", sf::Keyboard::F6},
{"f7", sf::Keyboard::F7}, {"f8", sf::Keyboard::F8}, {"f9", sf::Keyboard::F9},
{"f10", sf::Keyboard::F10}, {"f11", sf::Keyboard::F11}, {"f12", sf::Keyboard::F12},
{"f13", sf::Keyboard::F13}, {"f14", sf::Keyboard::F14}, {"f15", sf::Keyboard::F15},
// Special keys
{"escape", sf::Keyboard::Escape}, {"esc", sf::Keyboard::Escape},
{"enter", sf::Keyboard::Enter}, {"return", sf::Keyboard::Enter},
{"space", sf::Keyboard::Space}, {" ", sf::Keyboard::Space},
{"tab", sf::Keyboard::Tab}, {"\t", sf::Keyboard::Tab},
{"backspace", sf::Keyboard::BackSpace},
{"delete", sf::Keyboard::Delete}, {"del", sf::Keyboard::Delete},
{"insert", sf::Keyboard::Insert},
{"home", sf::Keyboard::Home},
{"end", sf::Keyboard::End},
{"pageup", sf::Keyboard::PageUp}, {"pgup", sf::Keyboard::PageUp},
{"pagedown", sf::Keyboard::PageDown}, {"pgdn", sf::Keyboard::PageDown},
// Arrow keys
{"left", sf::Keyboard::Left},
{"right", sf::Keyboard::Right},
{"up", sf::Keyboard::Up},
{"down", sf::Keyboard::Down},
// Modifiers
{"ctrl", sf::Keyboard::LControl}, {"ctrlleft", sf::Keyboard::LControl},
{"ctrlright", sf::Keyboard::RControl},
{"alt", sf::Keyboard::LAlt}, {"altleft", sf::Keyboard::LAlt},
{"altright", sf::Keyboard::RAlt},
{"shift", sf::Keyboard::LShift}, {"shiftleft", sf::Keyboard::LShift},
{"shiftright", sf::Keyboard::RShift},
{"win", sf::Keyboard::LSystem}, {"winleft", sf::Keyboard::LSystem},
{"winright", sf::Keyboard::RSystem}, {"command", sf::Keyboard::LSystem},
// Punctuation
{",", sf::Keyboard::Comma}, {".", sf::Keyboard::Period},
{"/", sf::Keyboard::Slash}, {"\\", sf::Keyboard::BackSlash},
{";", sf::Keyboard::SemiColon}, {"'", sf::Keyboard::Quote},
{"[", sf::Keyboard::LBracket}, {"]", sf::Keyboard::RBracket},
{"-", sf::Keyboard::Dash}, {"=", sf::Keyboard::Equal},
// Numpad
{"num0", sf::Keyboard::Numpad0}, {"num1", sf::Keyboard::Numpad1},
{"num2", sf::Keyboard::Numpad2}, {"num3", sf::Keyboard::Numpad3},
{"num4", sf::Keyboard::Numpad4}, {"num5", sf::Keyboard::Numpad5},
{"num6", sf::Keyboard::Numpad6}, {"num7", sf::Keyboard::Numpad7},
{"num8", sf::Keyboard::Numpad8}, {"num9", sf::Keyboard::Numpad9},
{"add", sf::Keyboard::Add}, {"subtract", sf::Keyboard::Subtract},
{"multiply", sf::Keyboard::Multiply}, {"divide", sf::Keyboard::Divide},
// Other
{"pause", sf::Keyboard::Pause},
{"capslock", sf::Keyboard::LControl}, // Note: SFML doesn't have CapsLock
{"numlock", sf::Keyboard::LControl}, // Note: SFML doesn't have NumLock
{"scrolllock", sf::Keyboard::LControl}, // Note: SFML doesn't have ScrollLock
};
auto it = keyMap.find(keyName);
if (it != keyMap.end()) {
return it->second;
}
return sf::Keyboard::Unknown;
}
// Inject mouse event into the game engine
void McRFPy_Automation::injectMouseEvent(sf::Event::EventType type, int x, int y, sf::Mouse::Button button) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = type;
switch (type) {
case sf::Event::MouseMoved:
event.mouseMove.x = x;
event.mouseMove.y = y;
break;
case sf::Event::MouseButtonPressed:
case sf::Event::MouseButtonReleased:
event.mouseButton.button = button;
event.mouseButton.x = x;
event.mouseButton.y = y;
break;
case sf::Event::MouseWheelScrolled:
event.mouseWheelScroll.wheel = sf::Mouse::VerticalWheel;
event.mouseWheelScroll.delta = static_cast<float>(x); // x is used for scroll amount
event.mouseWheelScroll.x = x;
event.mouseWheelScroll.y = y;
break;
default:
break;
}
engine->processEvent(event);
}
// Inject keyboard event into the game engine
void McRFPy_Automation::injectKeyEvent(sf::Event::EventType type, sf::Keyboard::Key key) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = type;
if (type == sf::Event::KeyPressed || type == sf::Event::KeyReleased) {
event.key.code = key;
event.key.alt = sf::Keyboard::isKeyPressed(sf::Keyboard::LAlt) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RAlt);
event.key.control = sf::Keyboard::isKeyPressed(sf::Keyboard::LControl) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RControl);
event.key.shift = sf::Keyboard::isKeyPressed(sf::Keyboard::LShift) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RShift);
event.key.system = sf::Keyboard::isKeyPressed(sf::Keyboard::LSystem) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RSystem);
}
engine->processEvent(event);
}
// Inject text event for typing
void McRFPy_Automation::injectTextEvent(sf::Uint32 unicode) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = sf::Event::TextEntered;
event.text.unicode = unicode;
engine->processEvent(event);
}
// Screenshot implementation
PyObject* McRFPy_Automation::_screenshot(PyObject* self, PyObject* args) {
const char* filename;
if (!PyArg_ParseTuple(args, "s", &filename)) {
return NULL;
}
auto engine = getGameEngine();
if (!engine) {
PyErr_SetString(PyExc_RuntimeError, "Game engine not initialized");
return NULL;
}
// Get the render target
sf::RenderTarget* target = engine->getRenderTargetPtr();
if (!target) {
PyErr_SetString(PyExc_RuntimeError, "No render target available");
return NULL;
}
// For RenderWindow, we can get a screenshot directly
if (auto* window = dynamic_cast<sf::RenderWindow*>(target)) {
sf::Vector2u windowSize = window->getSize();
sf::Texture texture;
texture.create(windowSize.x, windowSize.y);
texture.update(*window);
if (texture.copyToImage().saveToFile(filename)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
// For RenderTexture (headless mode)
else if (auto* renderTexture = dynamic_cast<sf::RenderTexture*>(target)) {
if (renderTexture->getTexture().copyToImage().saveToFile(filename)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
PyErr_SetString(PyExc_RuntimeError, "Unknown render target type");
return NULL;
}
// Get current mouse position
PyObject* McRFPy_Automation::_position(PyObject* self, PyObject* args) {
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
return Py_BuildValue("(ii)", 0, 0);
}
// In headless mode, we'd need to track the simulated mouse position
// For now, return the actual mouse position relative to window if available
if (auto* window = dynamic_cast<sf::RenderWindow*>(engine->getRenderTargetPtr())) {
sf::Vector2i pos = sf::Mouse::getPosition(*window);
return Py_BuildValue("(ii)", pos.x, pos.y);
}
// In headless mode, return simulated position (TODO: track this)
return Py_BuildValue("(ii)", 0, 0);
}
// Get screen size
PyObject* McRFPy_Automation::_size(PyObject* self, PyObject* args) {
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
return Py_BuildValue("(ii)", 1024, 768); // Default size
}
sf::Vector2u size = engine->getRenderTarget().getSize();
return Py_BuildValue("(ii)", size.x, size.y);
}
// Check if coordinates are on screen
PyObject* McRFPy_Automation::_onScreen(PyObject* self, PyObject* args) {
int x, y;
if (!PyArg_ParseTuple(args, "ii", &x, &y)) {
return NULL;
}
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
Py_RETURN_FALSE;
}
sf::Vector2u size = engine->getRenderTarget().getSize();
if (x >= 0 && x < (int)size.x && y >= 0 && y < (int)size.y) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
// Move mouse to position
PyObject* McRFPy_Automation::_moveTo(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "duration", NULL};
int x, y;
float duration = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|f", const_cast<char**>(kwlist),
&x, &y, &duration)) {
return NULL;
}
// TODO: Implement smooth movement with duration
injectMouseEvent(sf::Event::MouseMoved, x, y);
if (duration > 0) {
sleep_ms(static_cast<int>(duration * 1000));
}
Py_RETURN_NONE;
}
// Move mouse relative
PyObject* McRFPy_Automation::_moveRel(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"xOffset", "yOffset", "duration", NULL};
int xOffset, yOffset;
float duration = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|f", const_cast<char**>(kwlist),
&xOffset, &yOffset, &duration)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int currentX, currentY;
if (!PyArg_ParseTuple(pos, "ii", &currentX, &currentY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Move to new position
injectMouseEvent(sf::Event::MouseMoved, currentX + xOffset, currentY + yOffset);
if (duration > 0) {
sleep_ms(static_cast<int>(duration * 1000));
}
Py_RETURN_NONE;
}
// Click implementation
PyObject* McRFPy_Automation::_click(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "clicks", "interval", "button", NULL};
int x = -1, y = -1;
int clicks = 1;
float interval = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iiifs", const_cast<char**>(kwlist),
&x, &y, &clicks, &interval, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
// Determine button
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
// Move to position first
injectMouseEvent(sf::Event::MouseMoved, x, y);
// Perform clicks
for (int i = 0; i < clicks; i++) {
if (i > 0 && interval > 0) {
sleep_ms(static_cast<int>(interval * 1000));
}
injectMouseEvent(sf::Event::MouseButtonPressed, x, y, sfButton);
sleep_ms(10); // Small delay between press and release
injectMouseEvent(sf::Event::MouseButtonReleased, x, y, sfButton);
}
Py_RETURN_NONE;
}
// Right click
PyObject* McRFPy_Automation::_rightClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
// Build new args with button="right"
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "button", PyUnicode_FromString("right"));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Double click
PyObject* McRFPy_Automation::_doubleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "clicks", PyLong_FromLong(2));
PyDict_SetItemString(newKwargs, "interval", PyFloat_FromDouble(0.1));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Type text
PyObject* McRFPy_Automation::_typewrite(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"message", "interval", NULL};
const char* message;
float interval = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "s|f", const_cast<char**>(kwlist),
&message, &interval)) {
return NULL;
}
// Type each character
for (size_t i = 0; message[i] != '\0'; i++) {
if (i > 0 && interval > 0) {
sleep_ms(static_cast<int>(interval * 1000));
}
char c = message[i];
// Handle special characters
if (c == '\n') {
injectKeyEvent(sf::Event::KeyPressed, sf::Keyboard::Enter);
injectKeyEvent(sf::Event::KeyReleased, sf::Keyboard::Enter);
} else if (c == '\t') {
injectKeyEvent(sf::Event::KeyPressed, sf::Keyboard::Tab);
injectKeyEvent(sf::Event::KeyReleased, sf::Keyboard::Tab);
} else {
// For regular characters, send text event
injectTextEvent(static_cast<sf::Uint32>(c));
}
}
Py_RETURN_NONE;
}
// Press and hold key
PyObject* McRFPy_Automation::_keyDown(PyObject* self, PyObject* args) {
const char* keyName;
if (!PyArg_ParseTuple(args, "s", &keyName)) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyPressed, key);
Py_RETURN_NONE;
}
// Release key
PyObject* McRFPy_Automation::_keyUp(PyObject* self, PyObject* args) {
const char* keyName;
if (!PyArg_ParseTuple(args, "s", &keyName)) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyReleased, key);
Py_RETURN_NONE;
}
// Hotkey combination
PyObject* McRFPy_Automation::_hotkey(PyObject* self, PyObject* args) {
// Get all keys as separate arguments
Py_ssize_t numKeys = PyTuple_Size(args);
if (numKeys == 0) {
PyErr_SetString(PyExc_ValueError, "hotkey() requires at least one key");
return NULL;
}
// Press all keys
for (Py_ssize_t i = 0; i < numKeys; i++) {
PyObject* keyObj = PyTuple_GetItem(args, i);
const char* keyName = PyUnicode_AsUTF8(keyObj);
if (!keyName) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyPressed, key);
sleep_ms(10); // Small delay between key presses
}
// Release all keys in reverse order
for (Py_ssize_t i = numKeys - 1; i >= 0; i--) {
PyObject* keyObj = PyTuple_GetItem(args, i);
const char* keyName = PyUnicode_AsUTF8(keyObj);
sf::Keyboard::Key key = stringToKey(keyName);
injectKeyEvent(sf::Event::KeyReleased, key);
sleep_ms(10);
}
Py_RETURN_NONE;
}
// Scroll wheel
PyObject* McRFPy_Automation::_scroll(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"clicks", "x", "y", NULL};
int clicks;
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "i|ii", const_cast<char**>(kwlist),
&clicks, &x, &y)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
// Inject scroll event
injectMouseEvent(sf::Event::MouseWheelScrolled, clicks, y);
Py_RETURN_NONE;
}
// Other click types using the main click function
PyObject* McRFPy_Automation::_middleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "button", PyUnicode_FromString("middle"));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
PyObject* McRFPy_Automation::_tripleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "clicks", PyLong_FromLong(3));
PyDict_SetItemString(newKwargs, "interval", PyFloat_FromDouble(0.1));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Mouse button press/release
PyObject* McRFPy_Automation::_mouseDown(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "button", NULL};
int x = -1, y = -1;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iis", const_cast<char**>(kwlist),
&x, &y, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
injectMouseEvent(sf::Event::MouseButtonPressed, x, y, sfButton);
Py_RETURN_NONE;
}
PyObject* McRFPy_Automation::_mouseUp(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "button", NULL};
int x = -1, y = -1;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iis", const_cast<char**>(kwlist),
&x, &y, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
injectMouseEvent(sf::Event::MouseButtonReleased, x, y, sfButton);
Py_RETURN_NONE;
}
// Drag operations
PyObject* McRFPy_Automation::_dragTo(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "duration", "button", NULL};
int x, y;
float duration = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|fs", const_cast<char**>(kwlist),
&x, &y, &duration, &button)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int startX, startY;
if (!PyArg_ParseTuple(pos, "ii", &startX, &startY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Mouse down at current position
PyObject* downArgs = Py_BuildValue("(ii)", startX, startY);
PyObject* downKwargs = PyDict_New();
PyDict_SetItemString(downKwargs, "button", PyUnicode_FromString(button));
PyObject* downResult = _mouseDown(self, downArgs, downKwargs);
Py_DECREF(downArgs);
Py_DECREF(downKwargs);
if (!downResult) return NULL;
Py_DECREF(downResult);
// Move to target position
if (duration > 0) {
// Smooth movement
int steps = static_cast<int>(duration * 60); // 60 FPS
for (int i = 1; i <= steps; i++) {
int currentX = startX + (x - startX) * i / steps;
int currentY = startY + (y - startY) * i / steps;
injectMouseEvent(sf::Event::MouseMoved, currentX, currentY);
sleep_ms(1000 / 60); // 60 FPS
}
} else {
injectMouseEvent(sf::Event::MouseMoved, x, y);
}
// Mouse up at target position
PyObject* upArgs = Py_BuildValue("(ii)", x, y);
PyObject* upKwargs = PyDict_New();
PyDict_SetItemString(upKwargs, "button", PyUnicode_FromString(button));
PyObject* upResult = _mouseUp(self, upArgs, upKwargs);
Py_DECREF(upArgs);
Py_DECREF(upKwargs);
if (!upResult) return NULL;
Py_DECREF(upResult);
Py_RETURN_NONE;
}
PyObject* McRFPy_Automation::_dragRel(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"xOffset", "yOffset", "duration", "button", NULL};
int xOffset, yOffset;
float duration = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|fs", const_cast<char**>(kwlist),
&xOffset, &yOffset, &duration, &button)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int currentX, currentY;
if (!PyArg_ParseTuple(pos, "ii", &currentX, &currentY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Call dragTo with absolute position
PyObject* dragArgs = Py_BuildValue("(ii)", currentX + xOffset, currentY + yOffset);
PyObject* dragKwargs = PyDict_New();
PyDict_SetItemString(dragKwargs, "duration", PyFloat_FromDouble(duration));
PyDict_SetItemString(dragKwargs, "button", PyUnicode_FromString(button));
PyObject* result = _dragTo(self, dragArgs, dragKwargs);
Py_DECREF(dragArgs);
Py_DECREF(dragKwargs);
return result;
}
// Method definitions for the automation module
static PyMethodDef automationMethods[] = {
{"screenshot", McRFPy_Automation::_screenshot, METH_VARARGS,
"screenshot(filename) - Save a screenshot to the specified file"},
{"position", McRFPy_Automation::_position, METH_NOARGS,
"position() - Get current mouse position as (x, y) tuple"},
{"size", McRFPy_Automation::_size, METH_NOARGS,
"size() - Get screen size as (width, height) tuple"},
{"onScreen", McRFPy_Automation::_onScreen, METH_VARARGS,
"onScreen(x, y) - Check if coordinates are within screen bounds"},
{"moveTo", (PyCFunction)McRFPy_Automation::_moveTo, METH_VARARGS | METH_KEYWORDS,
"moveTo(x, y, duration=0.0) - Move mouse to absolute position"},
{"moveRel", (PyCFunction)McRFPy_Automation::_moveRel, METH_VARARGS | METH_KEYWORDS,
"moveRel(xOffset, yOffset, duration=0.0) - Move mouse relative to current position"},
{"dragTo", (PyCFunction)McRFPy_Automation::_dragTo, METH_VARARGS | METH_KEYWORDS,
"dragTo(x, y, duration=0.0, button='left') - Drag mouse to position"},
{"dragRel", (PyCFunction)McRFPy_Automation::_dragRel, METH_VARARGS | METH_KEYWORDS,
"dragRel(xOffset, yOffset, duration=0.0, button='left') - Drag mouse relative to current position"},
{"click", (PyCFunction)McRFPy_Automation::_click, METH_VARARGS | METH_KEYWORDS,
"click(x=None, y=None, clicks=1, interval=0.0, button='left') - Click at position"},
{"rightClick", (PyCFunction)McRFPy_Automation::_rightClick, METH_VARARGS | METH_KEYWORDS,
"rightClick(x=None, y=None) - Right click at position"},
{"middleClick", (PyCFunction)McRFPy_Automation::_middleClick, METH_VARARGS | METH_KEYWORDS,
"middleClick(x=None, y=None) - Middle click at position"},
{"doubleClick", (PyCFunction)McRFPy_Automation::_doubleClick, METH_VARARGS | METH_KEYWORDS,
"doubleClick(x=None, y=None) - Double click at position"},
{"tripleClick", (PyCFunction)McRFPy_Automation::_tripleClick, METH_VARARGS | METH_KEYWORDS,
"tripleClick(x=None, y=None) - Triple click at position"},
{"scroll", (PyCFunction)McRFPy_Automation::_scroll, METH_VARARGS | METH_KEYWORDS,
"scroll(clicks, x=None, y=None) - Scroll wheel at position"},
{"mouseDown", (PyCFunction)McRFPy_Automation::_mouseDown, METH_VARARGS | METH_KEYWORDS,
"mouseDown(x=None, y=None, button='left') - Press mouse button"},
{"mouseUp", (PyCFunction)McRFPy_Automation::_mouseUp, METH_VARARGS | METH_KEYWORDS,
"mouseUp(x=None, y=None, button='left') - Release mouse button"},
{"typewrite", (PyCFunction)McRFPy_Automation::_typewrite, METH_VARARGS | METH_KEYWORDS,
"typewrite(message, interval=0.0) - Type text with optional interval between keystrokes"},
{"hotkey", McRFPy_Automation::_hotkey, METH_VARARGS,
"hotkey(*keys) - Press a hotkey combination (e.g., hotkey('ctrl', 'c'))"},
{"keyDown", McRFPy_Automation::_keyDown, METH_VARARGS,
"keyDown(key) - Press and hold a key"},
{"keyUp", McRFPy_Automation::_keyUp, METH_VARARGS,
"keyUp(key) - Release a key"},
{NULL, NULL, 0, NULL}
};
// Module definition for mcrfpy.automation
static PyModuleDef automationModule = {
PyModuleDef_HEAD_INIT,
"mcrfpy.automation",
"Automation API for McRogueFace - PyAutoGUI-compatible interface",
-1,
automationMethods
};
// Initialize automation submodule
PyObject* McRFPy_Automation::init_automation_module() {
PyObject* module = PyModule_Create(&automationModule);
if (module == NULL) {
return NULL;
}
return module;
}

View File

@ -1,56 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <SFML/Graphics.hpp>
#include <SFML/Window.hpp>
#include <string>
#include <chrono>
#include <thread>
class GameEngine;
class McRFPy_Automation {
public:
// Initialize the automation submodule
static PyObject* init_automation_module();
// Screenshot functionality
static PyObject* _screenshot(PyObject* self, PyObject* args);
// Mouse position and screen info
static PyObject* _position(PyObject* self, PyObject* args);
static PyObject* _size(PyObject* self, PyObject* args);
static PyObject* _onScreen(PyObject* self, PyObject* args);
// Mouse movement
static PyObject* _moveTo(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _moveRel(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _dragTo(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _dragRel(PyObject* self, PyObject* args, PyObject* kwargs);
// Mouse clicks
static PyObject* _click(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _rightClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _middleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _doubleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _tripleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _scroll(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _mouseDown(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _mouseUp(PyObject* self, PyObject* args, PyObject* kwargs);
// Keyboard
static PyObject* _typewrite(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _hotkey(PyObject* self, PyObject* args);
static PyObject* _keyDown(PyObject* self, PyObject* args);
static PyObject* _keyUp(PyObject* self, PyObject* args);
// Helper functions
static void injectMouseEvent(sf::Event::EventType type, int x, int y, sf::Mouse::Button button = sf::Mouse::Left);
static void injectKeyEvent(sf::Event::EventType type, sf::Keyboard::Key key);
static void injectTextEvent(sf::Uint32 unicode);
static sf::Keyboard::Key stringToKey(const std::string& keyName);
static void sleep_ms(int milliseconds);
private:
static GameEngine* getGameEngine();
};

View File

@ -1,324 +0,0 @@
#include "McRFPy_Libtcod.h"
#include "McRFPy_API.h"
#include "UIGrid.h"
#include <vector>
// Helper function to get UIGrid from Python object
static UIGrid* get_grid_from_pyobject(PyObject* obj) {
auto grid_type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid");
if (!grid_type) {
PyErr_SetString(PyExc_RuntimeError, "Could not find Grid type");
return nullptr;
}
if (!PyObject_IsInstance(obj, (PyObject*)grid_type)) {
Py_DECREF(grid_type);
PyErr_SetString(PyExc_TypeError, "First argument must be a Grid object");
return nullptr;
}
Py_DECREF(grid_type);
PyUIGridObject* pygrid = (PyUIGridObject*)obj;
return pygrid->data.get();
}
// Field of View computation
static PyObject* McRFPy_Libtcod::compute_fov(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x, y, radius;
int light_walls = 1;
int algorithm = FOV_BASIC;
if (!PyArg_ParseTuple(args, "Oiii|ii", &grid_obj, &x, &y, &radius,
&light_walls, &algorithm)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
// Compute FOV using grid's method
grid->computeFOV(x, y, radius, light_walls, (TCOD_fov_algorithm_t)algorithm);
// Return list of visible cells
PyObject* visible_list = PyList_New(0);
for (int gy = 0; gy < grid->grid_y; gy++) {
for (int gx = 0; gx < grid->grid_x; gx++) {
if (grid->isInFOV(gx, gy)) {
PyObject* pos = Py_BuildValue("(ii)", gx, gy);
PyList_Append(visible_list, pos);
Py_DECREF(pos);
}
}
}
return visible_list;
}
// A* Pathfinding
static PyObject* McRFPy_Libtcod::find_path(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x1, y1, x2, y2;
float diagonal_cost = 1.41f;
if (!PyArg_ParseTuple(args, "Oiiii|f", &grid_obj, &x1, &y1, &x2, &y2, &diagonal_cost)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
// Get path from grid
std::vector<std::pair<int, int>> path = grid->findPath(x1, y1, x2, y2, diagonal_cost);
// Convert to Python list
PyObject* path_list = PyList_New(path.size());
for (size_t i = 0; i < path.size(); i++) {
PyObject* pos = Py_BuildValue("(ii)", path[i].first, path[i].second);
PyList_SetItem(path_list, i, pos); // steals reference
}
return path_list;
}
// Line drawing algorithm
static PyObject* McRFPy_Libtcod::line(PyObject* self, PyObject* args) {
int x1, y1, x2, y2;
if (!PyArg_ParseTuple(args, "iiii", &x1, &y1, &x2, &y2)) {
return NULL;
}
// Use TCOD's line algorithm
TCODLine::init(x1, y1, x2, y2);
PyObject* line_list = PyList_New(0);
int x, y;
// Step through line
while (!TCODLine::step(&x, &y)) {
PyObject* pos = Py_BuildValue("(ii)", x, y);
PyList_Append(line_list, pos);
Py_DECREF(pos);
}
return line_list;
}
// Line iterator (generator-like function)
static PyObject* McRFPy_Libtcod::line_iter(PyObject* self, PyObject* args) {
// For simplicity, just call line() for now
// A proper implementation would create an iterator object
return line(self, args);
}
// Dijkstra pathfinding
static PyObject* McRFPy_Libtcod::dijkstra_new(PyObject* self, PyObject* args) {
PyObject* grid_obj;
float diagonal_cost = 1.41f;
if (!PyArg_ParseTuple(args, "O|f", &grid_obj, &diagonal_cost)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
// For now, just return the grid object since Dijkstra is part of the grid
Py_INCREF(grid_obj);
return grid_obj;
}
static PyObject* McRFPy_Libtcod::dijkstra_compute(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int root_x, root_y;
if (!PyArg_ParseTuple(args, "Oii", &grid_obj, &root_x, &root_y)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
grid->computeDijkstra(root_x, root_y);
Py_RETURN_NONE;
}
static PyObject* McRFPy_Libtcod::dijkstra_get_distance(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x, y;
if (!PyArg_ParseTuple(args, "Oii", &grid_obj, &x, &y)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
float distance = grid->getDijkstraDistance(x, y);
if (distance < 0) {
Py_RETURN_NONE;
}
return PyFloat_FromDouble(distance);
}
static PyObject* McRFPy_Libtcod::dijkstra_path_to(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x, y;
if (!PyArg_ParseTuple(args, "Oii", &grid_obj, &x, &y)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
std::vector<std::pair<int, int>> path = grid->getDijkstraPath(x, y);
PyObject* path_list = PyList_New(path.size());
for (size_t i = 0; i < path.size(); i++) {
PyObject* pos = Py_BuildValue("(ii)", path[i].first, path[i].second);
PyList_SetItem(path_list, i, pos); // steals reference
}
return path_list;
}
// Add FOV algorithm constants to module
static PyObject* McRFPy_Libtcod::add_fov_constants(PyObject* module) {
// FOV algorithms
PyModule_AddIntConstant(module, "FOV_BASIC", FOV_BASIC);
PyModule_AddIntConstant(module, "FOV_DIAMOND", FOV_DIAMOND);
PyModule_AddIntConstant(module, "FOV_SHADOW", FOV_SHADOW);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_0", FOV_PERMISSIVE_0);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_1", FOV_PERMISSIVE_1);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_2", FOV_PERMISSIVE_2);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_3", FOV_PERMISSIVE_3);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_4", FOV_PERMISSIVE_4);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_5", FOV_PERMISSIVE_5);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_6", FOV_PERMISSIVE_6);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_7", FOV_PERMISSIVE_7);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_8", FOV_PERMISSIVE_8);
PyModule_AddIntConstant(module, "FOV_RESTRICTIVE", FOV_RESTRICTIVE);
PyModule_AddIntConstant(module, "FOV_SYMMETRIC_SHADOWCAST", FOV_SYMMETRIC_SHADOWCAST);
return module;
}
// Method definitions
static PyMethodDef libtcodMethods[] = {
{"compute_fov", McRFPy_Libtcod::compute_fov, METH_VARARGS,
"compute_fov(grid, x, y, radius, light_walls=True, algorithm=FOV_BASIC)\n\n"
"Compute field of view from a position.\n\n"
"Args:\n"
" grid: Grid object to compute FOV on\n"
" x, y: Origin position\n"
" radius: Maximum sight radius\n"
" light_walls: Whether walls are lit when in FOV\n"
" algorithm: FOV algorithm to use (FOV_BASIC, FOV_SHADOW, etc.)\n\n"
"Returns:\n"
" List of (x, y) tuples for visible cells"},
{"find_path", McRFPy_Libtcod::find_path, METH_VARARGS,
"find_path(grid, x1, y1, x2, y2, diagonal_cost=1.41)\n\n"
"Find shortest path between two points using A*.\n\n"
"Args:\n"
" grid: Grid object to pathfind on\n"
" x1, y1: Starting position\n"
" x2, y2: Target position\n"
" diagonal_cost: Cost of diagonal movement\n\n"
"Returns:\n"
" List of (x, y) tuples representing the path, or empty list if no path exists"},
{"line", McRFPy_Libtcod::line, METH_VARARGS,
"line(x1, y1, x2, y2)\n\n"
"Get cells along a line using Bresenham's algorithm.\n\n"
"Args:\n"
" x1, y1: Starting position\n"
" x2, y2: Ending position\n\n"
"Returns:\n"
" List of (x, y) tuples along the line"},
{"line_iter", McRFPy_Libtcod::line_iter, METH_VARARGS,
"line_iter(x1, y1, x2, y2)\n\n"
"Iterate over cells along a line.\n\n"
"Args:\n"
" x1, y1: Starting position\n"
" x2, y2: Ending position\n\n"
"Returns:\n"
" Iterator of (x, y) tuples along the line"},
{"dijkstra_new", McRFPy_Libtcod::dijkstra_new, METH_VARARGS,
"dijkstra_new(grid, diagonal_cost=1.41)\n\n"
"Create a Dijkstra pathfinding context for a grid.\n\n"
"Args:\n"
" grid: Grid object to use for pathfinding\n"
" diagonal_cost: Cost of diagonal movement\n\n"
"Returns:\n"
" Grid object configured for Dijkstra pathfinding"},
{"dijkstra_compute", McRFPy_Libtcod::dijkstra_compute, METH_VARARGS,
"dijkstra_compute(grid, root_x, root_y)\n\n"
"Compute Dijkstra distance map from root position.\n\n"
"Args:\n"
" grid: Grid object with Dijkstra context\n"
" root_x, root_y: Root position to compute distances from"},
{"dijkstra_get_distance", McRFPy_Libtcod::dijkstra_get_distance, METH_VARARGS,
"dijkstra_get_distance(grid, x, y)\n\n"
"Get distance from root to a position.\n\n"
"Args:\n"
" grid: Grid object with computed Dijkstra map\n"
" x, y: Position to get distance for\n\n"
"Returns:\n"
" Float distance or None if position is invalid/unreachable"},
{"dijkstra_path_to", McRFPy_Libtcod::dijkstra_path_to, METH_VARARGS,
"dijkstra_path_to(grid, x, y)\n\n"
"Get shortest path from position to Dijkstra root.\n\n"
"Args:\n"
" grid: Grid object with computed Dijkstra map\n"
" x, y: Starting position\n\n"
"Returns:\n"
" List of (x, y) tuples representing the path to root"},
{NULL, NULL, 0, NULL}
};
// Module definition
static PyModuleDef libtcodModule = {
PyModuleDef_HEAD_INIT,
"mcrfpy.libtcod",
"TCOD-compatible algorithms for field of view, pathfinding, and line drawing.\n\n"
"This module provides access to TCOD's algorithms integrated with McRogueFace grids.\n"
"Unlike the original TCOD, these functions work directly with Grid objects.\n\n"
"FOV Algorithms:\n"
" FOV_BASIC - Basic circular FOV\n"
" FOV_SHADOW - Shadow casting (recommended)\n"
" FOV_DIAMOND - Diamond-shaped FOV\n"
" FOV_PERMISSIVE_0 through FOV_PERMISSIVE_8 - Permissive variants\n"
" FOV_RESTRICTIVE - Most restrictive FOV\n"
" FOV_SYMMETRIC_SHADOWCAST - Symmetric shadow casting\n\n"
"Example:\n"
" import mcrfpy\n"
" from mcrfpy import libtcod\n\n"
" grid = mcrfpy.Grid(50, 50)\n"
" visible = libtcod.compute_fov(grid, 25, 25, 10)\n"
" path = libtcod.find_path(grid, 0, 0, 49, 49)",
-1,
libtcodMethods
};
// Module initialization
PyObject* McRFPy_Libtcod::init_libtcod_module() {
PyObject* m = PyModule_Create(&libtcodModule);
if (m == NULL) {
return NULL;
}
// Add FOV algorithm constants
add_fov_constants(m);
return m;
}

View File

@ -1,27 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <libtcod.h>
namespace McRFPy_Libtcod
{
// Field of View algorithms
static PyObject* compute_fov(PyObject* self, PyObject* args);
// Pathfinding
static PyObject* find_path(PyObject* self, PyObject* args);
static PyObject* dijkstra_new(PyObject* self, PyObject* args);
static PyObject* dijkstra_compute(PyObject* self, PyObject* args);
static PyObject* dijkstra_get_distance(PyObject* self, PyObject* args);
static PyObject* dijkstra_path_to(PyObject* self, PyObject* args);
// Line algorithms
static PyObject* line(PyObject* self, PyObject* args);
static PyObject* line_iter(PyObject* self, PyObject* args);
// FOV algorithm constants
static PyObject* add_fov_constants(PyObject* module);
// Module initialization
PyObject* init_libtcod_module();
}

View File

@ -1,33 +0,0 @@
#ifndef MCROGUEFACE_CONFIG_H
#define MCROGUEFACE_CONFIG_H
#include <string>
#include <vector>
#include <filesystem>
struct McRogueFaceConfig {
// McRogueFace specific
bool headless = false;
bool audio_enabled = true;
// Python interpreter emulation
bool python_mode = false;
std::string python_command; // -c command
std::string python_module; // -m module
bool interactive_mode = false; // -i flag
bool show_version = false; // -V flag
bool show_help = false; // -h flag
// Script execution
std::filesystem::path script_path;
std::vector<std::string> script_args;
// Scripts to execute before main script (--exec flag)
std::vector<std::filesystem::path> exec_scripts;
// Screenshot functionality for headless mode
std::string screenshot_path;
bool take_screenshot = false;
};
#endif // MCROGUEFACE_CONFIG_H

View File

@ -1,234 +0,0 @@
#include "PyAnimation.h"
#include "McRFPy_API.h"
#include "UIDrawable.h"
#include "UIFrame.h"
#include "UICaption.h"
#include "UISprite.h"
#include "UIGrid.h"
#include "UIEntity.h"
#include "UI.h" // For the PyTypeObject definitions
#include <cstring>
PyObject* PyAnimation::create(PyTypeObject* type, PyObject* args, PyObject* kwds) {
PyAnimationObject* self = (PyAnimationObject*)type->tp_alloc(type, 0);
if (self != NULL) {
// Will be initialized in init
}
return (PyObject*)self;
}
int PyAnimation::init(PyAnimationObject* self, PyObject* args, PyObject* kwds) {
static const char* keywords[] = {"property", "target", "duration", "easing", "delta", nullptr};
const char* property_name;
PyObject* target_value;
float duration;
const char* easing_name = "linear";
int delta = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "sOf|sp", const_cast<char**>(keywords),
&property_name, &target_value, &duration, &easing_name, &delta)) {
return -1;
}
// Convert Python target value to AnimationValue
AnimationValue animValue;
if (PyFloat_Check(target_value)) {
animValue = static_cast<float>(PyFloat_AsDouble(target_value));
}
else if (PyLong_Check(target_value)) {
animValue = static_cast<int>(PyLong_AsLong(target_value));
}
else if (PyList_Check(target_value)) {
// List of integers for sprite animation
std::vector<int> indices;
Py_ssize_t size = PyList_Size(target_value);
for (Py_ssize_t i = 0; i < size; i++) {
PyObject* item = PyList_GetItem(target_value, i);
if (PyLong_Check(item)) {
indices.push_back(PyLong_AsLong(item));
} else {
PyErr_SetString(PyExc_TypeError, "Sprite animation list must contain only integers");
return -1;
}
}
animValue = indices;
}
else if (PyTuple_Check(target_value)) {
Py_ssize_t size = PyTuple_Size(target_value);
if (size == 2) {
// Vector2f
float x = PyFloat_AsDouble(PyTuple_GetItem(target_value, 0));
float y = PyFloat_AsDouble(PyTuple_GetItem(target_value, 1));
animValue = sf::Vector2f(x, y);
}
else if (size == 3 || size == 4) {
// Color (RGB or RGBA)
int r = PyLong_AsLong(PyTuple_GetItem(target_value, 0));
int g = PyLong_AsLong(PyTuple_GetItem(target_value, 1));
int b = PyLong_AsLong(PyTuple_GetItem(target_value, 2));
int a = size == 4 ? PyLong_AsLong(PyTuple_GetItem(target_value, 3)) : 255;
animValue = sf::Color(r, g, b, a);
}
else {
PyErr_SetString(PyExc_ValueError, "Tuple must have 2 elements (vector) or 3-4 elements (color)");
return -1;
}
}
else if (PyUnicode_Check(target_value)) {
// String for text animation
const char* str = PyUnicode_AsUTF8(target_value);
animValue = std::string(str);
}
else {
PyErr_SetString(PyExc_TypeError, "Target value must be float, int, list, tuple, or string");
return -1;
}
// Get easing function
EasingFunction easingFunc = EasingFunctions::getByName(easing_name);
// Create the Animation
self->data = std::make_shared<Animation>(property_name, animValue, duration, easingFunc, delta != 0);
return 0;
}
void PyAnimation::dealloc(PyAnimationObject* self) {
self->data.reset();
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject* PyAnimation::get_property(PyAnimationObject* self, void* closure) {
return PyUnicode_FromString(self->data->getTargetProperty().c_str());
}
PyObject* PyAnimation::get_duration(PyAnimationObject* self, void* closure) {
return PyFloat_FromDouble(self->data->getDuration());
}
PyObject* PyAnimation::get_elapsed(PyAnimationObject* self, void* closure) {
return PyFloat_FromDouble(self->data->getElapsed());
}
PyObject* PyAnimation::get_is_complete(PyAnimationObject* self, void* closure) {
return PyBool_FromLong(self->data->isComplete());
}
PyObject* PyAnimation::get_is_delta(PyAnimationObject* self, void* closure) {
return PyBool_FromLong(self->data->isDelta());
}
PyObject* PyAnimation::start(PyAnimationObject* self, PyObject* args) {
PyObject* target_obj;
if (!PyArg_ParseTuple(args, "O", &target_obj)) {
return NULL;
}
// Get the UIDrawable from the Python object
UIDrawable* drawable = nullptr;
// Check type by comparing type names
const char* type_name = Py_TYPE(target_obj)->tp_name;
if (strcmp(type_name, "mcrfpy.Frame") == 0) {
PyUIFrameObject* frame = (PyUIFrameObject*)target_obj;
drawable = frame->data.get();
}
else if (strcmp(type_name, "mcrfpy.Caption") == 0) {
PyUICaptionObject* caption = (PyUICaptionObject*)target_obj;
drawable = caption->data.get();
}
else if (strcmp(type_name, "mcrfpy.Sprite") == 0) {
PyUISpriteObject* sprite = (PyUISpriteObject*)target_obj;
drawable = sprite->data.get();
}
else if (strcmp(type_name, "mcrfpy.Grid") == 0) {
PyUIGridObject* grid = (PyUIGridObject*)target_obj;
drawable = grid->data.get();
}
else if (strcmp(type_name, "mcrfpy.Entity") == 0) {
// Special handling for Entity since it doesn't inherit from UIDrawable
PyUIEntityObject* entity = (PyUIEntityObject*)target_obj;
// Start the animation directly on the entity
self->data->startEntity(entity->data.get());
// Add to AnimationManager
AnimationManager::getInstance().addAnimation(self->data);
Py_RETURN_NONE;
}
else {
PyErr_SetString(PyExc_TypeError, "Target must be a Frame, Caption, Sprite, Grid, or Entity");
return NULL;
}
// Start the animation
self->data->start(drawable);
// Add to AnimationManager
AnimationManager::getInstance().addAnimation(self->data);
Py_RETURN_NONE;
}
PyObject* PyAnimation::update(PyAnimationObject* self, PyObject* args) {
float deltaTime;
if (!PyArg_ParseTuple(args, "f", &deltaTime)) {
return NULL;
}
bool still_running = self->data->update(deltaTime);
return PyBool_FromLong(still_running);
}
PyObject* PyAnimation::get_current_value(PyAnimationObject* self, PyObject* args) {
AnimationValue value = self->data->getCurrentValue();
// Convert AnimationValue back to Python
return std::visit([](const auto& val) -> PyObject* {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
return PyFloat_FromDouble(val);
}
else if constexpr (std::is_same_v<T, int>) {
return PyLong_FromLong(val);
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// This shouldn't happen as we interpolate to int
return PyLong_FromLong(0);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
return Py_BuildValue("(iiii)", val.r, val.g, val.b, val.a);
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
return Py_BuildValue("(ff)", val.x, val.y);
}
else if constexpr (std::is_same_v<T, std::string>) {
return PyUnicode_FromString(val.c_str());
}
Py_RETURN_NONE;
}, value);
}
PyGetSetDef PyAnimation::getsetters[] = {
{"property", (getter)get_property, NULL, "Target property name", NULL},
{"duration", (getter)get_duration, NULL, "Animation duration in seconds", NULL},
{"elapsed", (getter)get_elapsed, NULL, "Elapsed time in seconds", NULL},
{"is_complete", (getter)get_is_complete, NULL, "Whether animation is complete", NULL},
{"is_delta", (getter)get_is_delta, NULL, "Whether animation uses delta mode", NULL},
{NULL}
};
PyMethodDef PyAnimation::methods[] = {
{"start", (PyCFunction)start, METH_VARARGS,
"Start the animation on a target UIDrawable"},
{"update", (PyCFunction)update, METH_VARARGS,
"Update the animation by deltaTime (returns True if still running)"},
{"get_current_value", (PyCFunction)get_current_value, METH_NOARGS,
"Get the current interpolated value"},
{NULL}
};

View File

@ -1,50 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "structmember.h"
#include "Animation.h"
#include <memory>
typedef struct {
PyObject_HEAD
std::shared_ptr<Animation> data;
} PyAnimationObject;
class PyAnimation {
public:
static PyObject* create(PyTypeObject* type, PyObject* args, PyObject* kwds);
static int init(PyAnimationObject* self, PyObject* args, PyObject* kwds);
static void dealloc(PyAnimationObject* self);
// Properties
static PyObject* get_property(PyAnimationObject* self, void* closure);
static PyObject* get_duration(PyAnimationObject* self, void* closure);
static PyObject* get_elapsed(PyAnimationObject* self, void* closure);
static PyObject* get_is_complete(PyAnimationObject* self, void* closure);
static PyObject* get_is_delta(PyAnimationObject* self, void* closure);
// Methods
static PyObject* start(PyAnimationObject* self, PyObject* args);
static PyObject* update(PyAnimationObject* self, PyObject* args);
static PyObject* get_current_value(PyAnimationObject* self, PyObject* args);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
static PyTypeObject PyAnimationType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Animation",
.tp_basicsize = sizeof(PyAnimationObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)PyAnimation::dealloc,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Animation object for animating UI properties"),
.tp_methods = PyAnimation::methods,
.tp_getset = PyAnimation::getsetters,
.tp_init = (initproc)PyAnimation::init,
.tp_new = PyAnimation::create,
};
}

View File

@ -1,410 +0,0 @@
#pragma once
#include "Python.h"
#include "PyVector.h"
#include "PyColor.h"
#include <SFML/Graphics.hpp>
#include <string>
// Unified argument parsing helpers for Python API consistency
namespace PyArgHelpers {
// Position in pixels (float)
struct PositionResult {
float x, y;
bool valid;
const char* error;
};
// Size in pixels (float)
struct SizeResult {
float w, h;
bool valid;
const char* error;
};
// Grid position in tiles (float - for animation)
struct GridPositionResult {
float grid_x, grid_y;
bool valid;
const char* error;
};
// Grid size in tiles (int - can't have fractional tiles)
struct GridSizeResult {
int grid_w, grid_h;
bool valid;
const char* error;
};
// Color parsing
struct ColorResult {
sf::Color color;
bool valid;
const char* error;
};
// Helper to check if a keyword conflicts with positional args
static bool hasConflict(PyObject* kwds, const char* key, bool has_positional) {
if (!kwds || !has_positional) return false;
PyObject* value = PyDict_GetItemString(kwds, key);
return value != nullptr;
}
// Parse position with conflict detection
static PositionResult parsePosition(PyObject* args, PyObject* kwds, int* next_arg = nullptr) {
PositionResult result = {0.0f, 0.0f, false, nullptr};
int start_idx = next_arg ? *next_arg : 0;
bool has_positional = false;
// Check for positional tuple argument first
if (args && PyTuple_Size(args) > start_idx) {
PyObject* first = PyTuple_GetItem(args, start_idx);
// Is it a tuple/Vector?
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
// Extract from tuple
PyObject* x_obj = PyTuple_GetItem(first, 0);
PyObject* y_obj = PyTuple_GetItem(first, 1);
if ((PyFloat_Check(x_obj) || PyLong_Check(x_obj)) &&
(PyFloat_Check(y_obj) || PyLong_Check(y_obj))) {
result.x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : PyLong_AsLong(x_obj);
result.y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : PyLong_AsLong(y_obj);
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
}
} else if (PyObject_TypeCheck(first, (PyTypeObject*)PyObject_GetAttrString(PyImport_ImportModule("mcrfpy"), "Vector"))) {
// It's a Vector object
PyVectorObject* vec = (PyVectorObject*)first;
result.x = vec->data.x;
result.y = vec->data.y;
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
}
}
// Check for keyword conflicts
if (has_positional) {
if (hasConflict(kwds, "pos", true) || hasConflict(kwds, "x", true) || hasConflict(kwds, "y", true)) {
result.valid = false;
result.error = "position specified both positionally and by keyword";
return result;
}
}
// If no positional, try keywords
if (!has_positional && kwds) {
PyObject* pos_obj = PyDict_GetItemString(kwds, "pos");
PyObject* x_obj = PyDict_GetItemString(kwds, "x");
PyObject* y_obj = PyDict_GetItemString(kwds, "y");
// Check for conflicts between pos and x/y
if (pos_obj && (x_obj || y_obj)) {
result.valid = false;
result.error = "pos and x/y cannot both be specified";
return result;
}
if (pos_obj) {
// Parse pos keyword
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
result.x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
result.y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
result.valid = true;
}
} else if (PyObject_TypeCheck(pos_obj, (PyTypeObject*)PyObject_GetAttrString(PyImport_ImportModule("mcrfpy"), "Vector"))) {
PyVectorObject* vec = (PyVectorObject*)pos_obj;
result.x = vec->data.x;
result.y = vec->data.y;
result.valid = true;
}
} else if (x_obj && y_obj) {
// Parse x, y keywords
if ((PyFloat_Check(x_obj) || PyLong_Check(x_obj)) &&
(PyFloat_Check(y_obj) || PyLong_Check(y_obj))) {
result.x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : PyLong_AsLong(x_obj);
result.y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : PyLong_AsLong(y_obj);
result.valid = true;
}
}
}
return result;
}
// Parse size with conflict detection
static SizeResult parseSize(PyObject* args, PyObject* kwds, int* next_arg = nullptr) {
SizeResult result = {0.0f, 0.0f, false, nullptr};
int start_idx = next_arg ? *next_arg : 0;
bool has_positional = false;
// Check for positional tuple argument
if (args && PyTuple_Size(args) > start_idx) {
PyObject* first = PyTuple_GetItem(args, start_idx);
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
PyObject* w_obj = PyTuple_GetItem(first, 0);
PyObject* h_obj = PyTuple_GetItem(first, 1);
if ((PyFloat_Check(w_obj) || PyLong_Check(w_obj)) &&
(PyFloat_Check(h_obj) || PyLong_Check(h_obj))) {
result.w = PyFloat_Check(w_obj) ? PyFloat_AsDouble(w_obj) : PyLong_AsLong(w_obj);
result.h = PyFloat_Check(h_obj) ? PyFloat_AsDouble(h_obj) : PyLong_AsLong(h_obj);
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
}
}
}
// Check for keyword conflicts
if (has_positional) {
if (hasConflict(kwds, "size", true) || hasConflict(kwds, "w", true) || hasConflict(kwds, "h", true)) {
result.valid = false;
result.error = "size specified both positionally and by keyword";
return result;
}
}
// If no positional, try keywords
if (!has_positional && kwds) {
PyObject* size_obj = PyDict_GetItemString(kwds, "size");
PyObject* w_obj = PyDict_GetItemString(kwds, "w");
PyObject* h_obj = PyDict_GetItemString(kwds, "h");
// Check for conflicts between size and w/h
if (size_obj && (w_obj || h_obj)) {
result.valid = false;
result.error = "size and w/h cannot both be specified";
return result;
}
if (size_obj) {
// Parse size keyword
if (PyTuple_Check(size_obj) && PyTuple_Size(size_obj) == 2) {
PyObject* w_val = PyTuple_GetItem(size_obj, 0);
PyObject* h_val = PyTuple_GetItem(size_obj, 1);
if ((PyFloat_Check(w_val) || PyLong_Check(w_val)) &&
(PyFloat_Check(h_val) || PyLong_Check(h_val))) {
result.w = PyFloat_Check(w_val) ? PyFloat_AsDouble(w_val) : PyLong_AsLong(w_val);
result.h = PyFloat_Check(h_val) ? PyFloat_AsDouble(h_val) : PyLong_AsLong(h_val);
result.valid = true;
}
}
} else if (w_obj && h_obj) {
// Parse w, h keywords
if ((PyFloat_Check(w_obj) || PyLong_Check(w_obj)) &&
(PyFloat_Check(h_obj) || PyLong_Check(h_obj))) {
result.w = PyFloat_Check(w_obj) ? PyFloat_AsDouble(w_obj) : PyLong_AsLong(w_obj);
result.h = PyFloat_Check(h_obj) ? PyFloat_AsDouble(h_obj) : PyLong_AsLong(h_obj);
result.valid = true;
}
}
}
return result;
}
// Parse grid position (float for smooth animation)
static GridPositionResult parseGridPosition(PyObject* args, PyObject* kwds, int* next_arg = nullptr) {
GridPositionResult result = {0.0f, 0.0f, false, nullptr};
int start_idx = next_arg ? *next_arg : 0;
bool has_positional = false;
// Check for positional tuple argument
if (args && PyTuple_Size(args) > start_idx) {
PyObject* first = PyTuple_GetItem(args, start_idx);
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
PyObject* x_obj = PyTuple_GetItem(first, 0);
PyObject* y_obj = PyTuple_GetItem(first, 1);
if ((PyFloat_Check(x_obj) || PyLong_Check(x_obj)) &&
(PyFloat_Check(y_obj) || PyLong_Check(y_obj))) {
result.grid_x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : PyLong_AsLong(x_obj);
result.grid_y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : PyLong_AsLong(y_obj);
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
}
}
}
// Check for keyword conflicts
if (has_positional) {
if (hasConflict(kwds, "grid_pos", true) || hasConflict(kwds, "grid_x", true) || hasConflict(kwds, "grid_y", true)) {
result.valid = false;
result.error = "grid position specified both positionally and by keyword";
return result;
}
}
// If no positional, try keywords
if (!has_positional && kwds) {
PyObject* grid_pos_obj = PyDict_GetItemString(kwds, "grid_pos");
PyObject* grid_x_obj = PyDict_GetItemString(kwds, "grid_x");
PyObject* grid_y_obj = PyDict_GetItemString(kwds, "grid_y");
// Check for conflicts between grid_pos and grid_x/grid_y
if (grid_pos_obj && (grid_x_obj || grid_y_obj)) {
result.valid = false;
result.error = "grid_pos and grid_x/grid_y cannot both be specified";
return result;
}
if (grid_pos_obj) {
// Parse grid_pos keyword
if (PyTuple_Check(grid_pos_obj) && PyTuple_Size(grid_pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(grid_pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(grid_pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
result.grid_x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
result.grid_y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
result.valid = true;
}
}
} else if (grid_x_obj && grid_y_obj) {
// Parse grid_x, grid_y keywords
if ((PyFloat_Check(grid_x_obj) || PyLong_Check(grid_x_obj)) &&
(PyFloat_Check(grid_y_obj) || PyLong_Check(grid_y_obj))) {
result.grid_x = PyFloat_Check(grid_x_obj) ? PyFloat_AsDouble(grid_x_obj) : PyLong_AsLong(grid_x_obj);
result.grid_y = PyFloat_Check(grid_y_obj) ? PyFloat_AsDouble(grid_y_obj) : PyLong_AsLong(grid_y_obj);
result.valid = true;
}
}
}
return result;
}
// Parse grid size (int - no fractional tiles)
static GridSizeResult parseGridSize(PyObject* args, PyObject* kwds, int* next_arg = nullptr) {
GridSizeResult result = {0, 0, false, nullptr};
int start_idx = next_arg ? *next_arg : 0;
bool has_positional = false;
// Check for positional tuple argument
if (args && PyTuple_Size(args) > start_idx) {
PyObject* first = PyTuple_GetItem(args, start_idx);
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
PyObject* w_obj = PyTuple_GetItem(first, 0);
PyObject* h_obj = PyTuple_GetItem(first, 1);
if (PyLong_Check(w_obj) && PyLong_Check(h_obj)) {
result.grid_w = PyLong_AsLong(w_obj);
result.grid_h = PyLong_AsLong(h_obj);
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
} else {
result.valid = false;
result.error = "grid size must be specified with integers";
return result;
}
}
}
// Check for keyword conflicts
if (has_positional) {
if (hasConflict(kwds, "grid_size", true) || hasConflict(kwds, "grid_w", true) || hasConflict(kwds, "grid_h", true)) {
result.valid = false;
result.error = "grid size specified both positionally and by keyword";
return result;
}
}
// If no positional, try keywords
if (!has_positional && kwds) {
PyObject* grid_size_obj = PyDict_GetItemString(kwds, "grid_size");
PyObject* grid_w_obj = PyDict_GetItemString(kwds, "grid_w");
PyObject* grid_h_obj = PyDict_GetItemString(kwds, "grid_h");
// Check for conflicts between grid_size and grid_w/grid_h
if (grid_size_obj && (grid_w_obj || grid_h_obj)) {
result.valid = false;
result.error = "grid_size and grid_w/grid_h cannot both be specified";
return result;
}
if (grid_size_obj) {
// Parse grid_size keyword
if (PyTuple_Check(grid_size_obj) && PyTuple_Size(grid_size_obj) == 2) {
PyObject* w_val = PyTuple_GetItem(grid_size_obj, 0);
PyObject* h_val = PyTuple_GetItem(grid_size_obj, 1);
if (PyLong_Check(w_val) && PyLong_Check(h_val)) {
result.grid_w = PyLong_AsLong(w_val);
result.grid_h = PyLong_AsLong(h_val);
result.valid = true;
} else {
result.valid = false;
result.error = "grid size must be specified with integers";
return result;
}
}
} else if (grid_w_obj && grid_h_obj) {
// Parse grid_w, grid_h keywords
if (PyLong_Check(grid_w_obj) && PyLong_Check(grid_h_obj)) {
result.grid_w = PyLong_AsLong(grid_w_obj);
result.grid_h = PyLong_AsLong(grid_h_obj);
result.valid = true;
} else {
result.valid = false;
result.error = "grid size must be specified with integers";
return result;
}
}
}
return result;
}
// Parse color using existing PyColor infrastructure
static ColorResult parseColor(PyObject* obj, const char* param_name = nullptr) {
ColorResult result = {sf::Color::White, false, nullptr};
if (!obj) {
return result;
}
// Use existing PyColor::from_arg which handles tuple/Color conversion
auto py_color = PyColor::from_arg(obj);
if (py_color) {
result.color = py_color->data;
result.valid = true;
} else {
result.valid = false;
std::string error_msg = param_name
? std::string(param_name) + " must be a color tuple (r,g,b) or (r,g,b,a)"
: "Invalid color format - expected tuple (r,g,b) or (r,g,b,a)";
result.error = error_msg.c_str();
}
return result;
}
// Helper to validate a texture object
static bool isValidTexture(PyObject* obj) {
if (!obj) return false;
PyObject* texture_type = PyObject_GetAttrString(PyImport_ImportModule("mcrfpy"), "Texture");
bool is_texture = PyObject_IsInstance(obj, texture_type);
Py_DECREF(texture_type);
return is_texture;
}
// Helper to validate a click handler
static bool isValidClickHandler(PyObject* obj) {
return obj && PyCallable_Check(obj);
}
}

View File

@ -16,24 +16,21 @@ PyObject* PyCallable::call(PyObject* args, PyObject* kwargs)
return PyObject_Call(target, args, kwargs); return PyObject_Call(target, args, kwargs);
} }
bool PyCallable::isNone() const bool PyCallable::isNone()
{ {
return (target == Py_None || target == NULL); return (target == Py_None || target == NULL);
} }
PyTimerCallable::PyTimerCallable(PyObject* _target, int _interval, int now) PyTimerCallable::PyTimerCallable(PyObject* _target, int _interval, int now)
: PyCallable(_target), interval(_interval), last_ran(now), : PyCallable(_target), interval(_interval), last_ran(now)
paused(false), pause_start_time(0), total_paused_time(0)
{} {}
PyTimerCallable::PyTimerCallable() PyTimerCallable::PyTimerCallable()
: PyCallable(Py_None), interval(0), last_ran(0), : PyCallable(Py_None), interval(0), last_ran(0)
paused(false), pause_start_time(0), total_paused_time(0)
{} {}
bool PyTimerCallable::hasElapsed(int now) bool PyTimerCallable::hasElapsed(int now)
{ {
if (paused) return false;
return now >= last_ran + interval; return now >= last_ran + interval;
} }
@ -63,62 +60,6 @@ bool PyTimerCallable::test(int now)
return false; return false;
} }
void PyTimerCallable::pause(int current_time)
{
if (!paused) {
paused = true;
pause_start_time = current_time;
}
}
void PyTimerCallable::resume(int current_time)
{
if (paused) {
paused = false;
int paused_duration = current_time - pause_start_time;
total_paused_time += paused_duration;
// Adjust last_ran to account for the pause
last_ran += paused_duration;
}
}
void PyTimerCallable::restart(int current_time)
{
last_ran = current_time;
paused = false;
pause_start_time = 0;
total_paused_time = 0;
}
void PyTimerCallable::cancel()
{
// Cancel by setting target to None
if (target && target != Py_None) {
Py_DECREF(target);
}
target = Py_None;
Py_INCREF(Py_None);
}
int PyTimerCallable::getRemaining(int current_time) const
{
if (paused) {
// When paused, calculate time remaining from when it was paused
int elapsed_when_paused = pause_start_time - last_ran;
return interval - elapsed_when_paused;
}
int elapsed = current_time - last_ran;
return interval - elapsed;
}
void PyTimerCallable::setCallback(PyObject* new_callback)
{
if (target && target != Py_None) {
Py_DECREF(target);
}
target = Py_XNewRef(new_callback);
}
PyClickCallable::PyClickCallable(PyObject* _target) PyClickCallable::PyClickCallable(PyObject* _target)
: PyCallable(_target) : PyCallable(_target)
{} {}

View File

@ -10,7 +10,7 @@ protected:
~PyCallable(); ~PyCallable();
PyObject* call(PyObject*, PyObject*); PyObject* call(PyObject*, PyObject*);
public: public:
bool isNone() const; bool isNone();
}; };
class PyTimerCallable: public PyCallable class PyTimerCallable: public PyCallable
@ -19,32 +19,11 @@ private:
int interval; int interval;
int last_ran; int last_ran;
void call(int); void call(int);
// Pause/resume support
bool paused;
int pause_start_time;
int total_paused_time;
public: public:
bool hasElapsed(int); bool hasElapsed(int);
bool test(int); bool test(int);
PyTimerCallable(PyObject*, int, int); PyTimerCallable(PyObject*, int, int);
PyTimerCallable(); PyTimerCallable();
// Timer control methods
void pause(int current_time);
void resume(int current_time);
void restart(int current_time);
void cancel();
// Timer state queries
bool isPaused() const { return paused; }
bool isActive() const { return !isNone() && !paused; }
int getInterval() const { return interval; }
void setInterval(int new_interval) { interval = new_interval; }
int getRemaining(int current_time) const;
PyObject* getCallback() { return target; }
void setCallback(PyObject* new_callback);
}; };
class PyClickCallable: public PyCallable class PyClickCallable: public PyCallable

View File

@ -1,9 +1,4 @@
#include "PyColor.h" #include "PyColor.h"
#include "McRFPy_API.h"
#include "PyObjectUtils.h"
#include "PyRAII.h"
#include <string>
#include <cstdio>
PyGetSetDef PyColor::getsetters[] = { PyGetSetDef PyColor::getsetters[] = {
{"r", (getter)PyColor::get_member, (setter)PyColor::set_member, "Red component", (void*)0}, {"r", (getter)PyColor::get_member, (setter)PyColor::set_member, "Red component", (void*)0},
@ -13,28 +8,16 @@ PyGetSetDef PyColor::getsetters[] = {
{NULL} {NULL}
}; };
PyMethodDef PyColor::methods[] = {
{"from_hex", (PyCFunction)PyColor::from_hex, METH_VARARGS | METH_CLASS, "Create Color from hex string (e.g., '#FF0000' or 'FF0000')"},
{"to_hex", (PyCFunction)PyColor::to_hex, METH_NOARGS, "Convert Color to hex string"},
{"lerp", (PyCFunction)PyColor::lerp, METH_VARARGS, "Linearly interpolate between this color and another"},
{NULL}
};
PyColor::PyColor(sf::Color target) PyColor::PyColor(sf::Color target)
:data(target) {} :data(target) {}
PyObject* PyColor::pyObject() PyObject* PyColor::pyObject()
{ {
PyTypeObject* type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Color"); PyObject* obj = PyType_GenericAlloc(&mcrfpydef::PyColorType, 0);
if (!type) return nullptr; Py_INCREF(obj);
PyColorObject* self = (PyColorObject*)obj;
PyColorObject* obj = (PyColorObject*)type->tp_alloc(type, 0); self->data = data;
Py_DECREF(type); return obj;
if (obj) {
obj->data = data;
}
return (PyObject*)obj;
} }
sf::Color PyColor::fromPy(PyObject* obj) sf::Color PyColor::fromPy(PyObject* obj)
@ -142,189 +125,12 @@ PyObject* PyColor::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
PyObject* PyColor::get_member(PyObject* obj, void* closure) PyObject* PyColor::get_member(PyObject* obj, void* closure)
{ {
PyColorObject* self = (PyColorObject*)obj; // TODO
long member = (long)closure; return Py_None;
switch (member) {
case 0: // r
return PyLong_FromLong(self->data.r);
case 1: // g
return PyLong_FromLong(self->data.g);
case 2: // b
return PyLong_FromLong(self->data.b);
case 3: // a
return PyLong_FromLong(self->data.a);
default:
PyErr_SetString(PyExc_AttributeError, "Invalid color member");
return NULL;
}
} }
int PyColor::set_member(PyObject* obj, PyObject* value, void* closure) int PyColor::set_member(PyObject* obj, PyObject* value, void* closure)
{ {
PyColorObject* self = (PyColorObject*)obj; // TODO
long member = (long)closure;
if (!PyLong_Check(value)) {
PyErr_SetString(PyExc_TypeError, "Color values must be integers");
return -1;
}
long val = PyLong_AsLong(value);
if (val < 0 || val > 255) {
PyErr_SetString(PyExc_ValueError, "Color values must be between 0 and 255");
return -1;
}
switch (member) {
case 0: // r
self->data.r = static_cast<sf::Uint8>(val);
break;
case 1: // g
self->data.g = static_cast<sf::Uint8>(val);
break;
case 2: // b
self->data.b = static_cast<sf::Uint8>(val);
break;
case 3: // a
self->data.a = static_cast<sf::Uint8>(val);
break;
default:
PyErr_SetString(PyExc_AttributeError, "Invalid color member");
return -1;
}
return 0; return 0;
} }
PyColorObject* PyColor::from_arg(PyObject* args)
{
// Use RAII for type reference management
PyRAII::PyTypeRef type("Color", McRFPy_API::mcrf_module);
if (!type) {
return NULL;
}
// Check if args is already a Color instance
if (PyObject_IsInstance(args, (PyObject*)type.get())) {
return (PyColorObject*)args;
}
// Create new Color object using RAII
PyRAII::PyObjectRef obj(type->tp_alloc(type.get(), 0), true);
if (!obj) {
return NULL;
}
// Initialize the object
int err = init((PyColorObject*)obj.get(), args, NULL);
if (err) {
// obj will be automatically cleaned up when it goes out of scope
return NULL;
}
// Release ownership and return
return (PyColorObject*)obj.release();
}
// Color helper method implementations
PyObject* PyColor::from_hex(PyObject* cls, PyObject* args)
{
const char* hex_str;
if (!PyArg_ParseTuple(args, "s", &hex_str)) {
return NULL;
}
std::string hex(hex_str);
// Remove # if present
if (hex.length() > 0 && hex[0] == '#') {
hex = hex.substr(1);
}
// Validate hex string
if (hex.length() != 6 && hex.length() != 8) {
PyErr_SetString(PyExc_ValueError, "Hex string must be 6 or 8 characters (RGB or RGBA)");
return NULL;
}
// Parse hex values
try {
unsigned int r = std::stoul(hex.substr(0, 2), nullptr, 16);
unsigned int g = std::stoul(hex.substr(2, 2), nullptr, 16);
unsigned int b = std::stoul(hex.substr(4, 2), nullptr, 16);
unsigned int a = 255;
if (hex.length() == 8) {
a = std::stoul(hex.substr(6, 2), nullptr, 16);
}
// Create new Color object
PyTypeObject* type = (PyTypeObject*)cls;
PyColorObject* color = (PyColorObject*)type->tp_alloc(type, 0);
if (color) {
color->data = sf::Color(r, g, b, a);
}
return (PyObject*)color;
} catch (const std::exception& e) {
PyErr_SetString(PyExc_ValueError, "Invalid hex string");
return NULL;
}
}
PyObject* PyColor::to_hex(PyColorObject* self, PyObject* Py_UNUSED(ignored))
{
char hex[10]; // #RRGGBBAA + null terminator
// Include alpha only if not fully opaque
if (self->data.a < 255) {
snprintf(hex, sizeof(hex), "#%02X%02X%02X%02X",
self->data.r, self->data.g, self->data.b, self->data.a);
} else {
snprintf(hex, sizeof(hex), "#%02X%02X%02X",
self->data.r, self->data.g, self->data.b);
}
return PyUnicode_FromString(hex);
}
PyObject* PyColor::lerp(PyColorObject* self, PyObject* args)
{
PyObject* other_obj;
float t;
if (!PyArg_ParseTuple(args, "Of", &other_obj, &t)) {
return NULL;
}
// Validate other color
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Color");
if (!PyObject_IsInstance(other_obj, (PyObject*)type)) {
Py_DECREF(type);
PyErr_SetString(PyExc_TypeError, "First argument must be a Color");
return NULL;
}
PyColorObject* other = (PyColorObject*)other_obj;
// Clamp t to [0, 1]
if (t < 0.0f) t = 0.0f;
if (t > 1.0f) t = 1.0f;
// Perform linear interpolation
sf::Uint8 r = static_cast<sf::Uint8>(self->data.r + (other->data.r - self->data.r) * t);
sf::Uint8 g = static_cast<sf::Uint8>(self->data.g + (other->data.g - self->data.g) * t);
sf::Uint8 b = static_cast<sf::Uint8>(self->data.b + (other->data.b - self->data.b) * t);
sf::Uint8 a = static_cast<sf::Uint8>(self->data.a + (other->data.a - self->data.a) * t);
// Create new Color object
PyColorObject* result = (PyColorObject*)type->tp_alloc(type, 0);
Py_DECREF(type);
if (result) {
result->data = sf::Color(r, g, b, a);
}
return (PyObject*)result;
}

View File

@ -28,19 +28,11 @@ public:
static PyObject* get_member(PyObject*, void*); static PyObject* get_member(PyObject*, void*);
static int set_member(PyObject*, PyObject*, void*); static int set_member(PyObject*, PyObject*, void*);
// Color helper methods
static PyObject* from_hex(PyObject* cls, PyObject* args);
static PyObject* to_hex(PyColorObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* lerp(PyColorObject* self, PyObject* args);
static PyGetSetDef getsetters[]; static PyGetSetDef getsetters[];
static PyMethodDef methods[];
static PyColorObject* from_arg(PyObject*);
}; };
namespace mcrfpydef { namespace mcrfpydef {
static PyTypeObject PyColorType = { static PyTypeObject PyColorType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Color", .tp_name = "mcrfpy.Color",
.tp_basicsize = sizeof(PyColorObject), .tp_basicsize = sizeof(PyColorObject),
.tp_itemsize = 0, .tp_itemsize = 0,
@ -48,7 +40,6 @@ namespace mcrfpydef {
.tp_hash = PyColor::hash, .tp_hash = PyColor::hash,
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Color Object"), .tp_doc = PyDoc_STR("SFML Color Object"),
.tp_methods = PyColor::methods,
.tp_getset = PyColor::getsetters, .tp_getset = PyColor::getsetters,
.tp_init = (initproc)PyColor::init, .tp_init = (initproc)PyColor::init,
.tp_new = PyColor::pynew, .tp_new = PyColor::pynew,

View File

@ -1,179 +0,0 @@
#include "PyDrawable.h"
#include "McRFPy_API.h"
// Click property getter
static PyObject* PyDrawable_get_click(PyDrawableObject* self, void* closure)
{
if (!self->data->click_callable)
Py_RETURN_NONE;
PyObject* ptr = self->data->click_callable->borrow();
if (ptr && ptr != Py_None)
return ptr;
else
Py_RETURN_NONE;
}
// Click property setter
static int PyDrawable_set_click(PyDrawableObject* self, PyObject* value, void* closure)
{
if (value == Py_None) {
self->data->click_unregister();
} else if (PyCallable_Check(value)) {
self->data->click_register(value);
} else {
PyErr_SetString(PyExc_TypeError, "click must be callable or None");
return -1;
}
return 0;
}
// Z-index property getter
static PyObject* PyDrawable_get_z_index(PyDrawableObject* self, void* closure)
{
return PyLong_FromLong(self->data->z_index);
}
// Z-index property setter
static int PyDrawable_set_z_index(PyDrawableObject* self, PyObject* value, void* closure)
{
if (!PyLong_Check(value)) {
PyErr_SetString(PyExc_TypeError, "z_index must be an integer");
return -1;
}
int val = PyLong_AsLong(value);
self->data->z_index = val;
// Mark scene as needing resort
self->data->notifyZIndexChanged();
return 0;
}
// Visible property getter (new for #87)
static PyObject* PyDrawable_get_visible(PyDrawableObject* self, void* closure)
{
return PyBool_FromLong(self->data->visible);
}
// Visible property setter (new for #87)
static int PyDrawable_set_visible(PyDrawableObject* self, PyObject* value, void* closure)
{
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "visible must be a boolean");
return -1;
}
self->data->visible = (value == Py_True);
return 0;
}
// Opacity property getter (new for #88)
static PyObject* PyDrawable_get_opacity(PyDrawableObject* self, void* closure)
{
return PyFloat_FromDouble(self->data->opacity);
}
// Opacity property setter (new for #88)
static int PyDrawable_set_opacity(PyDrawableObject* self, PyObject* value, void* closure)
{
float val;
if (PyFloat_Check(value)) {
val = PyFloat_AsDouble(value);
} else if (PyLong_Check(value)) {
val = PyLong_AsLong(value);
} else {
PyErr_SetString(PyExc_TypeError, "opacity must be a number");
return -1;
}
// Clamp to valid range
if (val < 0.0f) val = 0.0f;
if (val > 1.0f) val = 1.0f;
self->data->opacity = val;
return 0;
}
// GetSetDef array for properties
static PyGetSetDef PyDrawable_getsetters[] = {
{"click", (getter)PyDrawable_get_click, (setter)PyDrawable_set_click,
"Callable executed when object is clicked", NULL},
{"z_index", (getter)PyDrawable_get_z_index, (setter)PyDrawable_set_z_index,
"Z-order for rendering (lower values rendered first)", NULL},
{"visible", (getter)PyDrawable_get_visible, (setter)PyDrawable_set_visible,
"Whether the object is visible", NULL},
{"opacity", (getter)PyDrawable_get_opacity, (setter)PyDrawable_set_opacity,
"Opacity level (0.0 = transparent, 1.0 = opaque)", NULL},
{NULL} // Sentinel
};
// get_bounds method implementation (#89)
static PyObject* PyDrawable_get_bounds(PyDrawableObject* self, PyObject* Py_UNUSED(args))
{
auto bounds = self->data->get_bounds();
return Py_BuildValue("(ffff)", bounds.left, bounds.top, bounds.width, bounds.height);
}
// move method implementation (#98)
static PyObject* PyDrawable_move(PyDrawableObject* self, PyObject* args)
{
float dx, dy;
if (!PyArg_ParseTuple(args, "ff", &dx, &dy)) {
return NULL;
}
self->data->move(dx, dy);
Py_RETURN_NONE;
}
// resize method implementation (#98)
static PyObject* PyDrawable_resize(PyDrawableObject* self, PyObject* args)
{
float w, h;
if (!PyArg_ParseTuple(args, "ff", &w, &h)) {
return NULL;
}
self->data->resize(w, h);
Py_RETURN_NONE;
}
// Method definitions
static PyMethodDef PyDrawable_methods[] = {
{"get_bounds", (PyCFunction)PyDrawable_get_bounds, METH_NOARGS,
"Get bounding box as (x, y, width, height)"},
{"move", (PyCFunction)PyDrawable_move, METH_VARARGS,
"Move by relative offset (dx, dy)"},
{"resize", (PyCFunction)PyDrawable_resize, METH_VARARGS,
"Resize to new dimensions (width, height)"},
{NULL} // Sentinel
};
// Type initialization
static int PyDrawable_init(PyDrawableObject* self, PyObject* args, PyObject* kwds)
{
PyErr_SetString(PyExc_TypeError, "Drawable is an abstract base class and cannot be instantiated directly");
return -1;
}
namespace mcrfpydef {
PyTypeObject PyDrawableType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Drawable",
.tp_basicsize = sizeof(PyDrawableObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)[](PyObject* self) {
PyDrawableObject* obj = (PyDrawableObject*)self;
obj->data.reset();
Py_TYPE(self)->tp_free(self);
},
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_doc = PyDoc_STR("Base class for all drawable UI elements"),
.tp_methods = PyDrawable_methods,
.tp_getset = PyDrawable_getsetters,
.tp_init = (initproc)PyDrawable_init,
.tp_new = PyType_GenericNew,
};
}

View File

@ -1,15 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "UIDrawable.h"
// Python object structure for UIDrawable base class
typedef struct {
PyObject_HEAD
std::shared_ptr<UIDrawable> data;
} PyDrawableObject;
// Declare the Python type for Drawable base class
namespace mcrfpydef {
extern PyTypeObject PyDrawableType;
}

View File

@ -61,19 +61,3 @@ PyObject* PyFont::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
{ {
return (PyObject*)type->tp_alloc(type, 0); return (PyObject*)type->tp_alloc(type, 0);
} }
PyObject* PyFont::get_family(PyFontObject* self, void* closure)
{
return PyUnicode_FromString(self->data->font.getInfo().family.c_str());
}
PyObject* PyFont::get_source(PyFontObject* self, void* closure)
{
return PyUnicode_FromString(self->data->source.c_str());
}
PyGetSetDef PyFont::getsetters[] = {
{"family", (getter)PyFont::get_family, NULL, "Font family name", NULL},
{"source", (getter)PyFont::get_source, NULL, "Source filename of the font", NULL},
{NULL} // Sentinel
};

View File

@ -21,17 +21,10 @@ public:
static Py_hash_t hash(PyObject*); static Py_hash_t hash(PyObject*);
static int init(PyFontObject*, PyObject*, PyObject*); static int init(PyFontObject*, PyObject*, PyObject*);
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL); static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
// Getters for properties
static PyObject* get_family(PyFontObject* self, void* closure);
static PyObject* get_source(PyFontObject* self, void* closure);
static PyGetSetDef getsetters[];
}; };
namespace mcrfpydef { namespace mcrfpydef {
static PyTypeObject PyFontType = { static PyTypeObject PyFontType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Font", .tp_name = "mcrfpy.Font",
.tp_basicsize = sizeof(PyFontObject), .tp_basicsize = sizeof(PyFontObject),
.tp_itemsize = 0, .tp_itemsize = 0,
@ -39,7 +32,6 @@ namespace mcrfpydef {
//.tp_hash = PyFont::hash, //.tp_hash = PyFont::hash,
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Font Object"), .tp_doc = PyDoc_STR("SFML Font Object"),
.tp_getset = PyFont::getsetters,
//.tp_base = &PyBaseObject_Type, //.tp_base = &PyBaseObject_Type,
.tp_init = (initproc)PyFont::init, .tp_init = (initproc)PyFont::init,
.tp_new = PyType_GenericNew, //PyFont::pynew, .tp_new = PyType_GenericNew, //PyFont::pynew,

View File

@ -1,76 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "McRFPy_API.h"
#include "PyRAII.h"
namespace PyObjectUtils {
// Template for getting Python type object from module
template<typename T>
PyTypeObject* getPythonType(const char* typeName) {
PyTypeObject* type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, typeName);
if (!type) {
PyErr_Format(PyExc_RuntimeError, "Could not find %s type in module", typeName);
}
return type;
}
// Generic function to create a Python object of given type
inline PyObject* createPyObjectGeneric(const char* typeName) {
PyTypeObject* type = getPythonType<void>(typeName);
if (!type) return nullptr;
PyObject* obj = type->tp_alloc(type, 0);
Py_DECREF(type);
return obj;
}
// Helper function to allocate and initialize a Python object with data
template<typename PyObjType, typename DataType>
PyObject* createPyObjectWithData(const char* typeName, DataType data) {
PyTypeObject* type = getPythonType<void>(typeName);
if (!type) return nullptr;
PyObjType* obj = (PyObjType*)type->tp_alloc(type, 0);
Py_DECREF(type);
if (obj) {
obj->data = data;
}
return (PyObject*)obj;
}
// Function to convert UIDrawable to appropriate Python object
// This is moved to UICollection.cpp to avoid circular dependencies
// RAII-based object creation example
inline PyObject* createPyObjectGenericRAII(const char* typeName) {
PyRAII::PyTypeRef type(typeName, McRFPy_API::mcrf_module);
if (!type) {
PyErr_Format(PyExc_RuntimeError, "Could not find %s type in module", typeName);
return nullptr;
}
PyObject* obj = type->tp_alloc(type.get(), 0);
// Return the new reference (caller owns it)
return obj;
}
// Example of using PyObjectRef for safer reference management
template<typename PyObjType, typename DataType>
PyObject* createPyObjectWithDataRAII(const char* typeName, DataType data) {
PyRAII::PyObjectRef obj = PyRAII::createObject<PyObjType>(typeName, McRFPy_API::mcrf_module);
if (!obj) {
PyErr_Format(PyExc_RuntimeError, "Could not create %s object", typeName);
return nullptr;
}
// Access the object through the RAII wrapper
((PyObjType*)obj.get())->data = data;
// Release ownership to return to Python
return obj.release();
}
}

View File

@ -1,164 +0,0 @@
#pragma once
#include "Python.h"
#include "PyVector.h"
#include "McRFPy_API.h"
// Helper class for standardized position argument parsing across UI classes
class PyPositionHelper {
public:
// Template structure for parsing results
struct ParseResult {
float x = 0.0f;
float y = 0.0f;
bool has_position = false;
};
struct ParseResultInt {
int x = 0;
int y = 0;
bool has_position = false;
};
// Parse position from multiple formats for UI class constructors
// Supports: (x, y), x=x, y=y, ((x,y)), (pos=(x,y)), (Vector), pos=Vector
static ParseResult parse_position(PyObject* args, PyObject* kwds,
int* arg_index = nullptr)
{
ParseResult result;
float x = 0.0f, y = 0.0f;
PyObject* pos_obj = nullptr;
int start_index = arg_index ? *arg_index : 0;
// Check for positional tuple (x, y) first
if (!kwds && PyTuple_Size(args) > start_index + 1) {
PyObject* first = PyTuple_GetItem(args, start_index);
PyObject* second = PyTuple_GetItem(args, start_index + 1);
// Check if both are numbers
if ((PyFloat_Check(first) || PyLong_Check(first)) &&
(PyFloat_Check(second) || PyLong_Check(second))) {
x = PyFloat_Check(first) ? PyFloat_AsDouble(first) : PyLong_AsLong(first);
y = PyFloat_Check(second) ? PyFloat_AsDouble(second) : PyLong_AsLong(second);
result.x = x;
result.y = y;
result.has_position = true;
if (arg_index) *arg_index += 2;
return result;
}
}
// Check for single positional argument that might be tuple or Vector
if (!kwds && PyTuple_Size(args) > start_index) {
PyObject* first = PyTuple_GetItem(args, start_index);
PyVectorObject* vec = PyVector::from_arg(first);
if (vec) {
result.x = vec->data.x;
result.y = vec->data.y;
result.has_position = true;
if (arg_index) *arg_index += 1;
return result;
}
}
// Try keyword arguments
if (kwds) {
PyObject* x_obj = PyDict_GetItemString(kwds, "x");
PyObject* y_obj = PyDict_GetItemString(kwds, "y");
PyObject* pos_kw = PyDict_GetItemString(kwds, "pos");
if (x_obj && y_obj) {
if ((PyFloat_Check(x_obj) || PyLong_Check(x_obj)) &&
(PyFloat_Check(y_obj) || PyLong_Check(y_obj))) {
result.x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : PyLong_AsLong(x_obj);
result.y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : PyLong_AsLong(y_obj);
result.has_position = true;
return result;
}
}
if (pos_kw) {
PyVectorObject* vec = PyVector::from_arg(pos_kw);
if (vec) {
result.x = vec->data.x;
result.y = vec->data.y;
result.has_position = true;
return result;
}
}
}
return result;
}
// Parse integer position for Grid.at() and similar
static ParseResultInt parse_position_int(PyObject* args, PyObject* kwds)
{
ParseResultInt result;
// Check for positional tuple (x, y) first
if (!kwds && PyTuple_Size(args) >= 2) {
PyObject* first = PyTuple_GetItem(args, 0);
PyObject* second = PyTuple_GetItem(args, 1);
if (PyLong_Check(first) && PyLong_Check(second)) {
result.x = PyLong_AsLong(first);
result.y = PyLong_AsLong(second);
result.has_position = true;
return result;
}
}
// Check for single tuple argument
if (!kwds && PyTuple_Size(args) == 1) {
PyObject* first = PyTuple_GetItem(args, 0);
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
PyObject* x_obj = PyTuple_GetItem(first, 0);
PyObject* y_obj = PyTuple_GetItem(first, 1);
if (PyLong_Check(x_obj) && PyLong_Check(y_obj)) {
result.x = PyLong_AsLong(x_obj);
result.y = PyLong_AsLong(y_obj);
result.has_position = true;
return result;
}
}
}
// Try keyword arguments
if (kwds) {
PyObject* x_obj = PyDict_GetItemString(kwds, "x");
PyObject* y_obj = PyDict_GetItemString(kwds, "y");
PyObject* pos_obj = PyDict_GetItemString(kwds, "pos");
if (x_obj && y_obj && PyLong_Check(x_obj) && PyLong_Check(y_obj)) {
result.x = PyLong_AsLong(x_obj);
result.y = PyLong_AsLong(y_obj);
result.has_position = true;
return result;
}
if (pos_obj && PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if (PyLong_Check(x_val) && PyLong_Check(y_val)) {
result.x = PyLong_AsLong(x_val);
result.y = PyLong_AsLong(y_val);
result.has_position = true;
return result;
}
}
}
return result;
}
// Error message helper
static void set_position_error() {
PyErr_SetString(PyExc_TypeError,
"Position can be specified as: (x, y), x=x, y=y, ((x,y)), pos=(x,y), or pos=Vector");
}
static void set_position_int_error() {
PyErr_SetString(PyExc_TypeError,
"Position must be specified as: (x, y), x=x, y=y, ((x,y)), or pos=(x,y) with integer values");
}
};

View File

@ -1,138 +0,0 @@
#pragma once
#include "Python.h"
#include <utility>
namespace PyRAII {
// RAII wrapper for PyObject* that automatically manages reference counting
class PyObjectRef {
private:
PyObject* ptr;
public:
// Constructors
PyObjectRef() : ptr(nullptr) {}
explicit PyObjectRef(PyObject* p, bool steal_ref = false) : ptr(p) {
if (ptr && !steal_ref) {
Py_INCREF(ptr);
}
}
// Copy constructor
PyObjectRef(const PyObjectRef& other) : ptr(other.ptr) {
if (ptr) {
Py_INCREF(ptr);
}
}
// Move constructor
PyObjectRef(PyObjectRef&& other) noexcept : ptr(other.ptr) {
other.ptr = nullptr;
}
// Destructor
~PyObjectRef() {
Py_XDECREF(ptr);
}
// Copy assignment
PyObjectRef& operator=(const PyObjectRef& other) {
if (this != &other) {
Py_XDECREF(ptr);
ptr = other.ptr;
if (ptr) {
Py_INCREF(ptr);
}
}
return *this;
}
// Move assignment
PyObjectRef& operator=(PyObjectRef&& other) noexcept {
if (this != &other) {
Py_XDECREF(ptr);
ptr = other.ptr;
other.ptr = nullptr;
}
return *this;
}
// Access operators
PyObject* get() const { return ptr; }
PyObject* operator->() const { return ptr; }
PyObject& operator*() const { return *ptr; }
operator bool() const { return ptr != nullptr; }
// Release ownership (for returning to Python)
PyObject* release() {
PyObject* temp = ptr;
ptr = nullptr;
return temp;
}
// Reset with new pointer
void reset(PyObject* p = nullptr, bool steal_ref = false) {
if (p != ptr) {
Py_XDECREF(ptr);
ptr = p;
if (ptr && !steal_ref) {
Py_INCREF(ptr);
}
}
}
};
// Helper class for managing PyTypeObject* references from module lookups
class PyTypeRef {
private:
PyTypeObject* type;
public:
PyTypeRef() : type(nullptr) {}
explicit PyTypeRef(const char* typeName, PyObject* module) {
type = (PyTypeObject*)PyObject_GetAttrString(module, typeName);
// GetAttrString returns a new reference, so we own it
}
~PyTypeRef() {
Py_XDECREF((PyObject*)type);
}
// Delete copy operations to prevent accidental reference issues
PyTypeRef(const PyTypeRef&) = delete;
PyTypeRef& operator=(const PyTypeRef&) = delete;
// Allow move operations
PyTypeRef(PyTypeRef&& other) noexcept : type(other.type) {
other.type = nullptr;
}
PyTypeRef& operator=(PyTypeRef&& other) noexcept {
if (this != &other) {
Py_XDECREF((PyObject*)type);
type = other.type;
other.type = nullptr;
}
return *this;
}
PyTypeObject* get() const { return type; }
PyTypeObject* operator->() const { return type; }
operator bool() const { return type != nullptr; }
};
// Convenience function to create a new object with RAII
template<typename PyObjType>
PyObjectRef createObject(const char* typeName, PyObject* module) {
PyTypeRef type(typeName, module);
if (!type) {
return PyObjectRef();
}
PyObject* obj = type->tp_alloc(type.get(), 0);
// tp_alloc returns a new reference, so we steal it
return PyObjectRef(obj, true);
}
}

View File

@ -2,7 +2,6 @@
#include "ActionCode.h" #include "ActionCode.h"
#include "Resources.h" #include "Resources.h"
#include "PyCallable.h" #include "PyCallable.h"
#include <algorithm>
PyScene::PyScene(GameEngine* g) : Scene(g) PyScene::PyScene(GameEngine* g) : Scene(g)
{ {
@ -12,8 +11,7 @@ PyScene::PyScene(GameEngine* g) : Scene(g)
registerAction(ActionCode::MOUSEWHEEL + ActionCode::WHEEL_DEL, "wheel_up"); registerAction(ActionCode::MOUSEWHEEL + ActionCode::WHEEL_DEL, "wheel_up");
registerAction(ActionCode::MOUSEWHEEL + ActionCode::WHEEL_NEG + ActionCode::WHEEL_DEL, "wheel_down"); registerAction(ActionCode::MOUSEWHEEL + ActionCode::WHEEL_NEG + ActionCode::WHEEL_DEL, "wheel_down");
// console (` / ~ key) - don't hard code. registerAction(ActionCode::KEY + sf::Keyboard::Grave, "debug_menu");
//registerAction(ActionCode::KEY + sf::Keyboard::Grave, "debug_menu");
} }
void PyScene::update() void PyScene::update()
@ -22,34 +20,38 @@ void PyScene::update()
void PyScene::do_mouse_input(std::string button, std::string type) void PyScene::do_mouse_input(std::string button, std::string type)
{ {
// In headless mode, mouse input is not available
if (game->isHeadless()) {
return;
}
auto unscaledmousepos = sf::Mouse::getPosition(game->getWindow()); auto unscaledmousepos = sf::Mouse::getPosition(game->getWindow());
// Convert window coordinates to game coordinates using the viewport auto mousepos = game->getWindow().mapPixelToCoords(unscaledmousepos);
auto mousepos = game->windowToGameCoords(sf::Vector2f(unscaledmousepos)); UIDrawable* target;
for (auto d: *ui_elements)
// Create a sorted copy by z-index (highest first) {
std::vector<std::shared_ptr<UIDrawable>> sorted_elements(*ui_elements); target = d->click_at(sf::Vector2f(mousepos));
std::sort(sorted_elements.begin(), sorted_elements.end(), if (target)
[](const auto& a, const auto& b) { return a->z_index > b->z_index; }); {
/*
// Check elements in z-order (top to bottom) PyObject* args = Py_BuildValue("(iiss)", (int)mousepos.x, (int)mousepos.y, button.c_str(), type.c_str());
for (const auto& element : sorted_elements) { PyObject* retval = PyObject_Call(target->click_callable, args, NULL);
if (!element->visible) continue; if (!retval)
{
if (auto target = element->click_at(sf::Vector2f(mousepos))) { std::cout << "click_callable has raised an exception. It's going to STDERR and being dropped:" << std::endl;
PyErr_Print();
PyErr_Clear();
} else if (retval != Py_None)
{
std::cout << "click_callable returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
}
*/
target->click_callable->call(mousepos, button, type); target->click_callable->call(mousepos, button, type);
return; // Stop after first handler
} }
} }
} }
void PyScene::doAction(std::string name, std::string type) void PyScene::doAction(std::string name, std::string type)
{ {
if (name.compare("left") == 0 || name.compare("rclick") == 0 || name.compare("wheel_up") == 0 || name.compare("wheel_down") == 0) { if (ACTIONPY) {
McRFPy_API::doAction(name.substr(0, name.size() - 3));
}
else if (name.compare("left") == 0 || name.compare("rclick") == 0 || name.compare("wheel_up") == 0 || name.compare("wheel_down") == 0) {
do_mouse_input(name, type); do_mouse_input(name, type);
} }
else if ACTIONONCE("debug_menu") { else if ACTIONONCE("debug_menu") {
@ -57,33 +59,16 @@ void PyScene::doAction(std::string name, std::string type)
} }
} }
void PyScene::render() void PyScene::sRender()
{ {
game->getRenderTarget().clear(); game->getWindow().clear();
// Only sort if z_index values have changed auto vec = *ui_elements;
if (ui_elements_need_sort) { for (auto e: vec)
std::sort(ui_elements->begin(), ui_elements->end(),
[](const std::shared_ptr<UIDrawable>& a, const std::shared_ptr<UIDrawable>& b) {
return a->z_index < b->z_index;
});
ui_elements_need_sort = false;
}
// Render in sorted order (no need to copy anymore)
for (auto e: *ui_elements)
{ {
if (e) { if (e)
// Track metrics
game->metrics.uiElements++;
if (e->visible) {
game->metrics.visibleElements++;
// Count this as a draw call (each visible element = 1+ draw calls)
game->metrics.drawCalls++;
}
e->render(); e->render();
} }
}
// Display is handled by GameEngine game->getWindow().display();
} }

View File

@ -11,10 +11,7 @@ public:
PyScene(GameEngine*); PyScene(GameEngine*);
void update() override final; void update() override final;
void doAction(std::string, std::string) override final; void doAction(std::string, std::string) override final;
void render() override final; void sRender() override final;
void do_mouse_input(std::string, std::string); void do_mouse_input(std::string, std::string);
// Dirty flag for z_index sorting optimization
bool ui_elements_need_sort = true;
}; };

View File

@ -1,268 +0,0 @@
#include "PySceneObject.h"
#include "PyScene.h"
#include "GameEngine.h"
#include "McRFPy_API.h"
#include <iostream>
// Static map to store Python scene objects by name
static std::map<std::string, PySceneObject*> python_scenes;
PyObject* PySceneClass::__new__(PyTypeObject* type, PyObject* args, PyObject* kwds)
{
PySceneObject* self = (PySceneObject*)type->tp_alloc(type, 0);
if (self) {
self->initialized = false;
// Don't create C++ scene yet - wait for __init__
}
return (PyObject*)self;
}
int PySceneClass::__init__(PySceneObject* self, PyObject* args, PyObject* kwds)
{
static const char* keywords[] = {"name", nullptr};
const char* name = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "s", const_cast<char**>(keywords), &name)) {
return -1;
}
// Check if scene with this name already exists
if (python_scenes.count(name) > 0) {
PyErr_Format(PyExc_ValueError, "Scene with name '%s' already exists", name);
return -1;
}
self->name = name;
// Create the C++ PyScene
McRFPy_API::game->createScene(name);
// Get reference to the created scene
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
// Store this Python object in our registry
python_scenes[name] = self;
Py_INCREF(self); // Keep a reference
// Create a Python function that routes to on_keypress
// We'll register this after the object is fully initialized
self->initialized = true;
return 0;
}
void PySceneClass::__dealloc(PyObject* self_obj)
{
PySceneObject* self = (PySceneObject*)self_obj;
// Remove from registry
if (python_scenes.count(self->name) > 0 && python_scenes[self->name] == self) {
python_scenes.erase(self->name);
}
// Call Python object destructor
Py_TYPE(self)->tp_free(self);
}
PyObject* PySceneClass::__repr__(PySceneObject* self)
{
return PyUnicode_FromFormat("<Scene '%s'>", self->name.c_str());
}
PyObject* PySceneClass::activate(PySceneObject* self, PyObject* args)
{
// Call the static method from McRFPy_API
PyObject* py_args = Py_BuildValue("(s)", self->name.c_str());
PyObject* result = McRFPy_API::_setScene(NULL, py_args);
Py_DECREF(py_args);
return result;
}
PyObject* PySceneClass::get_ui(PySceneObject* self, PyObject* args)
{
// Call the static method from McRFPy_API
PyObject* py_args = Py_BuildValue("(s)", self->name.c_str());
PyObject* result = McRFPy_API::_sceneUI(NULL, py_args);
Py_DECREF(py_args);
return result;
}
PyObject* PySceneClass::register_keyboard(PySceneObject* self, PyObject* args)
{
PyObject* callable;
if (!PyArg_ParseTuple(args, "O", &callable)) {
return NULL;
}
if (!PyCallable_Check(callable)) {
PyErr_SetString(PyExc_TypeError, "Argument must be callable");
return NULL;
}
// Store the callable
Py_INCREF(callable);
// Get the current scene and set its key_callable
GameEngine* game = McRFPy_API::game;
if (game) {
// We need to be on the right scene first
std::string old_scene = game->scene;
game->scene = self->name;
game->currentScene()->key_callable = std::make_unique<PyKeyCallable>(callable);
game->scene = old_scene;
}
Py_DECREF(callable);
Py_RETURN_NONE;
}
PyObject* PySceneClass::get_name(PySceneObject* self, void* closure)
{
return PyUnicode_FromString(self->name.c_str());
}
PyObject* PySceneClass::get_active(PySceneObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
Py_RETURN_FALSE;
}
return PyBool_FromLong(game->scene == self->name);
}
// Lifecycle callbacks
void PySceneClass::call_on_enter(PySceneObject* self)
{
PyObject* method = PyObject_GetAttrString((PyObject*)self, "on_enter");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallNoArgs(method);
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
}
void PySceneClass::call_on_exit(PySceneObject* self)
{
PyObject* method = PyObject_GetAttrString((PyObject*)self, "on_exit");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallNoArgs(method);
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
}
void PySceneClass::call_on_keypress(PySceneObject* self, std::string key, std::string action)
{
PyGILState_STATE gstate = PyGILState_Ensure();
PyObject* method = PyObject_GetAttrString((PyObject*)self, "on_keypress");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallFunction(method, "ss", key.c_str(), action.c_str());
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
PyGILState_Release(gstate);
}
void PySceneClass::call_update(PySceneObject* self, float dt)
{
PyObject* method = PyObject_GetAttrString((PyObject*)self, "update");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallFunction(method, "f", dt);
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
}
void PySceneClass::call_on_resize(PySceneObject* self, int width, int height)
{
PyObject* method = PyObject_GetAttrString((PyObject*)self, "on_resize");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallFunction(method, "ii", width, height);
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
}
// Properties
PyGetSetDef PySceneClass::getsetters[] = {
{"name", (getter)get_name, NULL, "Scene name", NULL},
{"active", (getter)get_active, NULL, "Whether this scene is currently active", NULL},
{NULL}
};
// Methods
PyMethodDef PySceneClass::methods[] = {
{"activate", (PyCFunction)activate, METH_NOARGS,
"Make this the active scene"},
{"get_ui", (PyCFunction)get_ui, METH_NOARGS,
"Get the UI element collection for this scene"},
{"register_keyboard", (PyCFunction)register_keyboard, METH_VARARGS,
"Register a keyboard handler function (alternative to overriding on_keypress)"},
{NULL}
};
// Helper function to trigger lifecycle events
void McRFPy_API::triggerSceneChange(const std::string& from_scene, const std::string& to_scene)
{
// Call on_exit for the old scene
if (!from_scene.empty() && python_scenes.count(from_scene) > 0) {
PySceneClass::call_on_exit(python_scenes[from_scene]);
}
// Call on_enter for the new scene
if (!to_scene.empty() && python_scenes.count(to_scene) > 0) {
PySceneClass::call_on_enter(python_scenes[to_scene]);
}
}
// Helper function to update Python scenes
void McRFPy_API::updatePythonScenes(float dt)
{
GameEngine* game = McRFPy_API::game;
if (!game) return;
// Only update the active scene
if (python_scenes.count(game->scene) > 0) {
PySceneClass::call_update(python_scenes[game->scene], dt);
}
}
// Helper function to trigger resize events on Python scenes
void McRFPy_API::triggerResize(int width, int height)
{
GameEngine* game = McRFPy_API::game;
if (!game) return;
// Only notify the active scene
if (python_scenes.count(game->scene) > 0) {
PySceneClass::call_on_resize(python_scenes[game->scene], width, height);
}
}

View File

@ -1,63 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <string>
#include <memory>
// Forward declarations
class PyScene;
// Python object structure for Scene
typedef struct {
PyObject_HEAD
std::string name;
std::shared_ptr<PyScene> scene; // Reference to the C++ scene
bool initialized;
} PySceneObject;
// C++ interface for Python Scene class
class PySceneClass
{
public:
// Type methods
static PyObject* __new__(PyTypeObject* type, PyObject* args, PyObject* kwds);
static int __init__(PySceneObject* self, PyObject* args, PyObject* kwds);
static void __dealloc(PyObject* self);
static PyObject* __repr__(PySceneObject* self);
// Scene methods
static PyObject* activate(PySceneObject* self, PyObject* args);
static PyObject* get_ui(PySceneObject* self, PyObject* args);
static PyObject* register_keyboard(PySceneObject* self, PyObject* args);
// Properties
static PyObject* get_name(PySceneObject* self, void* closure);
static PyObject* get_active(PySceneObject* self, void* closure);
// Lifecycle callbacks (called from C++)
static void call_on_enter(PySceneObject* self);
static void call_on_exit(PySceneObject* self);
static void call_on_keypress(PySceneObject* self, std::string key, std::string action);
static void call_update(PySceneObject* self, float dt);
static void call_on_resize(PySceneObject* self, int width, int height);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
static PyTypeObject PySceneType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Scene",
.tp_basicsize = sizeof(PySceneObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)PySceneClass::__dealloc,
.tp_repr = (reprfunc)PySceneClass::__repr__,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, // Allow subclassing
.tp_doc = PyDoc_STR("Base class for object-oriented scenes"),
.tp_methods = nullptr, // Set in McRFPy_API.cpp
.tp_getset = nullptr, // Set in McRFPy_API.cpp
.tp_init = (initproc)PySceneClass::__init__,
.tp_new = PySceneClass::__new__,
};
}

View File

@ -2,15 +2,10 @@
#include "McRFPy_API.h" #include "McRFPy_API.h"
PyTexture::PyTexture(std::string filename, int sprite_w, int sprite_h) PyTexture::PyTexture(std::string filename, int sprite_w, int sprite_h)
: source(filename), sprite_width(sprite_w), sprite_height(sprite_h), sheet_width(0), sheet_height(0) : source(filename), sprite_width(sprite_w), sprite_height(sprite_h)
{ {
texture = sf::Texture(); texture = sf::Texture();
if (!texture.loadFromFile(source)) { texture.loadFromFile(source);
// Failed to load texture - leave sheet dimensions as 0
// This will be checked in init()
return;
}
texture.setSmooth(false); // Disable smoothing for pixel art
auto size = texture.getSize(); auto size = texture.getSize();
sheet_width = (size.x / sprite_width); sheet_width = (size.x / sprite_width);
sheet_height = (size.y / sprite_height); sheet_height = (size.y / sprite_height);
@ -23,12 +18,6 @@ PyTexture::PyTexture(std::string filename, int sprite_w, int sprite_h)
sf::Sprite PyTexture::sprite(int index, sf::Vector2f pos, sf::Vector2f s) sf::Sprite PyTexture::sprite(int index, sf::Vector2f pos, sf::Vector2f s)
{ {
// Protect against division by zero if texture failed to load
if (sheet_width == 0 || sheet_height == 0) {
// Return an empty sprite
return sf::Sprite();
}
int tx = index % sheet_width, ty = index / sheet_width; int tx = index % sheet_width, ty = index / sheet_width;
auto ir = sf::IntRect(tx * sprite_width, ty * sprite_height, sprite_width, sprite_height); auto ir = sf::IntRect(tx * sprite_width, ty * sprite_height, sprite_width, sprite_height);
auto sprite = sf::Sprite(texture, ir); auto sprite = sf::Sprite(texture, ir);
@ -39,6 +28,7 @@ sf::Sprite PyTexture::sprite(int index, sf::Vector2f pos, sf::Vector2f s)
PyObject* PyTexture::pyObject() PyObject* PyTexture::pyObject()
{ {
std::cout << "Find type" << std::endl;
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture"); auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture");
PyObject* obj = PyTexture::pynew(type, Py_None, Py_None); PyObject* obj = PyTexture::pynew(type, Py_None, Py_None);
@ -82,16 +72,7 @@ int PyTexture::init(PyTextureObject* self, PyObject* args, PyObject* kwds)
int sprite_width, sprite_height; int sprite_width, sprite_height;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "sii", const_cast<char**>(keywords), &filename, &sprite_width, &sprite_height)) if (!PyArg_ParseTupleAndKeywords(args, kwds, "sii", const_cast<char**>(keywords), &filename, &sprite_width, &sprite_height))
return -1; return -1;
// Create the texture object
self->data = std::make_shared<PyTexture>(filename, sprite_width, sprite_height); self->data = std::make_shared<PyTexture>(filename, sprite_width, sprite_height);
// Check if the texture failed to load (sheet dimensions will be 0)
if (self->data->sheet_width == 0 || self->data->sheet_height == 0) {
PyErr_Format(PyExc_IOError, "Failed to load texture from file: %s", filename);
return -1;
}
return 0; return 0;
} }
@ -99,43 +80,3 @@ PyObject* PyTexture::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
{ {
return (PyObject*)type->tp_alloc(type, 0); return (PyObject*)type->tp_alloc(type, 0);
} }
PyObject* PyTexture::get_sprite_width(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->sprite_width);
}
PyObject* PyTexture::get_sprite_height(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->sprite_height);
}
PyObject* PyTexture::get_sheet_width(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->sheet_width);
}
PyObject* PyTexture::get_sheet_height(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->sheet_height);
}
PyObject* PyTexture::get_sprite_count(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->getSpriteCount());
}
PyObject* PyTexture::get_source(PyTextureObject* self, void* closure)
{
return PyUnicode_FromString(self->data->source.c_str());
}
PyGetSetDef PyTexture::getsetters[] = {
{"sprite_width", (getter)PyTexture::get_sprite_width, NULL, "Width of each sprite in pixels", NULL},
{"sprite_height", (getter)PyTexture::get_sprite_height, NULL, "Height of each sprite in pixels", NULL},
{"sheet_width", (getter)PyTexture::get_sheet_width, NULL, "Number of sprite columns in the texture", NULL},
{"sheet_height", (getter)PyTexture::get_sheet_height, NULL, "Number of sprite rows in the texture", NULL},
{"sprite_count", (getter)PyTexture::get_sprite_count, NULL, "Total number of sprites in the texture", NULL},
{"source", (getter)PyTexture::get_source, NULL, "Source filename of the texture", NULL},
{NULL} // Sentinel
};

View File

@ -19,28 +19,16 @@ public:
int sprite_width, sprite_height; // just use them read only, OK? int sprite_width, sprite_height; // just use them read only, OK?
PyTexture(std::string filename, int sprite_w, int sprite_h); PyTexture(std::string filename, int sprite_w, int sprite_h);
sf::Sprite sprite(int index, sf::Vector2f pos = sf::Vector2f(0, 0), sf::Vector2f s = sf::Vector2f(1.0, 1.0)); sf::Sprite sprite(int index, sf::Vector2f pos = sf::Vector2f(0, 0), sf::Vector2f s = sf::Vector2f(1.0, 1.0));
int getSpriteCount() const { return sheet_width * sheet_height; }
PyObject* pyObject(); PyObject* pyObject();
static PyObject* repr(PyObject*); static PyObject* repr(PyObject*);
static Py_hash_t hash(PyObject*); static Py_hash_t hash(PyObject*);
static int init(PyTextureObject*, PyObject*, PyObject*); static int init(PyTextureObject*, PyObject*, PyObject*);
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL); static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
// Getters for properties
static PyObject* get_sprite_width(PyTextureObject* self, void* closure);
static PyObject* get_sprite_height(PyTextureObject* self, void* closure);
static PyObject* get_sheet_width(PyTextureObject* self, void* closure);
static PyObject* get_sheet_height(PyTextureObject* self, void* closure);
static PyObject* get_sprite_count(PyTextureObject* self, void* closure);
static PyObject* get_source(PyTextureObject* self, void* closure);
static PyGetSetDef getsetters[];
}; };
namespace mcrfpydef { namespace mcrfpydef {
static PyTypeObject PyTextureType = { static PyTypeObject PyTextureType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Texture", .tp_name = "mcrfpy.Texture",
.tp_basicsize = sizeof(PyTextureObject), .tp_basicsize = sizeof(PyTextureObject),
.tp_itemsize = 0, .tp_itemsize = 0,
@ -48,7 +36,6 @@ namespace mcrfpydef {
.tp_hash = PyTexture::hash, .tp_hash = PyTexture::hash,
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Texture Object"), .tp_doc = PyDoc_STR("SFML Texture Object"),
.tp_getset = PyTexture::getsetters,
//.tp_base = &PyBaseObject_Type, //.tp_base = &PyBaseObject_Type,
.tp_init = (initproc)PyTexture::init, .tp_init = (initproc)PyTexture::init,
.tp_new = PyType_GenericNew, //PyTexture::pynew, .tp_new = PyType_GenericNew, //PyTexture::pynew,

View File

@ -1,271 +0,0 @@
#include "PyTimer.h"
#include "PyCallable.h"
#include "GameEngine.h"
#include "Resources.h"
#include <sstream>
PyObject* PyTimer::repr(PyObject* self) {
PyTimerObject* timer = (PyTimerObject*)self;
std::ostringstream oss;
oss << "<Timer name='" << timer->name << "' ";
if (timer->data) {
oss << "interval=" << timer->data->getInterval() << "ms ";
oss << (timer->data->isPaused() ? "paused" : "active");
} else {
oss << "uninitialized";
}
oss << ">";
return PyUnicode_FromString(oss.str().c_str());
}
PyObject* PyTimer::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds) {
PyTimerObject* self = (PyTimerObject*)type->tp_alloc(type, 0);
if (self) {
new(&self->name) std::string(); // Placement new for std::string
self->data = nullptr;
}
return (PyObject*)self;
}
int PyTimer::init(PyTimerObject* self, PyObject* args, PyObject* kwds) {
static const char* kwlist[] = {"name", "callback", "interval", NULL};
const char* name = nullptr;
PyObject* callback = nullptr;
int interval = 0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "sOi", const_cast<char**>(kwlist),
&name, &callback, &interval)) {
return -1;
}
if (!PyCallable_Check(callback)) {
PyErr_SetString(PyExc_TypeError, "callback must be callable");
return -1;
}
if (interval <= 0) {
PyErr_SetString(PyExc_ValueError, "interval must be positive");
return -1;
}
self->name = name;
// Get current time from game engine
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
// Create the timer callable
self->data = std::make_shared<PyTimerCallable>(callback, interval, current_time);
// Register with game engine
if (Resources::game) {
Resources::game->timers[self->name] = self->data;
}
return 0;
}
void PyTimer::dealloc(PyTimerObject* self) {
// Remove from game engine if still registered
if (Resources::game && !self->name.empty()) {
auto it = Resources::game->timers.find(self->name);
if (it != Resources::game->timers.end() && it->second == self->data) {
Resources::game->timers.erase(it);
}
}
// Explicitly destroy std::string
self->name.~basic_string();
// Clear shared_ptr
self->data.reset();
Py_TYPE(self)->tp_free((PyObject*)self);
}
// Timer control methods
PyObject* PyTimer::pause(PyTimerObject* self, PyObject* Py_UNUSED(ignored)) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
self->data->pause(current_time);
Py_RETURN_NONE;
}
PyObject* PyTimer::resume(PyTimerObject* self, PyObject* Py_UNUSED(ignored)) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
self->data->resume(current_time);
Py_RETURN_NONE;
}
PyObject* PyTimer::cancel(PyTimerObject* self, PyObject* Py_UNUSED(ignored)) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
// Remove from game engine
if (Resources::game && !self->name.empty()) {
auto it = Resources::game->timers.find(self->name);
if (it != Resources::game->timers.end() && it->second == self->data) {
Resources::game->timers.erase(it);
}
}
self->data->cancel();
self->data.reset();
Py_RETURN_NONE;
}
PyObject* PyTimer::restart(PyTimerObject* self, PyObject* Py_UNUSED(ignored)) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
self->data->restart(current_time);
Py_RETURN_NONE;
}
// Property getters/setters
PyObject* PyTimer::get_interval(PyTimerObject* self, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
return PyLong_FromLong(self->data->getInterval());
}
int PyTimer::set_interval(PyTimerObject* self, PyObject* value, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return -1;
}
if (!PyLong_Check(value)) {
PyErr_SetString(PyExc_TypeError, "interval must be an integer");
return -1;
}
long interval = PyLong_AsLong(value);
if (interval <= 0) {
PyErr_SetString(PyExc_ValueError, "interval must be positive");
return -1;
}
self->data->setInterval(interval);
return 0;
}
PyObject* PyTimer::get_remaining(PyTimerObject* self, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
return PyLong_FromLong(self->data->getRemaining(current_time));
}
PyObject* PyTimer::get_paused(PyTimerObject* self, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
return PyBool_FromLong(self->data->isPaused());
}
PyObject* PyTimer::get_active(PyTimerObject* self, void* closure) {
if (!self->data) {
return Py_False;
}
return PyBool_FromLong(self->data->isActive());
}
PyObject* PyTimer::get_callback(PyTimerObject* self, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
PyObject* callback = self->data->getCallback();
if (!callback) {
Py_RETURN_NONE;
}
Py_INCREF(callback);
return callback;
}
int PyTimer::set_callback(PyTimerObject* self, PyObject* value, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return -1;
}
if (!PyCallable_Check(value)) {
PyErr_SetString(PyExc_TypeError, "callback must be callable");
return -1;
}
self->data->setCallback(value);
return 0;
}
PyGetSetDef PyTimer::getsetters[] = {
{"interval", (getter)PyTimer::get_interval, (setter)PyTimer::set_interval,
"Timer interval in milliseconds", NULL},
{"remaining", (getter)PyTimer::get_remaining, NULL,
"Time remaining until next trigger in milliseconds", NULL},
{"paused", (getter)PyTimer::get_paused, NULL,
"Whether the timer is paused", NULL},
{"active", (getter)PyTimer::get_active, NULL,
"Whether the timer is active and not paused", NULL},
{"callback", (getter)PyTimer::get_callback, (setter)PyTimer::set_callback,
"The callback function to be called", NULL},
{NULL}
};
PyMethodDef PyTimer::methods[] = {
{"pause", (PyCFunction)PyTimer::pause, METH_NOARGS,
"Pause the timer"},
{"resume", (PyCFunction)PyTimer::resume, METH_NOARGS,
"Resume a paused timer"},
{"cancel", (PyCFunction)PyTimer::cancel, METH_NOARGS,
"Cancel the timer and remove it from the system"},
{"restart", (PyCFunction)PyTimer::restart, METH_NOARGS,
"Restart the timer from the current time"},
{NULL}
};

View File

@ -1,58 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <memory>
#include <string>
class PyTimerCallable;
typedef struct {
PyObject_HEAD
std::shared_ptr<PyTimerCallable> data;
std::string name;
} PyTimerObject;
class PyTimer
{
public:
// Python type methods
static PyObject* repr(PyObject* self);
static int init(PyTimerObject* self, PyObject* args, PyObject* kwds);
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
static void dealloc(PyTimerObject* self);
// Timer control methods
static PyObject* pause(PyTimerObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* resume(PyTimerObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* cancel(PyTimerObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* restart(PyTimerObject* self, PyObject* Py_UNUSED(ignored));
// Timer property getters
static PyObject* get_interval(PyTimerObject* self, void* closure);
static int set_interval(PyTimerObject* self, PyObject* value, void* closure);
static PyObject* get_remaining(PyTimerObject* self, void* closure);
static PyObject* get_paused(PyTimerObject* self, void* closure);
static PyObject* get_active(PyTimerObject* self, void* closure);
static PyObject* get_callback(PyTimerObject* self, void* closure);
static int set_callback(PyTimerObject* self, PyObject* value, void* closure);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
static PyTypeObject PyTimerType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Timer",
.tp_basicsize = sizeof(PyTimerObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)PyTimer::dealloc,
.tp_repr = PyTimer::repr,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Timer object for scheduled callbacks"),
.tp_methods = PyTimer::methods,
.tp_getset = PyTimer::getsetters,
.tp_init = (initproc)PyTimer::init,
.tp_new = PyTimer::pynew,
};
}

View File

@ -1,6 +1,4 @@
#include "PyVector.h" #include "PyVector.h"
#include "PyObjectUtils.h"
#include <cmath>
PyGetSetDef PyVector::getsetters[] = { PyGetSetDef PyVector::getsetters[] = {
{"x", (getter)PyVector::get_member, (setter)PyVector::set_member, "X/horizontal component", (void*)0}, {"x", (getter)PyVector::get_member, (setter)PyVector::set_member, "X/horizontal component", (void*)0},
@ -8,73 +6,16 @@ PyGetSetDef PyVector::getsetters[] = {
{NULL} {NULL}
}; };
PyMethodDef PyVector::methods[] = {
{"magnitude", (PyCFunction)PyVector::magnitude, METH_NOARGS, "Return the length of the vector"},
{"magnitude_squared", (PyCFunction)PyVector::magnitude_squared, METH_NOARGS, "Return the squared length of the vector"},
{"normalize", (PyCFunction)PyVector::normalize, METH_NOARGS, "Return a unit vector in the same direction"},
{"dot", (PyCFunction)PyVector::dot, METH_O, "Return the dot product with another vector"},
{"distance_to", (PyCFunction)PyVector::distance_to, METH_O, "Return the distance to another vector"},
{"angle", (PyCFunction)PyVector::angle, METH_NOARGS, "Return the angle in radians from the positive X axis"},
{"copy", (PyCFunction)PyVector::copy, METH_NOARGS, "Return a copy of this vector"},
{NULL}
};
namespace mcrfpydef {
PyNumberMethods PyVector_as_number = {
.nb_add = PyVector::add,
.nb_subtract = PyVector::subtract,
.nb_multiply = PyVector::multiply,
.nb_remainder = 0,
.nb_divmod = 0,
.nb_power = 0,
.nb_negative = PyVector::negative,
.nb_positive = 0,
.nb_absolute = PyVector::absolute,
.nb_bool = PyVector::bool_check,
.nb_invert = 0,
.nb_lshift = 0,
.nb_rshift = 0,
.nb_and = 0,
.nb_xor = 0,
.nb_or = 0,
.nb_int = 0,
.nb_reserved = 0,
.nb_float = 0,
.nb_inplace_add = 0,
.nb_inplace_subtract = 0,
.nb_inplace_multiply = 0,
.nb_inplace_remainder = 0,
.nb_inplace_power = 0,
.nb_inplace_lshift = 0,
.nb_inplace_rshift = 0,
.nb_inplace_and = 0,
.nb_inplace_xor = 0,
.nb_inplace_or = 0,
.nb_floor_divide = 0,
.nb_true_divide = PyVector::divide,
.nb_inplace_floor_divide = 0,
.nb_inplace_true_divide = 0,
.nb_index = 0,
.nb_matrix_multiply = 0,
.nb_inplace_matrix_multiply = 0
};
}
PyVector::PyVector(sf::Vector2f target) PyVector::PyVector(sf::Vector2f target)
:data(target) {} :data(target) {}
PyObject* PyVector::pyObject() PyObject* PyVector::pyObject()
{ {
PyTypeObject* type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector"); PyObject* obj = PyType_GenericAlloc(&mcrfpydef::PyVectorType, 0);
if (!type) return nullptr; Py_INCREF(obj);
PyVectorObject* self = (PyVectorObject*)obj;
PyVectorObject* obj = (PyVectorObject*)type->tp_alloc(type, 0); self->data = data;
Py_DECREF(type); return obj;
if (obj) {
obj->data = data;
}
return (PyObject*)obj;
} }
sf::Vector2f PyVector::fromPy(PyObject* obj) sf::Vector2f PyVector::fromPy(PyObject* obj)
@ -159,307 +100,12 @@ PyObject* PyVector::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
PyObject* PyVector::get_member(PyObject* obj, void* closure) PyObject* PyVector::get_member(PyObject* obj, void* closure)
{ {
PyVectorObject* self = (PyVectorObject*)obj; // TODO
if (reinterpret_cast<long>(closure) == 0) { return Py_None;
// x
return PyFloat_FromDouble(self->data.x);
} else {
// y
return PyFloat_FromDouble(self->data.y);
}
} }
int PyVector::set_member(PyObject* obj, PyObject* value, void* closure) int PyVector::set_member(PyObject* obj, PyObject* value, void* closure)
{ {
PyVectorObject* self = (PyVectorObject*)obj; // TODO
float val;
if (PyFloat_Check(value)) {
val = PyFloat_AsDouble(value);
} else if (PyLong_Check(value)) {
val = PyLong_AsDouble(value);
} else {
PyErr_SetString(PyExc_TypeError, "Vector members must be numeric");
return -1;
}
if (reinterpret_cast<long>(closure) == 0) {
// x
self->data.x = val;
} else {
// y
self->data.y = val;
}
return 0; return 0;
} }
PyVectorObject* PyVector::from_arg(PyObject* args)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
if (PyObject_IsInstance(args, (PyObject*)type)) return (PyVectorObject*)args;
auto obj = (PyVectorObject*)type->tp_alloc(type, 0);
// Handle different input types
if (PyTuple_Check(args)) {
// It's already a tuple, pass it directly to init
int err = init(obj, args, NULL);
if (err) {
Py_DECREF(obj);
return NULL;
}
} else {
// Wrap single argument in a tuple for init
PyObject* tuple = PyTuple_Pack(1, args);
if (!tuple) {
Py_DECREF(obj);
return NULL;
}
int err = init(obj, tuple, NULL);
Py_DECREF(tuple);
if (err) {
Py_DECREF(obj);
return NULL;
}
}
return obj;
}
// Arithmetic operations
PyObject* PyVector::add(PyObject* left, PyObject* right)
{
// Check if both operands are vectors
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
PyVectorObject* vec1 = nullptr;
PyVectorObject* vec2 = nullptr;
if (PyObject_IsInstance(left, (PyObject*)type) && PyObject_IsInstance(right, (PyObject*)type)) {
vec1 = (PyVectorObject*)left;
vec2 = (PyVectorObject*)right;
} else {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(vec1->data.x + vec2->data.x, vec1->data.y + vec2->data.y);
}
return (PyObject*)result;
}
PyObject* PyVector::subtract(PyObject* left, PyObject* right)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
PyVectorObject* vec1 = nullptr;
PyVectorObject* vec2 = nullptr;
if (PyObject_IsInstance(left, (PyObject*)type) && PyObject_IsInstance(right, (PyObject*)type)) {
vec1 = (PyVectorObject*)left;
vec2 = (PyVectorObject*)right;
} else {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(vec1->data.x - vec2->data.x, vec1->data.y - vec2->data.y);
}
return (PyObject*)result;
}
PyObject* PyVector::multiply(PyObject* left, PyObject* right)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
PyVectorObject* vec = nullptr;
double scalar = 0.0;
// Check for Vector * scalar
if (PyObject_IsInstance(left, (PyObject*)type) && (PyFloat_Check(right) || PyLong_Check(right))) {
vec = (PyVectorObject*)left;
scalar = PyFloat_AsDouble(right);
}
// Check for scalar * Vector
else if ((PyFloat_Check(left) || PyLong_Check(left)) && PyObject_IsInstance(right, (PyObject*)type)) {
scalar = PyFloat_AsDouble(left);
vec = (PyVectorObject*)right;
}
else {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(vec->data.x * scalar, vec->data.y * scalar);
}
return (PyObject*)result;
}
PyObject* PyVector::divide(PyObject* left, PyObject* right)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
// Only support Vector / scalar
if (!PyObject_IsInstance(left, (PyObject*)type) || (!PyFloat_Check(right) && !PyLong_Check(right))) {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
PyVectorObject* vec = (PyVectorObject*)left;
double scalar = PyFloat_AsDouble(right);
if (scalar == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError, "Vector division by zero");
return NULL;
}
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(vec->data.x / scalar, vec->data.y / scalar);
}
return (PyObject*)result;
}
PyObject* PyVector::negative(PyObject* self)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
PyVectorObject* vec = (PyVectorObject*)self;
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(-vec->data.x, -vec->data.y);
}
return (PyObject*)result;
}
PyObject* PyVector::absolute(PyObject* self)
{
PyVectorObject* vec = (PyVectorObject*)self;
return PyFloat_FromDouble(std::sqrt(vec->data.x * vec->data.x + vec->data.y * vec->data.y));
}
int PyVector::bool_check(PyObject* self)
{
PyVectorObject* vec = (PyVectorObject*)self;
return (vec->data.x != 0.0f || vec->data.y != 0.0f) ? 1 : 0;
}
PyObject* PyVector::richcompare(PyObject* left, PyObject* right, int op)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
if (!PyObject_IsInstance(left, (PyObject*)type) || !PyObject_IsInstance(right, (PyObject*)type)) {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
PyVectorObject* vec1 = (PyVectorObject*)left;
PyVectorObject* vec2 = (PyVectorObject*)right;
bool result = false;
switch (op) {
case Py_EQ:
result = (vec1->data.x == vec2->data.x && vec1->data.y == vec2->data.y);
break;
case Py_NE:
result = (vec1->data.x != vec2->data.x || vec1->data.y != vec2->data.y);
break;
default:
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
if (result)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
// Vector-specific methods
PyObject* PyVector::magnitude(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
float mag = std::sqrt(self->data.x * self->data.x + self->data.y * self->data.y);
return PyFloat_FromDouble(mag);
}
PyObject* PyVector::magnitude_squared(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
float mag_sq = self->data.x * self->data.x + self->data.y * self->data.y;
return PyFloat_FromDouble(mag_sq);
}
PyObject* PyVector::normalize(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
float mag = std::sqrt(self->data.x * self->data.x + self->data.y * self->data.y);
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
if (mag > 0.0f) {
result->data = sf::Vector2f(self->data.x / mag, self->data.y / mag);
} else {
// Zero vector remains zero
result->data = sf::Vector2f(0.0f, 0.0f);
}
}
return (PyObject*)result;
}
PyObject* PyVector::dot(PyVectorObject* self, PyObject* other)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
if (!PyObject_IsInstance(other, (PyObject*)type)) {
PyErr_SetString(PyExc_TypeError, "Argument must be a Vector");
return NULL;
}
PyVectorObject* vec2 = (PyVectorObject*)other;
float dot_product = self->data.x * vec2->data.x + self->data.y * vec2->data.y;
return PyFloat_FromDouble(dot_product);
}
PyObject* PyVector::distance_to(PyVectorObject* self, PyObject* other)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
if (!PyObject_IsInstance(other, (PyObject*)type)) {
PyErr_SetString(PyExc_TypeError, "Argument must be a Vector");
return NULL;
}
PyVectorObject* vec2 = (PyVectorObject*)other;
float dx = self->data.x - vec2->data.x;
float dy = self->data.y - vec2->data.y;
float distance = std::sqrt(dx * dx + dy * dy);
return PyFloat_FromDouble(distance);
}
PyObject* PyVector::angle(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
float angle_rad = std::atan2(self->data.y, self->data.x);
return PyFloat_FromDouble(angle_rad);
}
PyObject* PyVector::copy(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = self->data;
}
return (PyObject*)result;
}

View File

@ -1,7 +1,6 @@
#pragma once #pragma once
#include "Common.h" #include "Common.h"
#include "Python.h" #include "Python.h"
#include "McRFPy_API.h"
typedef struct { typedef struct {
PyObject_HEAD PyObject_HEAD
@ -23,49 +22,19 @@ public:
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL); static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
static PyObject* get_member(PyObject*, void*); static PyObject* get_member(PyObject*, void*);
static int set_member(PyObject*, PyObject*, void*); static int set_member(PyObject*, PyObject*, void*);
static PyVectorObject* from_arg(PyObject*);
// Arithmetic operations
static PyObject* add(PyObject*, PyObject*);
static PyObject* subtract(PyObject*, PyObject*);
static PyObject* multiply(PyObject*, PyObject*);
static PyObject* divide(PyObject*, PyObject*);
static PyObject* negative(PyObject*);
static PyObject* absolute(PyObject*);
static int bool_check(PyObject*);
// Comparison operations
static PyObject* richcompare(PyObject*, PyObject*, int);
// Vector operations
static PyObject* magnitude(PyVectorObject*, PyObject*);
static PyObject* magnitude_squared(PyVectorObject*, PyObject*);
static PyObject* normalize(PyVectorObject*, PyObject*);
static PyObject* dot(PyVectorObject*, PyObject*);
static PyObject* distance_to(PyVectorObject*, PyObject*);
static PyObject* angle(PyVectorObject*, PyObject*);
static PyObject* copy(PyVectorObject*, PyObject*);
static PyGetSetDef getsetters[]; static PyGetSetDef getsetters[];
static PyMethodDef methods[];
}; };
namespace mcrfpydef { namespace mcrfpydef {
// Forward declare the PyNumberMethods structure
extern PyNumberMethods PyVector_as_number;
static PyTypeObject PyVectorType = { static PyTypeObject PyVectorType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Vector", .tp_name = "mcrfpy.Vector",
.tp_basicsize = sizeof(PyVectorObject), .tp_basicsize = sizeof(PyVectorObject),
.tp_itemsize = 0, .tp_itemsize = 0,
.tp_repr = PyVector::repr, .tp_repr = PyVector::repr,
.tp_as_number = &PyVector_as_number,
.tp_hash = PyVector::hash, .tp_hash = PyVector::hash,
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Vector Object"), .tp_doc = PyDoc_STR("SFML Vector Object"),
.tp_richcompare = PyVector::richcompare,
.tp_methods = PyVector::methods,
.tp_getset = PyVector::getsetters, .tp_getset = PyVector::getsetters,
.tp_init = (initproc)PyVector::init, .tp_init = (initproc)PyVector::init,
.tp_new = PyVector::pynew, .tp_new = PyVector::pynew,

View File

@ -1,514 +0,0 @@
#include "PyWindow.h"
#include "GameEngine.h"
#include "McRFPy_API.h"
#include <SFML/Graphics.hpp>
#include <cstring>
// Singleton instance - static variable, not a class member
static PyWindowObject* window_instance = nullptr;
PyObject* PyWindow::get(PyObject* cls, PyObject* args)
{
// Create singleton instance if it doesn't exist
if (!window_instance) {
// Use the class object passed as first argument
PyTypeObject* type = (PyTypeObject*)cls;
if (!type->tp_alloc) {
PyErr_SetString(PyExc_RuntimeError, "Window type not properly initialized");
return NULL;
}
window_instance = (PyWindowObject*)type->tp_alloc(type, 0);
if (!window_instance) {
return NULL;
}
}
Py_INCREF(window_instance);
return (PyObject*)window_instance;
}
PyObject* PyWindow::repr(PyWindowObject* self)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
return PyUnicode_FromString("<Window [no game engine]>");
}
if (game->isHeadless()) {
return PyUnicode_FromString("<Window [headless mode]>");
}
auto& window = game->getWindow();
auto size = window.getSize();
return PyUnicode_FromFormat("<Window %dx%d>", size.x, size.y);
}
// Property getters and setters
PyObject* PyWindow::get_resolution(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
if (game->isHeadless()) {
// Return headless renderer size
return Py_BuildValue("(ii)", 1024, 768); // Default headless size
}
auto& window = game->getWindow();
auto size = window.getSize();
return Py_BuildValue("(ii)", size.x, size.y);
}
int PyWindow::set_resolution(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
PyErr_SetString(PyExc_RuntimeError, "Cannot change resolution in headless mode");
return -1;
}
int width, height;
if (!PyArg_ParseTuple(value, "ii", &width, &height)) {
PyErr_SetString(PyExc_TypeError, "Resolution must be a tuple of two integers (width, height)");
return -1;
}
if (width <= 0 || height <= 0) {
PyErr_SetString(PyExc_ValueError, "Resolution dimensions must be positive");
return -1;
}
auto& window = game->getWindow();
// Get current window settings
auto style = sf::Style::Titlebar | sf::Style::Close;
if (window.getSize() == sf::Vector2u(sf::VideoMode::getDesktopMode().width,
sf::VideoMode::getDesktopMode().height)) {
style = sf::Style::Fullscreen;
}
// Recreate window with new size
window.create(sf::VideoMode(width, height), game->getWindowTitle(), style);
// Restore vsync and framerate settings
// Note: We'll need to store these settings in GameEngine
window.setFramerateLimit(60); // Default for now
return 0;
}
PyObject* PyWindow::get_fullscreen(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
if (game->isHeadless()) {
Py_RETURN_FALSE;
}
auto& window = game->getWindow();
auto size = window.getSize();
auto desktop = sf::VideoMode::getDesktopMode();
// Check if window size matches desktop size (rough fullscreen check)
bool fullscreen = (size.x == desktop.width && size.y == desktop.height);
return PyBool_FromLong(fullscreen);
}
int PyWindow::set_fullscreen(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
PyErr_SetString(PyExc_RuntimeError, "Cannot change fullscreen in headless mode");
return -1;
}
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "Fullscreen must be a boolean");
return -1;
}
bool fullscreen = PyObject_IsTrue(value);
auto& window = game->getWindow();
if (fullscreen) {
// Switch to fullscreen
auto desktop = sf::VideoMode::getDesktopMode();
window.create(desktop, game->getWindowTitle(), sf::Style::Fullscreen);
} else {
// Switch to windowed mode
window.create(sf::VideoMode(1024, 768), game->getWindowTitle(),
sf::Style::Titlebar | sf::Style::Close);
}
// Restore settings
window.setFramerateLimit(60);
return 0;
}
PyObject* PyWindow::get_vsync(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
return PyBool_FromLong(game->getVSync());
}
int PyWindow::set_vsync(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
PyErr_SetString(PyExc_RuntimeError, "Cannot change vsync in headless mode");
return -1;
}
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "vsync must be a boolean");
return -1;
}
bool vsync = PyObject_IsTrue(value);
game->setVSync(vsync);
return 0;
}
PyObject* PyWindow::get_title(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
return PyUnicode_FromString(game->getWindowTitle().c_str());
}
int PyWindow::set_title(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
// Silently ignore in headless mode
return 0;
}
const char* title = PyUnicode_AsUTF8(value);
if (!title) {
PyErr_SetString(PyExc_TypeError, "Title must be a string");
return -1;
}
game->setWindowTitle(title);
return 0;
}
PyObject* PyWindow::get_visible(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
if (game->isHeadless()) {
Py_RETURN_FALSE;
}
auto& window = game->getWindow();
bool visible = window.isOpen(); // Best approximation
return PyBool_FromLong(visible);
}
int PyWindow::set_visible(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
// Silently ignore in headless mode
return 0;
}
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "visible must be a boolean");
return -1;
}
bool visible = PyObject_IsTrue(value);
auto& window = game->getWindow();
window.setVisible(visible);
return 0;
}
PyObject* PyWindow::get_framerate_limit(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
return PyLong_FromLong(game->getFramerateLimit());
}
int PyWindow::set_framerate_limit(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
// Silently ignore in headless mode
return 0;
}
long limit = PyLong_AsLong(value);
if (PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "framerate_limit must be an integer");
return -1;
}
if (limit < 0) {
PyErr_SetString(PyExc_ValueError, "framerate_limit must be non-negative (0 for unlimited)");
return -1;
}
game->setFramerateLimit(limit);
return 0;
}
// Methods
PyObject* PyWindow::center(PyWindowObject* self, PyObject* args)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
if (game->isHeadless()) {
PyErr_SetString(PyExc_RuntimeError, "Cannot center window in headless mode");
return NULL;
}
auto& window = game->getWindow();
auto size = window.getSize();
auto desktop = sf::VideoMode::getDesktopMode();
int x = (desktop.width - size.x) / 2;
int y = (desktop.height - size.y) / 2;
window.setPosition(sf::Vector2i(x, y));
Py_RETURN_NONE;
}
PyObject* PyWindow::screenshot(PyWindowObject* self, PyObject* args, PyObject* kwds)
{
static const char* keywords[] = {"filename", NULL};
const char* filename = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|s", const_cast<char**>(keywords), &filename)) {
return NULL;
}
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
// Get the render target pointer
sf::RenderTarget* target = game->getRenderTargetPtr();
if (!target) {
PyErr_SetString(PyExc_RuntimeError, "No render target available");
return NULL;
}
sf::Image screenshot;
// For RenderWindow
if (auto* window = dynamic_cast<sf::RenderWindow*>(target)) {
sf::Vector2u windowSize = window->getSize();
sf::Texture texture;
texture.create(windowSize.x, windowSize.y);
texture.update(*window);
screenshot = texture.copyToImage();
}
// For RenderTexture (headless mode)
else if (auto* renderTexture = dynamic_cast<sf::RenderTexture*>(target)) {
screenshot = renderTexture->getTexture().copyToImage();
}
else {
PyErr_SetString(PyExc_RuntimeError, "Unknown render target type");
return NULL;
}
// Save to file if filename provided
if (filename) {
if (!screenshot.saveToFile(filename)) {
PyErr_SetString(PyExc_IOError, "Failed to save screenshot");
return NULL;
}
Py_RETURN_NONE;
}
// Otherwise return as bytes
auto pixels = screenshot.getPixelsPtr();
auto size = screenshot.getSize();
return PyBytes_FromStringAndSize((const char*)pixels, size.x * size.y * 4);
}
PyObject* PyWindow::get_game_resolution(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
auto resolution = game->getGameResolution();
return Py_BuildValue("(ii)", resolution.x, resolution.y);
}
int PyWindow::set_game_resolution(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
int width, height;
if (!PyArg_ParseTuple(value, "ii", &width, &height)) {
PyErr_SetString(PyExc_TypeError, "game_resolution must be a tuple of two integers (width, height)");
return -1;
}
if (width <= 0 || height <= 0) {
PyErr_SetString(PyExc_ValueError, "Game resolution dimensions must be positive");
return -1;
}
game->setGameResolution(width, height);
return 0;
}
PyObject* PyWindow::get_scaling_mode(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
return PyUnicode_FromString(game->getViewportModeString().c_str());
}
int PyWindow::set_scaling_mode(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
const char* mode_str = PyUnicode_AsUTF8(value);
if (!mode_str) {
PyErr_SetString(PyExc_TypeError, "scaling_mode must be a string");
return -1;
}
GameEngine::ViewportMode mode;
if (strcmp(mode_str, "center") == 0) {
mode = GameEngine::ViewportMode::Center;
} else if (strcmp(mode_str, "stretch") == 0) {
mode = GameEngine::ViewportMode::Stretch;
} else if (strcmp(mode_str, "fit") == 0) {
mode = GameEngine::ViewportMode::Fit;
} else {
PyErr_SetString(PyExc_ValueError, "scaling_mode must be 'center', 'stretch', or 'fit'");
return -1;
}
game->setViewportMode(mode);
return 0;
}
// Property definitions
PyGetSetDef PyWindow::getsetters[] = {
{"resolution", (getter)get_resolution, (setter)set_resolution,
"Window resolution as (width, height) tuple", NULL},
{"fullscreen", (getter)get_fullscreen, (setter)set_fullscreen,
"Window fullscreen state", NULL},
{"vsync", (getter)get_vsync, (setter)set_vsync,
"Vertical sync enabled state", NULL},
{"title", (getter)get_title, (setter)set_title,
"Window title string", NULL},
{"visible", (getter)get_visible, (setter)set_visible,
"Window visibility state", NULL},
{"framerate_limit", (getter)get_framerate_limit, (setter)set_framerate_limit,
"Frame rate limit (0 for unlimited)", NULL},
{"game_resolution", (getter)get_game_resolution, (setter)set_game_resolution,
"Fixed game resolution as (width, height) tuple", NULL},
{"scaling_mode", (getter)get_scaling_mode, (setter)set_scaling_mode,
"Viewport scaling mode: 'center', 'stretch', or 'fit'", NULL},
{NULL}
};
// Method definitions
PyMethodDef PyWindow::methods[] = {
{"get", (PyCFunction)PyWindow::get, METH_VARARGS | METH_CLASS,
"Get the Window singleton instance"},
{"center", (PyCFunction)PyWindow::center, METH_NOARGS,
"Center the window on the screen"},
{"screenshot", (PyCFunction)PyWindow::screenshot, METH_VARARGS | METH_KEYWORDS,
"Take a screenshot. Pass filename to save to file, or get raw bytes if no filename."},
{NULL}
};

View File

@ -1,69 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
// Forward declarations
class GameEngine;
// Python object structure for Window singleton
typedef struct {
PyObject_HEAD
// No data - Window is a singleton that accesses GameEngine
} PyWindowObject;
// C++ interface for the Window singleton
class PyWindow
{
public:
// Static methods for Python type
static PyObject* get(PyObject* cls, PyObject* args);
static PyObject* repr(PyWindowObject* self);
// Getters and setters for window properties
static PyObject* get_resolution(PyWindowObject* self, void* closure);
static int set_resolution(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_fullscreen(PyWindowObject* self, void* closure);
static int set_fullscreen(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_vsync(PyWindowObject* self, void* closure);
static int set_vsync(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_title(PyWindowObject* self, void* closure);
static int set_title(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_visible(PyWindowObject* self, void* closure);
static int set_visible(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_framerate_limit(PyWindowObject* self, void* closure);
static int set_framerate_limit(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_game_resolution(PyWindowObject* self, void* closure);
static int set_game_resolution(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_scaling_mode(PyWindowObject* self, void* closure);
static int set_scaling_mode(PyWindowObject* self, PyObject* value, void* closure);
// Methods
static PyObject* center(PyWindowObject* self, PyObject* args);
static PyObject* screenshot(PyWindowObject* self, PyObject* args, PyObject* kwds);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
static PyTypeObject PyWindowType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Window",
.tp_basicsize = sizeof(PyWindowObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)[](PyObject* self) {
// Don't delete the singleton instance
Py_TYPE(self)->tp_free(self);
},
.tp_repr = (reprfunc)PyWindow::repr,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Window singleton for accessing and modifying the game window properties"),
.tp_methods = nullptr, // Set in McRFPy_API.cpp after definition
.tp_getset = nullptr, // Set in McRFPy_API.cpp after definition
.tp_new = [](PyTypeObject* type, PyObject* args, PyObject* kwds) -> PyObject* {
PyErr_SetString(PyExc_TypeError, "Cannot instantiate Window. Use Window.get() to access the singleton.");
return NULL;
}
};
}

View File

@ -30,6 +30,16 @@ std::string Scene::action(int code)
return actions[code]; return actions[code];
} }
bool Scene::registerActionInjected(int code, std::string name)
{
std::cout << "Inject registered action - default implementation\n";
return false;
}
bool Scene::unregisterActionInjected(int code, std::string name)
{
return false;
}
void Scene::key_register(PyObject* callable) void Scene::key_register(PyObject* callable)
{ {

View File

@ -4,6 +4,7 @@
#define ACTION(X, Y) (name.compare(X) == 0 && type.compare(Y) == 0) #define ACTION(X, Y) (name.compare(X) == 0 && type.compare(Y) == 0)
#define ACTIONONCE(X) ((name.compare(X) == 0 && type.compare("start") == 0 && !actionState[name])) #define ACTIONONCE(X) ((name.compare(X) == 0 && type.compare("start") == 0 && !actionState[name]))
#define ACTIONAFTER(X) ((name.compare(X) == 0 && type.compare("end") == 0)) #define ACTIONAFTER(X) ((name.compare(X) == 0 && type.compare("end") == 0))
#define ACTIONPY ((name.size() > 3 && name.compare(name.size() - 3, 3, "_py") == 0))
#include "Common.h" #include "Common.h"
#include <list> #include <list>
@ -30,12 +31,14 @@ public:
//Scene(); //Scene();
Scene(GameEngine*); Scene(GameEngine*);
virtual void update() = 0; virtual void update() = 0;
virtual void render() = 0; virtual void sRender() = 0;
virtual void doAction(std::string, std::string) = 0; virtual void doAction(std::string, std::string) = 0;
bool hasAction(std::string); bool hasAction(std::string);
bool hasAction(int); bool hasAction(int);
std::string action(int); std::string action(int);
virtual bool registerActionInjected(int, std::string);
virtual bool unregisterActionInjected(int, std::string);
std::shared_ptr<std::vector<std::shared_ptr<UIDrawable>>> ui_elements; std::shared_ptr<std::vector<std::shared_ptr<UIDrawable>>> ui_elements;

View File

@ -1,85 +0,0 @@
#include "SceneTransition.h"
void SceneTransition::start(TransitionType t, const std::string& from, const std::string& to, float dur) {
type = t;
fromScene = from;
toScene = to;
duration = dur;
elapsed = 0.0f;
// Initialize render textures if needed
if (!oldSceneTexture) {
oldSceneTexture = std::make_unique<sf::RenderTexture>();
oldSceneTexture->create(1024, 768);
}
if (!newSceneTexture) {
newSceneTexture = std::make_unique<sf::RenderTexture>();
newSceneTexture->create(1024, 768);
}
}
void SceneTransition::update(float dt) {
if (type == TransitionType::None) return;
elapsed += dt;
}
void SceneTransition::render(sf::RenderTarget& target) {
if (type == TransitionType::None) return;
float progress = getProgress();
float easedProgress = easeInOut(progress);
// Update sprites with current textures
oldSprite.setTexture(oldSceneTexture->getTexture());
newSprite.setTexture(newSceneTexture->getTexture());
switch (type) {
case TransitionType::Fade:
// Fade out old scene, fade in new scene
oldSprite.setColor(sf::Color(255, 255, 255, 255 * (1.0f - easedProgress)));
newSprite.setColor(sf::Color(255, 255, 255, 255 * easedProgress));
target.draw(oldSprite);
target.draw(newSprite);
break;
case TransitionType::SlideLeft:
// Old scene slides out to left, new scene slides in from right
oldSprite.setPosition(-1024 * easedProgress, 0);
newSprite.setPosition(1024 * (1.0f - easedProgress), 0);
target.draw(oldSprite);
target.draw(newSprite);
break;
case TransitionType::SlideRight:
// Old scene slides out to right, new scene slides in from left
oldSprite.setPosition(1024 * easedProgress, 0);
newSprite.setPosition(-1024 * (1.0f - easedProgress), 0);
target.draw(oldSprite);
target.draw(newSprite);
break;
case TransitionType::SlideUp:
// Old scene slides up, new scene slides in from bottom
oldSprite.setPosition(0, -768 * easedProgress);
newSprite.setPosition(0, 768 * (1.0f - easedProgress));
target.draw(oldSprite);
target.draw(newSprite);
break;
case TransitionType::SlideDown:
// Old scene slides down, new scene slides in from top
oldSprite.setPosition(0, 768 * easedProgress);
newSprite.setPosition(0, -768 * (1.0f - easedProgress));
target.draw(oldSprite);
target.draw(newSprite);
break;
default:
break;
}
}
float SceneTransition::easeInOut(float t) {
// Smooth ease-in-out curve
return t < 0.5f ? 2 * t * t : -1 + (4 - 2 * t) * t;
}

View File

@ -1,42 +0,0 @@
#pragma once
#include "Common.h"
#include <SFML/Graphics.hpp>
#include <string>
#include <memory>
enum class TransitionType {
None,
Fade,
SlideLeft,
SlideRight,
SlideUp,
SlideDown
};
class SceneTransition {
public:
TransitionType type = TransitionType::None;
float duration = 0.0f;
float elapsed = 0.0f;
std::string fromScene;
std::string toScene;
// Render textures for transition
std::unique_ptr<sf::RenderTexture> oldSceneTexture;
std::unique_ptr<sf::RenderTexture> newSceneTexture;
// Sprites for rendering textures
sf::Sprite oldSprite;
sf::Sprite newSprite;
SceneTransition() = default;
void start(TransitionType t, const std::string& from, const std::string& to, float dur);
void update(float dt);
void render(sf::RenderTarget& target);
bool isComplete() const { return elapsed >= duration; }
float getProgress() const { return duration > 0 ? std::min(elapsed / duration, 1.0f) : 1.0f; }
// Easing function for smooth transitions
static float easeInOut(float t);
};

View File

@ -1,6 +1,4 @@
#pragma once #pragma once
#include "Python.h"
#include <memory>
class UIEntity; class UIEntity;
typedef struct { typedef struct {
@ -32,103 +30,3 @@ typedef struct {
PyObject_HEAD PyObject_HEAD
std::shared_ptr<UISprite> data; std::shared_ptr<UISprite> data;
} PyUISpriteObject; } PyUISpriteObject;
// Common Python method implementations for UIDrawable-derived classes
// These template functions provide shared functionality for Python bindings
// get_bounds method implementation (#89)
template<typename T>
static PyObject* UIDrawable_get_bounds(T* self, PyObject* Py_UNUSED(args))
{
auto bounds = self->data->get_bounds();
return Py_BuildValue("(ffff)", bounds.left, bounds.top, bounds.width, bounds.height);
}
// move method implementation (#98)
template<typename T>
static PyObject* UIDrawable_move(T* self, PyObject* args)
{
float dx, dy;
if (!PyArg_ParseTuple(args, "ff", &dx, &dy)) {
return NULL;
}
self->data->move(dx, dy);
Py_RETURN_NONE;
}
// resize method implementation (#98)
template<typename T>
static PyObject* UIDrawable_resize(T* self, PyObject* args)
{
float w, h;
if (!PyArg_ParseTuple(args, "ff", &w, &h)) {
return NULL;
}
self->data->resize(w, h);
Py_RETURN_NONE;
}
// Macro to add common UIDrawable methods to a method array
#define UIDRAWABLE_METHODS \
{"get_bounds", (PyCFunction)UIDrawable_get_bounds<PyObjectType>, METH_NOARGS, \
"Get bounding box as (x, y, width, height)"}, \
{"move", (PyCFunction)UIDrawable_move<PyObjectType>, METH_VARARGS, \
"Move by relative offset (dx, dy)"}, \
{"resize", (PyCFunction)UIDrawable_resize<PyObjectType>, METH_VARARGS, \
"Resize to new dimensions (width, height)"}
// Property getters/setters for visible and opacity
template<typename T>
static PyObject* UIDrawable_get_visible(T* self, void* closure)
{
return PyBool_FromLong(self->data->visible);
}
template<typename T>
static int UIDrawable_set_visible(T* self, PyObject* value, void* closure)
{
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "visible must be a boolean");
return -1;
}
self->data->visible = PyObject_IsTrue(value);
return 0;
}
template<typename T>
static PyObject* UIDrawable_get_opacity(T* self, void* closure)
{
return PyFloat_FromDouble(self->data->opacity);
}
template<typename T>
static int UIDrawable_set_opacity(T* self, PyObject* value, void* closure)
{
float opacity;
if (PyFloat_Check(value)) {
opacity = PyFloat_AsDouble(value);
} else if (PyLong_Check(value)) {
opacity = PyLong_AsDouble(value);
} else {
PyErr_SetString(PyExc_TypeError, "opacity must be a number");
return -1;
}
// Clamp to valid range
if (opacity < 0.0f) opacity = 0.0f;
if (opacity > 1.0f) opacity = 1.0f;
self->data->opacity = opacity;
return 0;
}
// Macro to add common UIDrawable properties to a getsetters array
#define UIDRAWABLE_GETSETTERS \
{"visible", (getter)UIDrawable_get_visible<PyObjectType>, (setter)UIDrawable_set_visible<PyObjectType>, \
"Visibility flag", NULL}, \
{"opacity", (getter)UIDrawable_get_opacity<PyObjectType>, (setter)UIDrawable_set_opacity<PyObjectType>, \
"Opacity (0.0 = transparent, 1.0 = opaque)", NULL}
// UIEntity specializations are defined in UIEntity.cpp after UIEntity class is complete

View File

@ -3,21 +3,6 @@
#include "PyColor.h" #include "PyColor.h"
#include "PyVector.h" #include "PyVector.h"
#include "PyFont.h" #include "PyFont.h"
#include "PyArgHelpers.h"
// UIDrawable methods now in UIBase.h
#include <algorithm>
UICaption::UICaption()
{
// Initialize text with safe defaults
text.setString("");
position = sf::Vector2f(0.0f, 0.0f); // Set base class position
text.setPosition(position); // Sync text position
text.setCharacterSize(12);
text.setFillColor(sf::Color::White);
text.setOutlineColor(sf::Color::Black);
text.setOutlineThickness(0.0f);
}
UIDrawable* UICaption::click_at(sf::Vector2f point) UIDrawable* UICaption::click_at(sf::Vector2f point)
{ {
@ -28,24 +13,11 @@ UIDrawable* UICaption::click_at(sf::Vector2f point)
return NULL; return NULL;
} }
void UICaption::render(sf::Vector2f offset, sf::RenderTarget& target) void UICaption::render(sf::Vector2f offset)
{ {
// Check visibility
if (!visible) return;
// Apply opacity
auto color = text.getFillColor();
color.a = static_cast<sf::Uint8>(255 * opacity);
text.setFillColor(color);
text.move(offset); text.move(offset);
//Resources::game->getWindow().draw(text); Resources::game->getWindow().draw(text);
target.draw(text);
text.move(-offset); text.move(-offset);
// Restore original alpha
color.a = 255;
text.setFillColor(color);
} }
PyObjectsEnum UICaption::derived_type() PyObjectsEnum UICaption::derived_type()
@ -53,47 +25,6 @@ PyObjectsEnum UICaption::derived_type()
return PyObjectsEnum::UICAPTION; return PyObjectsEnum::UICAPTION;
} }
// Phase 1 implementations
sf::FloatRect UICaption::get_bounds() const
{
return text.getGlobalBounds();
}
void UICaption::move(float dx, float dy)
{
position.x += dx;
position.y += dy;
text.setPosition(position); // Keep text in sync
}
void UICaption::resize(float w, float h)
{
// Implement multiline text support by setting bounds
// Width constraint enables automatic word wrapping in SFML
if (w > 0) {
// Store the requested width for word wrapping
// Note: SFML doesn't have direct width constraint, but we can
// implement basic word wrapping by inserting newlines
// For now, we'll store the constraint for future use
// A full implementation would need to:
// 1. Split text into words
// 2. Measure each word's width
// 3. Insert newlines where needed
// This is a placeholder that at least acknowledges the resize request
// TODO: Implement proper word wrapping algorithm
// For now, just mark that resize was called
markDirty();
}
}
void UICaption::onPositionChanged()
{
// Sync text position with base class position
text.setPosition(position);
}
PyObject* UICaption::get_float_member(PyUICaptionObject* self, void* closure) PyObject* UICaption::get_float_member(PyUICaptionObject* self, void* closure)
{ {
auto member_ptr = reinterpret_cast<long>(closure); auto member_ptr = reinterpret_cast<long>(closure);
@ -126,7 +57,7 @@ int UICaption::set_float_member(PyUICaptionObject* self, PyObject* value, void*
} }
else else
{ {
PyErr_SetString(PyExc_TypeError, "Value must be a number (int or float)"); PyErr_SetString(PyExc_TypeError, "Value must be an integer.");
return -1; return -1;
} }
if (member_ptr == 0) //x if (member_ptr == 0) //x
@ -189,6 +120,7 @@ int UICaption::set_color_member(PyUICaptionObject* self, PyObject* value, void*
// get value from mcrfpy.Color instance // get value from mcrfpy.Color instance
auto c = ((PyColorObject*)value)->data; auto c = ((PyColorObject*)value)->data;
r = c.r; g = c.g; b = c.b; a = c.a; r = c.r; g = c.g; b = c.b; a = c.a;
std::cout << "got " << int(r) << ", " << int(g) << ", " << int(b) << ", " << int(a) << std::endl;
} }
else if (!PyTuple_Check(value) || PyTuple_Size(value) < 3 || PyTuple_Size(value) > 4) else if (!PyTuple_Check(value) || PyTuple_Size(value) < 3 || PyTuple_Size(value) > 4)
{ {
@ -233,15 +165,6 @@ int UICaption::set_color_member(PyUICaptionObject* self, PyObject* value, void*
} }
// Define the PyObjectType alias for the macros
typedef PyUICaptionObject PyObjectType;
// Method definitions
PyMethodDef UICaption_methods[] = {
UIDRAWABLE_METHODS,
{NULL} // Sentinel
};
//TODO: evaluate use of Resources::caption_buffer... can't I do this with a std::string? //TODO: evaluate use of Resources::caption_buffer... can't I do this with a std::string?
PyObject* UICaption::get_text(PyUICaptionObject* self, void* closure) PyObject* UICaption::get_text(PyUICaptionObject* self, void* closure)
{ {
@ -262,9 +185,9 @@ int UICaption::set_text(PyUICaptionObject* self, PyObject* value, void* closure)
} }
PyGetSetDef UICaption::getsetters[] = { PyGetSetDef UICaption::getsetters[] = {
{"x", (getter)UIDrawable::get_float_member, (setter)UIDrawable::set_float_member, "X coordinate of top-left corner", (void*)((intptr_t)PyObjectsEnum::UICAPTION << 8 | 0)}, {"x", (getter)UICaption::get_float_member, (setter)UICaption::set_float_member, "X coordinate of top-left corner", (void*)0},
{"y", (getter)UIDrawable::get_float_member, (setter)UIDrawable::set_float_member, "Y coordinate of top-left corner", (void*)((intptr_t)PyObjectsEnum::UICAPTION << 8 | 1)}, {"y", (getter)UICaption::get_float_member, (setter)UICaption::set_float_member, "Y coordinate of top-left corner", (void*)1},
{"pos", (getter)UIDrawable::get_pos, (setter)UIDrawable::set_pos, "(x, y) vector", (void*)PyObjectsEnum::UICAPTION}, {"pos", (getter)UICaption::get_vec_member, (setter)UICaption::set_vec_member, "(x, y) vector", (void*)0},
//{"w", (getter)PyUIFrame_get_float_member, (setter)PyUIFrame_set_float_member, "width of the rectangle", (void*)2}, //{"w", (getter)PyUIFrame_get_float_member, (setter)PyUIFrame_set_float_member, "width of the rectangle", (void*)2},
//{"h", (getter)PyUIFrame_get_float_member, (setter)PyUIFrame_set_float_member, "height of the rectangle", (void*)3}, //{"h", (getter)PyUIFrame_get_float_member, (setter)PyUIFrame_set_float_member, "height of the rectangle", (void*)3},
{"outline", (getter)UICaption::get_float_member, (setter)UICaption::set_float_member, "Thickness of the border", (void*)4}, {"outline", (getter)UICaption::get_float_member, (setter)UICaption::set_float_member, "Thickness of the border", (void*)4},
@ -272,11 +195,8 @@ PyGetSetDef UICaption::getsetters[] = {
{"outline_color", (getter)UICaption::get_color_member, (setter)UICaption::set_color_member, "Outline color of the text", (void*)1}, {"outline_color", (getter)UICaption::get_color_member, (setter)UICaption::set_color_member, "Outline color of the text", (void*)1},
//{"children", (getter)PyUIFrame_get_children, NULL, "UICollection of objects on top of this one", NULL}, //{"children", (getter)PyUIFrame_get_children, NULL, "UICollection of objects on top of this one", NULL},
{"text", (getter)UICaption::get_text, (setter)UICaption::set_text, "The text displayed", NULL}, {"text", (getter)UICaption::get_text, (setter)UICaption::set_text, "The text displayed", NULL},
{"font_size", (getter)UICaption::get_float_member, (setter)UICaption::set_float_member, "Font size (integer) in points", (void*)5}, {"size", (getter)UICaption::get_float_member, (setter)UICaption::set_float_member, "Text size (integer) in points", (void*)5},
{"click", (getter)UIDrawable::get_click, (setter)UIDrawable::set_click, "Object called with (x, y, button) when clicked", (void*)PyObjectsEnum::UICAPTION}, {"click", (getter)UIDrawable::get_click, (setter)UIDrawable::set_click, "Object called with (x, y, button) when clicked", (void*)PyObjectsEnum::UICAPTION},
{"z_index", (getter)UIDrawable::get_int, (setter)UIDrawable::set_int, "Z-order for rendering (lower values rendered first)", (void*)PyObjectsEnum::UICAPTION},
{"name", (getter)UIDrawable::get_name, (setter)UIDrawable::set_name, "Name for finding elements", (void*)PyObjectsEnum::UICAPTION},
UIDRAWABLE_GETSETTERS,
{NULL} {NULL}
}; };
@ -292,7 +212,7 @@ PyObject* UICaption::repr(PyUICaptionObject* self)
"text='" << (std::string)text.getString() << "', " << "text='" << (std::string)text.getString() << "', " <<
"outline=" << text.getOutlineThickness() << ", " << "outline=" << text.getOutlineThickness() << ", " <<
"fill_color=(" << (int)fc.r << ", " << (int)fc.g << ", " << (int)fc.b << ", " << (int)fc.a <<"), " << "fill_color=(" << (int)fc.r << ", " << (int)fc.g << ", " << (int)fc.b << ", " << (int)fc.a <<"), " <<
"outline_color=(" << (int)oc.r << ", " << (int)oc.g << ", " << (int)oc.b << ", " << (int)oc.a <<"), " << "outlinecolor=(" << (int)oc.r << ", " << (int)oc.g << ", " << (int)oc.b << ", " << (int)oc.a <<"), " <<
")>"; ")>";
} }
std::string repr_str = ss.str(); std::string repr_str = ss.str();
@ -302,133 +222,24 @@ PyObject* UICaption::repr(PyUICaptionObject* self)
int UICaption::init(PyUICaptionObject* self, PyObject* args, PyObject* kwds) int UICaption::init(PyUICaptionObject* self, PyObject* args, PyObject* kwds)
{ {
using namespace mcrfpydef; using namespace mcrfpydef;
static const char* keywords[] = { "x", "y", "text", "font", "fill_color", "outline_color", nullptr };
float x = 0.0f, y = 0.0f;
char* text;
PyObject* font, fill_color, outline_color;
// Try parsing with PyArgHelpers if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ffzOOO",
int arg_idx = 0; const_cast<char**>(keywords), &x, &y, &text, &font, &fill_color, &outline_color))
auto pos_result = PyArgHelpers::parsePosition(args, kwds, &arg_idx); {
// Default values
float x = 0.0f, y = 0.0f, outline = 0.0f;
char* text = nullptr;
PyObject* font = nullptr;
PyObject* fill_color = nullptr;
PyObject* outline_color = nullptr;
PyObject* click_handler = nullptr;
// Case 1: Got position from helpers (tuple format)
if (pos_result.valid) {
x = pos_result.x;
y = pos_result.y;
// Parse remaining arguments
static const char* remaining_keywords[] = {
"text", "font", "fill_color", "outline_color", "outline", "click", nullptr
};
// Create new tuple with remaining args
Py_ssize_t total_args = PyTuple_Size(args);
PyObject* remaining_args = PyTuple_GetSlice(args, arg_idx, total_args);
if (!PyArg_ParseTupleAndKeywords(remaining_args, kwds, "|zOOOfO",
const_cast<char**>(remaining_keywords),
&text, &font, &fill_color, &outline_color,
&outline, &click_handler)) {
Py_DECREF(remaining_args);
if (pos_result.error) PyErr_SetString(PyExc_TypeError, pos_result.error);
return -1;
}
Py_DECREF(remaining_args);
}
// Case 2: Traditional format
else {
PyErr_Clear(); // Clear any errors from helpers
// First check if this is the old (text, x, y, ...) format
PyObject* first_arg = args && PyTuple_Size(args) > 0 ? PyTuple_GetItem(args, 0) : nullptr;
bool text_first = first_arg && PyUnicode_Check(first_arg);
if (text_first) {
// Pattern: (text, x, y, ...)
static const char* text_first_keywords[] = {
"text", "x", "y", "font", "fill_color", "outline_color",
"outline", "click", "pos", nullptr
};
PyObject* pos_obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|zffOOOfOO",
const_cast<char**>(text_first_keywords),
&text, &x, &y, &font, &fill_color, &outline_color,
&outline, &click_handler, &pos_obj)) {
return -1; return -1;
} }
// Handle pos keyword override
if (pos_obj && pos_obj != Py_None) {
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
}
} else if (PyObject_TypeCheck(pos_obj, (PyTypeObject*)PyObject_GetAttrString(
PyImport_ImportModule("mcrfpy"), "Vector"))) {
PyVectorObject* vec = (PyVectorObject*)pos_obj;
x = vec->data.x;
y = vec->data.y;
} else {
PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector");
return -1;
}
}
} else {
// Pattern: (x, y, text, ...)
static const char* xy_keywords[] = {
"x", "y", "text", "font", "fill_color", "outline_color",
"outline", "click", "pos", nullptr
};
PyObject* pos_obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ffzOOOfOO",
const_cast<char**>(xy_keywords),
&x, &y, &text, &font, &fill_color, &outline_color,
&outline, &click_handler, &pos_obj)) {
return -1;
}
// Handle pos keyword override
if (pos_obj && pos_obj != Py_None) {
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
}
} else if (PyObject_TypeCheck(pos_obj, (PyTypeObject*)PyObject_GetAttrString(
PyImport_ImportModule("mcrfpy"), "Vector"))) {
PyVectorObject* vec = (PyVectorObject*)pos_obj;
x = vec->data.x;
y = vec->data.y;
} else {
PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector");
return -1;
}
}
}
}
self->data->position = sf::Vector2f(x, y); // Set base class position
self->data->text.setPosition(self->data->position); // Sync text position
// check types for font, fill_color, outline_color // check types for font, fill_color, outline_color
//std::cout << PyUnicode_AsUTF8(PyObject_Repr(font)) << std::endl; std::cout << PyUnicode_AsUTF8(PyObject_Repr(font)) << std::endl;
if (font != NULL && font != Py_None && !PyObject_IsInstance(font, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Font")/*(PyObject*)&PyFontType)*/)){ if (font != NULL && !PyObject_IsInstance(font, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Font")/*(PyObject*)&PyFontType)*/)){
PyErr_SetString(PyExc_TypeError, "font must be a mcrfpy.Font instance or None"); PyErr_SetString(PyExc_TypeError, "font must be a mcrfpy.Font instance");
return -1; return -1;
} else if (font != NULL && font != Py_None) } else if (font != NULL)
{ {
auto font_obj = (PyFontObject*)font; auto font_obj = (PyFontObject*)font;
self->data->text.setFont(font_obj->data->font); self->data->text.setFont(font_obj->data->font);
@ -436,229 +247,15 @@ int UICaption::init(PyUICaptionObject* self, PyObject* args, PyObject* kwds)
Py_INCREF(font); Py_INCREF(font);
} else } else
{ {
// Use default font when None or not provided // default font
if (McRFPy_API::default_font) { //self->data->text.setFont(Resources::game->getFont());
self->data->text.setFont(McRFPy_API::default_font->font);
// Store reference to default font
PyObject* default_font_obj = PyObject_GetAttrString(McRFPy_API::mcrf_module, "default_font");
if (default_font_obj) {
self->font = default_font_obj;
// Don't need to DECREF since we're storing it
}
}
} }
// Handle text - default to empty string if not provided self->data->text.setPosition(sf::Vector2f(x, y));
if (text && text != NULL) {
self->data->text.setString((std::string)text); self->data->text.setString((std::string)text);
} else {
self->data->text.setString("");
}
self->data->text.setOutlineThickness(outline);
if (fill_color) {
auto fc = PyColor::from_arg(fill_color);
if (!fc) {
PyErr_SetString(PyExc_TypeError, "fill_color must be mcrfpy.Color or arguments to mcrfpy.Color.__init__");
return -1;
}
self->data->text.setFillColor(PyColor::fromPy(fc));
//Py_DECREF(fc);
} else {
self->data->text.setFillColor(sf::Color(0,0,0,255)); self->data->text.setFillColor(sf::Color(0,0,0,255));
}
if (outline_color) {
auto oc = PyColor::from_arg(outline_color);
if (!oc) {
PyErr_SetString(PyExc_TypeError, "outline_color must be mcrfpy.Color or arguments to mcrfpy.Color.__init__");
return -1;
}
self->data->text.setOutlineColor(PyColor::fromPy(oc));
//Py_DECREF(oc);
} else {
self->data->text.setOutlineColor(sf::Color(128,128,128,255)); self->data->text.setOutlineColor(sf::Color(128,128,128,255));
}
// Process click handler if provided
if (click_handler && click_handler != Py_None) {
if (!PyCallable_Check(click_handler)) {
PyErr_SetString(PyExc_TypeError, "click must be callable");
return -1;
}
self->data->click_register(click_handler);
}
return 0; return 0;
} }
// Property system implementation for animations
bool UICaption::setProperty(const std::string& name, float value) {
if (name == "x") {
position.x = value;
text.setPosition(position); // Keep text in sync
return true;
}
else if (name == "y") {
position.y = value;
text.setPosition(position); // Keep text in sync
return true;
}
else if (name == "font_size" || name == "size") { // Support both for backward compatibility
text.setCharacterSize(static_cast<unsigned int>(value));
return true;
}
else if (name == "outline") {
text.setOutlineThickness(value);
return true;
}
else if (name == "fill_color.r") {
auto color = text.getFillColor();
color.r = static_cast<sf::Uint8>(std::clamp(value, 0.0f, 255.0f));
text.setFillColor(color);
return true;
}
else if (name == "fill_color.g") {
auto color = text.getFillColor();
color.g = static_cast<sf::Uint8>(std::clamp(value, 0.0f, 255.0f));
text.setFillColor(color);
return true;
}
else if (name == "fill_color.b") {
auto color = text.getFillColor();
color.b = static_cast<sf::Uint8>(std::clamp(value, 0.0f, 255.0f));
text.setFillColor(color);
return true;
}
else if (name == "fill_color.a") {
auto color = text.getFillColor();
color.a = static_cast<sf::Uint8>(std::clamp(value, 0.0f, 255.0f));
text.setFillColor(color);
return true;
}
else if (name == "outline_color.r") {
auto color = text.getOutlineColor();
color.r = static_cast<sf::Uint8>(std::clamp(value, 0.0f, 255.0f));
text.setOutlineColor(color);
return true;
}
else if (name == "outline_color.g") {
auto color = text.getOutlineColor();
color.g = static_cast<sf::Uint8>(std::clamp(value, 0.0f, 255.0f));
text.setOutlineColor(color);
return true;
}
else if (name == "outline_color.b") {
auto color = text.getOutlineColor();
color.b = static_cast<sf::Uint8>(std::clamp(value, 0.0f, 255.0f));
text.setOutlineColor(color);
return true;
}
else if (name == "outline_color.a") {
auto color = text.getOutlineColor();
color.a = static_cast<sf::Uint8>(std::clamp(value, 0.0f, 255.0f));
text.setOutlineColor(color);
return true;
}
else if (name == "z_index") {
z_index = static_cast<int>(value);
return true;
}
return false;
}
bool UICaption::setProperty(const std::string& name, const sf::Color& value) {
if (name == "fill_color") {
text.setFillColor(value);
return true;
}
else if (name == "outline_color") {
text.setOutlineColor(value);
return true;
}
return false;
}
bool UICaption::setProperty(const std::string& name, const std::string& value) {
if (name == "text") {
text.setString(value);
return true;
}
return false;
}
bool UICaption::getProperty(const std::string& name, float& value) const {
if (name == "x") {
value = position.x;
return true;
}
else if (name == "y") {
value = position.y;
return true;
}
else if (name == "font_size" || name == "size") { // Support both for backward compatibility
value = static_cast<float>(text.getCharacterSize());
return true;
}
else if (name == "outline") {
value = text.getOutlineThickness();
return true;
}
else if (name == "fill_color.r") {
value = text.getFillColor().r;
return true;
}
else if (name == "fill_color.g") {
value = text.getFillColor().g;
return true;
}
else if (name == "fill_color.b") {
value = text.getFillColor().b;
return true;
}
else if (name == "fill_color.a") {
value = text.getFillColor().a;
return true;
}
else if (name == "outline_color.r") {
value = text.getOutlineColor().r;
return true;
}
else if (name == "outline_color.g") {
value = text.getOutlineColor().g;
return true;
}
else if (name == "outline_color.b") {
value = text.getOutlineColor().b;
return true;
}
else if (name == "outline_color.a") {
value = text.getOutlineColor().a;
return true;
}
else if (name == "z_index") {
value = static_cast<float>(z_index);
return true;
}
return false;
}
bool UICaption::getProperty(const std::string& name, sf::Color& value) const {
if (name == "fill_color") {
value = text.getFillColor();
return true;
}
else if (name == "outline_color") {
value = text.getOutlineColor();
return true;
}
return false;
}
bool UICaption::getProperty(const std::string& name, std::string& value) const {
if (name == "text") {
value = text.getString();
return true;
}
return false;
}

View File

@ -2,32 +2,15 @@
#include "Common.h" #include "Common.h"
#include "Python.h" #include "Python.h"
#include "UIDrawable.h" #include "UIDrawable.h"
#include "PyDrawable.h"
class UICaption: public UIDrawable class UICaption: public UIDrawable
{ {
public: public:
sf::Text text; sf::Text text;
UICaption(); // Default constructor with safe initialization void render(sf::Vector2f) override final;
void render(sf::Vector2f, sf::RenderTarget&) override final;
PyObjectsEnum derived_type() override final; PyObjectsEnum derived_type() override final;
virtual UIDrawable* click_at(sf::Vector2f point) override final; virtual UIDrawable* click_at(sf::Vector2f point) override final;
// Phase 1 virtual method implementations
sf::FloatRect get_bounds() const override;
void move(float dx, float dy) override;
void resize(float w, float h) override;
void onPositionChanged() override;
// Property system for animations
bool setProperty(const std::string& name, float value) override;
bool setProperty(const std::string& name, const sf::Color& value) override;
bool setProperty(const std::string& name, const std::string& value) override;
bool getProperty(const std::string& name, float& value) const override;
bool getProperty(const std::string& name, sf::Color& value) const override;
bool getProperty(const std::string& name, std::string& value) const override;
static PyObject* get_float_member(PyUICaptionObject* self, void* closure); static PyObject* get_float_member(PyUICaptionObject* self, void* closure);
static int set_float_member(PyUICaptionObject* self, PyObject* value, void* closure); static int set_float_member(PyUICaptionObject* self, PyObject* value, void* closure);
static PyObject* get_vec_member(PyUICaptionObject* self, void* closure); static PyObject* get_vec_member(PyUICaptionObject* self, void* closure);
@ -42,11 +25,8 @@ public:
}; };
extern PyMethodDef UICaption_methods[];
namespace mcrfpydef { namespace mcrfpydef {
static PyTypeObject PyUICaptionType = { static PyTypeObject PyUICaptionType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Caption", .tp_name = "mcrfpy.Caption",
.tp_basicsize = sizeof(PyUICaptionObject), .tp_basicsize = sizeof(PyUICaptionObject),
.tp_itemsize = 0, .tp_itemsize = 0,
@ -65,31 +45,11 @@ namespace mcrfpydef {
//.tp_iter //.tp_iter
//.tp_iternext //.tp_iternext
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Caption(text='', x=0, y=0, font=None, fill_color=None, outline_color=None, outline=0, click=None)\n\n" .tp_doc = PyDoc_STR("docstring"),
"A text display UI element with customizable font and styling.\n\n" //.tp_methods = PyUIFrame_methods,
"Args:\n"
" text (str): The text content to display. Default: ''\n"
" x (float): X position in pixels. Default: 0\n"
" y (float): Y position in pixels. Default: 0\n"
" font (Font): Font object for text rendering. Default: engine default font\n"
" fill_color (Color): Text fill color. Default: (255, 255, 255, 255)\n"
" outline_color (Color): Text outline color. Default: (0, 0, 0, 255)\n"
" outline (float): Text outline thickness. Default: 0\n"
" click (callable): Click event handler. Default: None\n\n"
"Attributes:\n"
" text (str): The displayed text content\n"
" x, y (float): Position in pixels\n"
" font (Font): Font used for rendering\n"
" fill_color, outline_color (Color): Text appearance\n"
" outline (float): Outline thickness\n"
" click (callable): Click event handler\n"
" visible (bool): Visibility state\n"
" z_index (int): Rendering order\n"
" w, h (float): Read-only computed size based on text and font"),
.tp_methods = UICaption_methods,
//.tp_members = PyUIFrame_members, //.tp_members = PyUIFrame_members,
.tp_getset = UICaption::getsetters, .tp_getset = UICaption::getsetters,
.tp_base = &mcrfpydef::PyDrawableType, //.tp_base = NULL,
.tp_init = (initproc)UICaption::init, .tp_init = (initproc)UICaption::init,
// TODO - move tp_new to .cpp file as a static function (UICaption::new) // TODO - move tp_new to .cpp file as a static function (UICaption::new)
.tp_new = [](PyTypeObject* type, PyObject* args, PyObject* kwds) -> PyObject* .tp_new = [](PyTypeObject* type, PyObject* args, PyObject* kwds) -> PyObject*

View File

@ -5,78 +5,9 @@
#include "UISprite.h" #include "UISprite.h"
#include "UIGrid.h" #include "UIGrid.h"
#include "McRFPy_API.h" #include "McRFPy_API.h"
#include "PyObjectUtils.h"
#include <climits>
#include <algorithm>
using namespace mcrfpydef; using namespace mcrfpydef;
// Local helper function to convert UIDrawable to appropriate Python object
static PyObject* convertDrawableToPython(std::shared_ptr<UIDrawable> drawable) {
if (!drawable) {
Py_RETURN_NONE;
}
PyTypeObject* type = nullptr;
PyObject* obj = nullptr;
switch (drawable->derived_type()) {
case PyObjectsEnum::UIFRAME:
{
type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame");
if (!type) return nullptr;
auto pyObj = (PyUIFrameObject*)type->tp_alloc(type, 0);
if (pyObj) {
pyObj->data = std::static_pointer_cast<UIFrame>(drawable);
}
obj = (PyObject*)pyObj;
break;
}
case PyObjectsEnum::UICAPTION:
{
type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption");
if (!type) return nullptr;
auto pyObj = (PyUICaptionObject*)type->tp_alloc(type, 0);
if (pyObj) {
pyObj->data = std::static_pointer_cast<UICaption>(drawable);
pyObj->font = nullptr;
}
obj = (PyObject*)pyObj;
break;
}
case PyObjectsEnum::UISPRITE:
{
type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite");
if (!type) return nullptr;
auto pyObj = (PyUISpriteObject*)type->tp_alloc(type, 0);
if (pyObj) {
pyObj->data = std::static_pointer_cast<UISprite>(drawable);
}
obj = (PyObject*)pyObj;
break;
}
case PyObjectsEnum::UIGRID:
{
type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid");
if (!type) return nullptr;
auto pyObj = (PyUIGridObject*)type->tp_alloc(type, 0);
if (pyObj) {
pyObj->data = std::static_pointer_cast<UIGrid>(drawable);
}
obj = (PyObject*)pyObj;
break;
}
default:
PyErr_SetString(PyExc_TypeError, "Unknown UIDrawable derived type");
return nullptr;
}
if (type) {
Py_DECREF(type);
}
return obj;
}
int UICollectionIter::init(PyUICollectionIterObject* self, PyObject* args, PyObject* kwds) int UICollectionIter::init(PyUICollectionIterObject* self, PyObject* args, PyObject* kwds)
{ {
PyErr_SetString(PyExc_TypeError, "UICollection cannot be instantiated: a C++ data source is required."); PyErr_SetString(PyExc_TypeError, "UICollection cannot be instantiated: a C++ data source is required.");
@ -85,12 +16,6 @@ int UICollectionIter::init(PyUICollectionIterObject* self, PyObject* args, PyObj
PyObject* UICollectionIter::next(PyUICollectionIterObject* self) PyObject* UICollectionIter::next(PyUICollectionIterObject* self)
{ {
// Check if self and self->data are valid
if (!self || !self->data) {
PyErr_SetString(PyExc_RuntimeError, "Iterator object or data is null");
return NULL;
}
if (self->data->size() != self->start_size) if (self->data->size() != self->start_size)
{ {
PyErr_SetString(PyExc_RuntimeError, "collection changed size during iteration"); PyErr_SetString(PyExc_RuntimeError, "collection changed size during iteration");
@ -110,8 +35,9 @@ PyObject* UICollectionIter::next(PyUICollectionIterObject* self)
return NULL; return NULL;
} }
auto target = (*vec)[self->index-1]; auto target = (*vec)[self->index-1];
// Return the proper Python object for this UIDrawable // TODO build PyObject* of the correct UIDrawable subclass to return
return convertDrawableToPython(target); //return py_instance(target);
return NULL;
} }
PyObject* UICollectionIter::repr(PyUICollectionIterObject* self) PyObject* UICollectionIter::repr(PyUICollectionIterObject* self)
@ -145,399 +71,21 @@ PyObject* UICollection::getitem(PyUICollectionObject* self, Py_ssize_t index) {
return NULL; return NULL;
} }
auto target = (*vec)[index]; auto target = (*vec)[index];
return convertDrawableToPython(target); RET_PY_INSTANCE(target);
}
int UICollection::setitem(PyUICollectionObject* self, Py_ssize_t index, PyObject* value) {
auto vec = self->data.get();
if (!vec) {
PyErr_SetString(PyExc_RuntimeError, "the collection store returned a null pointer");
return -1;
}
// Handle negative indexing
while (index < 0) index += self->data->size();
// Bounds check
if (index >= self->data->size()) {
PyErr_SetString(PyExc_IndexError, "UICollection assignment index out of range");
return -1;
}
// Handle deletion
if (value == NULL) {
self->data->erase(self->data->begin() + index);
return 0;
}
// Type checking - must be a UIDrawable subclass
if (!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
PyErr_SetString(PyExc_TypeError, "UICollection can only contain Frame, Caption, Sprite, and Grid objects");
return -1;
}
// Get the C++ object from the Python object
std::shared_ptr<UIDrawable> new_drawable = nullptr;
int old_z_index = (*vec)[index]->z_index; // Preserve the z_index
if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame"))) {
PyUIFrameObject* frame = (PyUIFrameObject*)value;
new_drawable = frame->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption"))) {
PyUICaptionObject* caption = (PyUICaptionObject*)value;
new_drawable = caption->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite"))) {
PyUISpriteObject* sprite = (PyUISpriteObject*)value;
new_drawable = sprite->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
PyUIGridObject* grid = (PyUIGridObject*)value;
new_drawable = grid->data;
}
if (!new_drawable) {
PyErr_SetString(PyExc_RuntimeError, "Failed to extract C++ object from Python object");
return -1;
}
// Preserve the z_index of the replaced element
new_drawable->z_index = old_z_index;
// Replace the element
(*vec)[index] = new_drawable;
// Mark scene as needing resort after replacing element
McRFPy_API::markSceneNeedsSort();
return 0;
}
int UICollection::contains(PyUICollectionObject* self, PyObject* value) {
auto vec = self->data.get();
if (!vec) {
PyErr_SetString(PyExc_RuntimeError, "the collection store returned a null pointer");
return -1;
}
// Type checking - must be a UIDrawable subclass
if (!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
// Not a valid type, so it can't be in the collection
return 0;
}
// Get the C++ object from the Python object
std::shared_ptr<UIDrawable> search_drawable = nullptr;
if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame"))) {
PyUIFrameObject* frame = (PyUIFrameObject*)value;
search_drawable = frame->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption"))) {
PyUICaptionObject* caption = (PyUICaptionObject*)value;
search_drawable = caption->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite"))) {
PyUISpriteObject* sprite = (PyUISpriteObject*)value;
search_drawable = sprite->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
PyUIGridObject* grid = (PyUIGridObject*)value;
search_drawable = grid->data;
}
if (!search_drawable) {
return 0;
}
// Search for the object by comparing C++ pointers
for (const auto& drawable : *vec) {
if (drawable.get() == search_drawable.get()) {
return 1; // Found
}
}
return 0; // Not found
}
PyObject* UICollection::concat(PyUICollectionObject* self, PyObject* other) {
// Create a new Python list containing elements from both collections
if (!PySequence_Check(other)) {
PyErr_SetString(PyExc_TypeError, "can only concatenate sequence to UICollection");
return NULL; return NULL;
}
Py_ssize_t self_len = self->data->size();
Py_ssize_t other_len = PySequence_Length(other);
if (other_len == -1) {
return NULL; // Error already set
}
PyObject* result_list = PyList_New(self_len + other_len);
if (!result_list) {
return NULL;
} }
// Add all elements from self
for (Py_ssize_t i = 0; i < self_len; i++) {
PyObject* item = convertDrawableToPython((*self->data)[i]);
if (!item) {
Py_DECREF(result_list);
return NULL;
}
PyList_SET_ITEM(result_list, i, item); // Steals reference
}
// Add all elements from other
for (Py_ssize_t i = 0; i < other_len; i++) {
PyObject* item = PySequence_GetItem(other, i);
if (!item) {
Py_DECREF(result_list);
return NULL;
}
PyList_SET_ITEM(result_list, self_len + i, item); // Steals reference
}
return result_list;
}
PyObject* UICollection::inplace_concat(PyUICollectionObject* self, PyObject* other) {
if (!PySequence_Check(other)) {
PyErr_SetString(PyExc_TypeError, "can only concatenate sequence to UICollection");
return NULL;
}
// First, validate ALL items in the sequence before modifying anything
Py_ssize_t other_len = PySequence_Length(other);
if (other_len == -1) {
return NULL; // Error already set
}
// Validate all items first
for (Py_ssize_t i = 0; i < other_len; i++) {
PyObject* item = PySequence_GetItem(other, i);
if (!item) {
return NULL;
}
// Type check
if (!PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame")) &&
!PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite")) &&
!PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption")) &&
!PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
Py_DECREF(item);
PyErr_Format(PyExc_TypeError,
"UICollection can only contain Frame, Caption, Sprite, and Grid objects; "
"got %s at index %zd", Py_TYPE(item)->tp_name, i);
return NULL;
}
Py_DECREF(item);
}
// All items validated, now we can safely add them
for (Py_ssize_t i = 0; i < other_len; i++) {
PyObject* item = PySequence_GetItem(other, i);
if (!item) {
return NULL; // Shouldn't happen, but be safe
}
// Use the existing append method which handles z_index assignment
PyObject* result = append(self, item);
Py_DECREF(item);
if (!result) {
return NULL; // append() failed
}
Py_DECREF(result); // append returns Py_None
}
Py_INCREF(self);
return (PyObject*)self;
}
PyObject* UICollection::subscript(PyUICollectionObject* self, PyObject* key) {
if (PyLong_Check(key)) {
// Single index - delegate to sq_item
Py_ssize_t index = PyLong_AsSsize_t(key);
if (index == -1 && PyErr_Occurred()) {
return NULL;
}
return getitem(self, index);
} else if (PySlice_Check(key)) {
// Handle slice
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(key, self->data->size(), &start, &stop, &step, &slicelength) < 0) {
return NULL;
}
PyObject* result_list = PyList_New(slicelength);
if (!result_list) {
return NULL;
}
for (Py_ssize_t i = 0, cur = start; i < slicelength; i++, cur += step) {
PyObject* item = convertDrawableToPython((*self->data)[cur]);
if (!item) {
Py_DECREF(result_list);
return NULL;
}
PyList_SET_ITEM(result_list, i, item); // Steals reference
}
return result_list;
} else {
PyErr_Format(PyExc_TypeError, "UICollection indices must be integers or slices, not %.200s",
Py_TYPE(key)->tp_name);
return NULL;
}
}
int UICollection::ass_subscript(PyUICollectionObject* self, PyObject* key, PyObject* value) {
if (PyLong_Check(key)) {
// Single index - delegate to sq_ass_item
Py_ssize_t index = PyLong_AsSsize_t(key);
if (index == -1 && PyErr_Occurred()) {
return -1;
}
return setitem(self, index, value);
} else if (PySlice_Check(key)) {
// Handle slice assignment/deletion
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(key, self->data->size(), &start, &stop, &step, &slicelength) < 0) {
return -1;
}
if (value == NULL) {
// Deletion
if (step != 1) {
// For non-contiguous slices, delete from highest to lowest to maintain indices
std::vector<Py_ssize_t> indices;
for (Py_ssize_t i = 0, cur = start; i < slicelength; i++, cur += step) {
indices.push_back(cur);
}
// Sort in descending order and delete
std::sort(indices.begin(), indices.end(), std::greater<Py_ssize_t>());
for (Py_ssize_t idx : indices) {
self->data->erase(self->data->begin() + idx);
}
} else {
// Contiguous slice - can delete in one go
self->data->erase(self->data->begin() + start, self->data->begin() + stop);
}
// Mark scene as needing resort after slice deletion
McRFPy_API::markSceneNeedsSort();
return 0;
} else {
// Assignment
if (!PySequence_Check(value)) {
PyErr_SetString(PyExc_TypeError, "can only assign sequence to slice");
return -1;
}
Py_ssize_t value_len = PySequence_Length(value);
if (value_len == -1) {
return -1;
}
// Validate all items first
std::vector<std::shared_ptr<UIDrawable>> new_items;
for (Py_ssize_t i = 0; i < value_len; i++) {
PyObject* item = PySequence_GetItem(value, i);
if (!item) {
return -1;
}
// Type check and extract C++ object
std::shared_ptr<UIDrawable> drawable = nullptr;
if (PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame"))) {
drawable = ((PyUIFrameObject*)item)->data;
} else if (PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption"))) {
drawable = ((PyUICaptionObject*)item)->data;
} else if (PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite"))) {
drawable = ((PyUISpriteObject*)item)->data;
} else if (PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
drawable = ((PyUIGridObject*)item)->data;
} else {
Py_DECREF(item);
PyErr_Format(PyExc_TypeError,
"UICollection can only contain Frame, Caption, Sprite, and Grid objects; "
"got %s at index %zd", Py_TYPE(item)->tp_name, i);
return -1;
}
Py_DECREF(item);
new_items.push_back(drawable);
}
// Now perform the assignment
if (step == 1) {
// Contiguous slice
if (slicelength != value_len) {
// Need to resize
auto it_start = self->data->begin() + start;
auto it_stop = self->data->begin() + stop;
self->data->erase(it_start, it_stop);
self->data->insert(self->data->begin() + start, new_items.begin(), new_items.end());
} else {
// Same size, just replace
for (Py_ssize_t i = 0; i < slicelength; i++) {
// Preserve z_index
new_items[i]->z_index = (*self->data)[start + i]->z_index;
(*self->data)[start + i] = new_items[i];
}
}
} else {
// Extended slice
if (slicelength != value_len) {
PyErr_Format(PyExc_ValueError,
"attempt to assign sequence of size %zd to extended slice of size %zd",
value_len, slicelength);
return -1;
}
for (Py_ssize_t i = 0, cur = start; i < slicelength; i++, cur += step) {
// Preserve z_index
new_items[i]->z_index = (*self->data)[cur]->z_index;
(*self->data)[cur] = new_items[i];
}
}
// Mark scene as needing resort after slice assignment
McRFPy_API::markSceneNeedsSort();
return 0;
}
} else {
PyErr_Format(PyExc_TypeError, "UICollection indices must be integers or slices, not %.200s",
Py_TYPE(key)->tp_name);
return -1;
}
}
PyMappingMethods UICollection::mpmethods = {
.mp_length = (lenfunc)UICollection::len,
.mp_subscript = (binaryfunc)UICollection::subscript,
.mp_ass_subscript = (objobjargproc)UICollection::ass_subscript
};
PySequenceMethods UICollection::sqmethods = { PySequenceMethods UICollection::sqmethods = {
.sq_length = (lenfunc)UICollection::len, .sq_length = (lenfunc)UICollection::len,
.sq_concat = (binaryfunc)UICollection::concat,
.sq_repeat = NULL,
.sq_item = (ssizeargfunc)UICollection::getitem, .sq_item = (ssizeargfunc)UICollection::getitem,
.was_sq_slice = NULL, //.sq_item_by_index = PyUICollection_getitem
.sq_ass_item = (ssizeobjargproc)UICollection::setitem, //.sq_slice - return a subset of the iterable
.was_sq_ass_slice = NULL, //.sq_ass_item - called when `o[x] = y` is executed (x is any object type)
.sq_contains = (objobjproc)UICollection::contains, //.sq_ass_slice - cool; no thanks, for now
.sq_inplace_concat = (binaryfunc)UICollection::inplace_concat, //.sq_contains - called when `x in o` is executed
.sq_inplace_repeat = NULL //.sq_ass_item_by_index - called when `o[x] = y` is executed (x is explictly an integer)
}; };
/* Idiomatic way to fetch complete types from the API rather than referencing their PyTypeObject struct /* Idiomatic way to fetch complete types from the API rather than referencing their PyTypeObject struct
@ -554,12 +102,6 @@ PyObject* UICollection::append(PyUICollectionObject* self, PyObject* o)
// if not UIDrawable subclass, reject it // if not UIDrawable subclass, reject it
// self->data->push_back( c++ object inside o ); // self->data->push_back( c++ object inside o );
// Ensure module is initialized
if (!McRFPy_API::mcrf_module) {
PyErr_SetString(PyExc_RuntimeError, "mcrfpy module not initialized");
return NULL;
}
// this would be a great use case for .tp_base // this would be a great use case for .tp_base
if (!PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame")) && if (!PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame")) &&
!PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite")) && !PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite")) &&
@ -571,128 +113,27 @@ PyObject* UICollection::append(PyUICollectionObject* self, PyObject* o)
return NULL; return NULL;
} }
// Calculate z_index for the new element
int new_z_index = 0;
if (!self->data->empty()) {
// Get the z_index of the last element and add 10
int last_z = self->data->back()->z_index;
if (last_z <= INT_MAX - 10) {
new_z_index = last_z + 10;
} else {
new_z_index = INT_MAX;
}
}
if (PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame"))) if (PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame")))
{ {
PyUIFrameObject* frame = (PyUIFrameObject*)o; PyUIFrameObject* frame = (PyUIFrameObject*)o;
frame->data->z_index = new_z_index;
self->data->push_back(frame->data); self->data->push_back(frame->data);
} }
if (PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption"))) if (PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption")))
{ {
PyUICaptionObject* caption = (PyUICaptionObject*)o; PyUICaptionObject* caption = (PyUICaptionObject*)o;
caption->data->z_index = new_z_index;
self->data->push_back(caption->data); self->data->push_back(caption->data);
} }
if (PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite"))) if (PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite")))
{ {
PyUISpriteObject* sprite = (PyUISpriteObject*)o; PyUISpriteObject* sprite = (PyUISpriteObject*)o;
sprite->data->z_index = new_z_index;
self->data->push_back(sprite->data); self->data->push_back(sprite->data);
} }
if (PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) if (PyObject_IsInstance(o, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid")))
{ {
PyUIGridObject* grid = (PyUIGridObject*)o; PyUIGridObject* grid = (PyUIGridObject*)o;
grid->data->z_index = new_z_index;
self->data->push_back(grid->data); self->data->push_back(grid->data);
} }
// Mark scene as needing resort after adding element
McRFPy_API::markSceneNeedsSort();
Py_INCREF(Py_None);
return Py_None;
}
PyObject* UICollection::extend(PyUICollectionObject* self, PyObject* iterable)
{
// Accept any iterable of UIDrawable objects
PyObject* iterator = PyObject_GetIter(iterable);
if (iterator == NULL) {
PyErr_SetString(PyExc_TypeError, "UICollection.extend requires an iterable");
return NULL;
}
// Ensure module is initialized
if (!McRFPy_API::mcrf_module) {
Py_DECREF(iterator);
PyErr_SetString(PyExc_RuntimeError, "mcrfpy module not initialized");
return NULL;
}
// Get current highest z_index
int current_z_index = 0;
if (!self->data->empty()) {
current_z_index = self->data->back()->z_index;
}
PyObject* item;
while ((item = PyIter_Next(iterator)) != NULL) {
// Check if item is a UIDrawable subclass
if (!PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame")) &&
!PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite")) &&
!PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption")) &&
!PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid")))
{
Py_DECREF(item);
Py_DECREF(iterator);
PyErr_SetString(PyExc_TypeError, "All items must be Frame, Caption, Sprite, or Grid objects");
return NULL;
}
// Increment z_index for each new element
if (current_z_index <= INT_MAX - 10) {
current_z_index += 10;
} else {
current_z_index = INT_MAX;
}
// Add the item based on its type
if (PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame"))) {
PyUIFrameObject* frame = (PyUIFrameObject*)item;
frame->data->z_index = current_z_index;
self->data->push_back(frame->data);
}
else if (PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption"))) {
PyUICaptionObject* caption = (PyUICaptionObject*)item;
caption->data->z_index = current_z_index;
self->data->push_back(caption->data);
}
else if (PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite"))) {
PyUISpriteObject* sprite = (PyUISpriteObject*)item;
sprite->data->z_index = current_z_index;
self->data->push_back(sprite->data);
}
else if (PyObject_IsInstance(item, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
PyUIGridObject* grid = (PyUIGridObject*)item;
grid->data->z_index = current_z_index;
self->data->push_back(grid->data);
}
Py_DECREF(item);
}
Py_DECREF(iterator);
// Check if iteration ended due to an error
if (PyErr_Occurred()) {
return NULL;
}
// Mark scene as needing resort after adding elements
McRFPy_API::markSceneNeedsSort();
Py_INCREF(Py_None); Py_INCREF(Py_None);
return Py_None; return Py_None;
} }
@ -705,121 +146,27 @@ PyObject* UICollection::remove(PyUICollectionObject* self, PyObject* o)
return NULL; return NULL;
} }
long index = PyLong_AsLong(o); long index = PyLong_AsLong(o);
// Handle negative indexing
while (index < 0) index += self->data->size();
if (index >= self->data->size()) if (index >= self->data->size())
{ {
PyErr_SetString(PyExc_ValueError, "Index out of range"); PyErr_SetString(PyExc_ValueError, "Index out of range");
return NULL; return NULL;
} }
else if (index < 0)
{
PyErr_SetString(PyExc_NotImplementedError, "reverse indexing is not implemented.");
return NULL;
}
// release the shared pointer at self->data[index]; // release the shared pointer at self->data[index];
self->data->erase(self->data->begin() + index); self->data->erase(self->data->begin() + index);
// Mark scene as needing resort after removing element
McRFPy_API::markSceneNeedsSort();
Py_INCREF(Py_None); Py_INCREF(Py_None);
return Py_None; return Py_None;
} }
PyObject* UICollection::index_method(PyUICollectionObject* self, PyObject* value) {
auto vec = self->data.get();
if (!vec) {
PyErr_SetString(PyExc_RuntimeError, "the collection store returned a null pointer");
return NULL;
}
// Type checking - must be a UIDrawable subclass
if (!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
PyErr_SetString(PyExc_TypeError, "UICollection.index requires a Frame, Caption, Sprite, or Grid object");
return NULL;
}
// Get the C++ object from the Python object
std::shared_ptr<UIDrawable> search_drawable = nullptr;
if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame"))) {
search_drawable = ((PyUIFrameObject*)value)->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption"))) {
search_drawable = ((PyUICaptionObject*)value)->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite"))) {
search_drawable = ((PyUISpriteObject*)value)->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
search_drawable = ((PyUIGridObject*)value)->data;
}
if (!search_drawable) {
PyErr_SetString(PyExc_RuntimeError, "Failed to extract C++ object from Python object");
return NULL;
}
// Search for the object
for (size_t i = 0; i < vec->size(); i++) {
if ((*vec)[i].get() == search_drawable.get()) {
return PyLong_FromSsize_t(i);
}
}
PyErr_SetString(PyExc_ValueError, "value not in UICollection");
return NULL;
}
PyObject* UICollection::count(PyUICollectionObject* self, PyObject* value) {
auto vec = self->data.get();
if (!vec) {
PyErr_SetString(PyExc_RuntimeError, "the collection store returned a null pointer");
return NULL;
}
// Type checking - must be a UIDrawable subclass
if (!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption")) &&
!PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
// Not a valid type, so count is 0
return PyLong_FromLong(0);
}
// Get the C++ object from the Python object
std::shared_ptr<UIDrawable> search_drawable = nullptr;
if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame"))) {
search_drawable = ((PyUIFrameObject*)value)->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption"))) {
search_drawable = ((PyUICaptionObject*)value)->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite"))) {
search_drawable = ((PyUISpriteObject*)value)->data;
} else if (PyObject_IsInstance(value, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
search_drawable = ((PyUIGridObject*)value)->data;
}
if (!search_drawable) {
return PyLong_FromLong(0);
}
// Count occurrences
Py_ssize_t count = 0;
for (const auto& drawable : *vec) {
if (drawable.get() == search_drawable.get()) {
count++;
}
}
return PyLong_FromSsize_t(count);
}
PyMethodDef UICollection::methods[] = { PyMethodDef UICollection::methods[] = {
{"append", (PyCFunction)UICollection::append, METH_O}, {"append", (PyCFunction)UICollection::append, METH_O},
{"extend", (PyCFunction)UICollection::extend, METH_O}, //{"extend", (PyCFunction)PyUICollection_extend, METH_O}, // TODO
{"remove", (PyCFunction)UICollection::remove, METH_O}, {"remove", (PyCFunction)UICollection::remove, METH_O},
{"index", (PyCFunction)UICollection::index_method, METH_O},
{"count", (PyCFunction)UICollection::count, METH_O},
{NULL, NULL, 0, NULL} {NULL, NULL, 0, NULL}
}; };
@ -828,47 +175,7 @@ PyObject* UICollection::repr(PyUICollectionObject* self)
std::ostringstream ss; std::ostringstream ss;
if (!self->data) ss << "<UICollection (invalid internal object)>"; if (!self->data) ss << "<UICollection (invalid internal object)>";
else { else {
ss << "<UICollection (" << self->data->size() << " objects: "; ss << "<UICollection (" << self->data->size() << " child objects)>";
// Count each type
int frame_count = 0, caption_count = 0, sprite_count = 0, grid_count = 0, other_count = 0;
for (auto& item : *self->data) {
switch(item->derived_type()) {
case PyObjectsEnum::UIFRAME: frame_count++; break;
case PyObjectsEnum::UICAPTION: caption_count++; break;
case PyObjectsEnum::UISPRITE: sprite_count++; break;
case PyObjectsEnum::UIGRID: grid_count++; break;
default: other_count++; break;
}
}
// Build type summary
bool first = true;
if (frame_count > 0) {
ss << frame_count << " Frame" << (frame_count > 1 ? "s" : "");
first = false;
}
if (caption_count > 0) {
if (!first) ss << ", ";
ss << caption_count << " Caption" << (caption_count > 1 ? "s" : "");
first = false;
}
if (sprite_count > 0) {
if (!first) ss << ", ";
ss << sprite_count << " Sprite" << (sprite_count > 1 ? "s" : "");
first = false;
}
if (grid_count > 0) {
if (!first) ss << ", ";
ss << grid_count << " Grid" << (grid_count > 1 ? "s" : "");
first = false;
}
if (other_count > 0) {
if (!first) ss << ", ";
ss << other_count << " UIDrawable" << (other_count > 1 ? "s" : "");
}
ss << ")>";
} }
std::string repr_str = ss.str(); std::string repr_str = ss.str();
return PyUnicode_DecodeUTF8(repr_str.c_str(), repr_str.size(), "replace"); return PyUnicode_DecodeUTF8(repr_str.c_str(), repr_str.size(), "replace");
@ -882,18 +189,9 @@ int UICollection::init(PyUICollectionObject* self, PyObject* args, PyObject* kwd
PyObject* UICollection::iter(PyUICollectionObject* self) PyObject* UICollection::iter(PyUICollectionObject* self)
{ {
// Get the iterator type from the module to ensure we have the registered version PyUICollectionIterObject* iterObj;
PyTypeObject* iterType = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "UICollectionIter"); iterObj = (PyUICollectionIterObject*)PyUICollectionIterType.tp_alloc(&PyUICollectionIterType, 0);
if (!iterType) {
PyErr_SetString(PyExc_RuntimeError, "Could not find UICollectionIter type in module");
return NULL;
}
// Allocate new iterator instance
PyUICollectionIterObject* iterObj = (PyUICollectionIterObject*)iterType->tp_alloc(iterType, 0);
if (iterObj == NULL) { if (iterObj == NULL) {
Py_DECREF(iterType);
return NULL; // Failed to allocate memory for the iterator object return NULL; // Failed to allocate memory for the iterator object
} }
@ -901,6 +199,5 @@ PyObject* UICollection::iter(PyUICollectionObject* self)
iterObj->index = 0; iterObj->index = 0;
iterObj->start_size = self->data->size(); iterObj->start_size = self->data->size();
Py_DECREF(iterType);
return (PyObject*)iterObj; return (PyObject*)iterObj;
} }

View File

@ -19,19 +19,9 @@ class UICollection
public: public:
static Py_ssize_t len(PyUICollectionObject* self); static Py_ssize_t len(PyUICollectionObject* self);
static PyObject* getitem(PyUICollectionObject* self, Py_ssize_t index); static PyObject* getitem(PyUICollectionObject* self, Py_ssize_t index);
static int setitem(PyUICollectionObject* self, Py_ssize_t index, PyObject* value);
static int contains(PyUICollectionObject* self, PyObject* value);
static PyObject* concat(PyUICollectionObject* self, PyObject* other);
static PyObject* inplace_concat(PyUICollectionObject* self, PyObject* other);
static PySequenceMethods sqmethods; static PySequenceMethods sqmethods;
static PyMappingMethods mpmethods;
static PyObject* subscript(PyUICollectionObject* self, PyObject* key);
static int ass_subscript(PyUICollectionObject* self, PyObject* key, PyObject* value);
static PyObject* append(PyUICollectionObject* self, PyObject* o); static PyObject* append(PyUICollectionObject* self, PyObject* o);
static PyObject* extend(PyUICollectionObject* self, PyObject* iterable);
static PyObject* remove(PyUICollectionObject* self, PyObject* o); static PyObject* remove(PyUICollectionObject* self, PyObject* o);
static PyObject* index_method(PyUICollectionObject* self, PyObject* value);
static PyObject* count(PyUICollectionObject* self, PyObject* value);
static PyMethodDef methods[]; static PyMethodDef methods[];
static PyObject* repr(PyUICollectionObject* self); static PyObject* repr(PyUICollectionObject* self);
static int init(PyUICollectionObject* self, PyObject* args, PyObject* kwds); static int init(PyUICollectionObject* self, PyObject* args, PyObject* kwds);
@ -40,7 +30,7 @@ public:
namespace mcrfpydef { namespace mcrfpydef {
static PyTypeObject PyUICollectionIterType = { static PyTypeObject PyUICollectionIterType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0}, //PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mcrfpy.UICollectionIter", .tp_name = "mcrfpy.UICollectionIter",
.tp_basicsize = sizeof(PyUICollectionIterObject), .tp_basicsize = sizeof(PyUICollectionIterObject),
.tp_itemsize = 0, .tp_itemsize = 0,
@ -54,11 +44,9 @@ namespace mcrfpydef {
.tp_repr = (reprfunc)UICollectionIter::repr, .tp_repr = (reprfunc)UICollectionIter::repr,
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Iterator for a collection of UI objects"), .tp_doc = PyDoc_STR("Iterator for a collection of UI objects"),
.tp_iter = PyObject_SelfIter,
.tp_iternext = (iternextfunc)UICollectionIter::next, .tp_iternext = (iternextfunc)UICollectionIter::next,
//.tp_getset = PyUICollection_getset, //.tp_getset = PyUICollection_getset,
.tp_init = (initproc)UICollectionIter::init, // just raise an exception .tp_init = (initproc)UICollectionIter::init, // just raise an exception
.tp_alloc = PyType_GenericAlloc,
//TODO - as static method, not inline lambda def, please //TODO - as static method, not inline lambda def, please
.tp_new = [](PyTypeObject* type, PyObject* args, PyObject* kwds) -> PyObject* .tp_new = [](PyTypeObject* type, PyObject* args, PyObject* kwds) -> PyObject*
{ {
@ -68,7 +56,7 @@ namespace mcrfpydef {
}; };
static PyTypeObject PyUICollectionType = { static PyTypeObject PyUICollectionType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0}, //PyVarObject_/HEAD_INIT(NULL, 0)
.tp_name = "mcrfpy.UICollection", .tp_name = "mcrfpy.UICollection",
.tp_basicsize = sizeof(PyUICollectionObject), .tp_basicsize = sizeof(PyUICollectionObject),
.tp_itemsize = 0, .tp_itemsize = 0,
@ -81,7 +69,6 @@ namespace mcrfpydef {
}, },
.tp_repr = (reprfunc)UICollection::repr, .tp_repr = (reprfunc)UICollection::repr,
.tp_as_sequence = &UICollection::sqmethods, .tp_as_sequence = &UICollection::sqmethods,
.tp_as_mapping = &UICollection::mpmethods,
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Iterable, indexable collection of UI objects"), .tp_doc = PyDoc_STR("Iterable, indexable collection of UI objects"),
.tp_iter = (getiterfunc)UICollection::iter, .tp_iter = (getiterfunc)UICollection::iter,

View File

@ -1,82 +0,0 @@
#pragma once
#include "UIDrawable.h"
#include <vector>
#include <memory>
// Base class for UI containers that provides common click handling logic
class UIContainerBase {
protected:
// Transform a point from parent coordinates to this container's local coordinates
virtual sf::Vector2f toLocalCoordinates(sf::Vector2f point) const = 0;
// Transform a point from this container's local coordinates to child coordinates
virtual sf::Vector2f toChildCoordinates(sf::Vector2f localPoint, int childIndex) const = 0;
// Get the bounds of this container in parent coordinates
virtual sf::FloatRect getBounds() const = 0;
// Check if a local point is within this container's bounds
virtual bool containsPoint(sf::Vector2f localPoint) const = 0;
// Get click handler if this container has one
virtual UIDrawable* getClickHandler() = 0;
// Get children to check for clicks (can be empty)
virtual std::vector<UIDrawable*> getClickableChildren() = 0;
public:
// Standard click handling algorithm for all containers
// Returns the deepest UIDrawable that has a click handler and contains the point
UIDrawable* handleClick(sf::Vector2f point) {
// Transform to local coordinates
sf::Vector2f localPoint = toLocalCoordinates(point);
// Check if point is within our bounds
if (!containsPoint(localPoint)) {
return nullptr;
}
// Check children in reverse z-order (top-most first)
// This ensures that elements rendered on top get first chance at clicks
auto children = getClickableChildren();
// TODO: Sort by z-index if not already sorted
// std::sort(children.begin(), children.end(),
// [](UIDrawable* a, UIDrawable* b) { return a->z_index > b->z_index; });
for (int i = children.size() - 1; i >= 0; --i) {
if (!children[i]->visible) continue;
sf::Vector2f childPoint = toChildCoordinates(localPoint, i);
if (auto target = children[i]->click_at(childPoint)) {
// Child (or its descendant) handled the click
return target;
}
// If child didn't handle it, continue checking other children
// This allows click-through for elements without handlers
}
// No child consumed the click
// Now check if WE have a click handler
return getClickHandler();
}
};
// Helper for containers with simple box bounds
class RectangularContainer : public UIContainerBase {
protected:
sf::FloatRect bounds;
sf::Vector2f toLocalCoordinates(sf::Vector2f point) const override {
return point - sf::Vector2f(bounds.left, bounds.top);
}
bool containsPoint(sf::Vector2f localPoint) const override {
return localPoint.x >= 0 && localPoint.y >= 0 &&
localPoint.x < bounds.width && localPoint.y < bounds.height;
}
sf::FloatRect getBounds() const override {
return bounds;
}
};

View File

@ -3,10 +3,8 @@
#include "UICaption.h" #include "UICaption.h"
#include "UISprite.h" #include "UISprite.h"
#include "UIGrid.h" #include "UIGrid.h"
#include "GameEngine.h"
#include "McRFPy_API.h"
UIDrawable::UIDrawable() : position(0.0f, 0.0f) { click_callable = NULL; } UIDrawable::UIDrawable() { click_callable = NULL; }
void UIDrawable::click_unregister() void UIDrawable::click_unregister()
{ {
@ -15,7 +13,7 @@ void UIDrawable::click_unregister()
void UIDrawable::render() void UIDrawable::render()
{ {
render(sf::Vector2f(), Resources::game->getRenderTarget()); render(sf::Vector2f());
} }
PyObject* UIDrawable::get_click(PyObject* self, void* closure) { PyObject* UIDrawable::get_click(PyObject* self, void* closure) {
@ -25,28 +23,16 @@ PyObject* UIDrawable::get_click(PyObject* self, void* closure) {
switch (objtype) switch (objtype)
{ {
case PyObjectsEnum::UIFRAME: case PyObjectsEnum::UIFRAME:
if (((PyUIFrameObject*)self)->data->click_callable)
ptr = ((PyUIFrameObject*)self)->data->click_callable->borrow(); ptr = ((PyUIFrameObject*)self)->data->click_callable->borrow();
else
ptr = NULL;
break; break;
case PyObjectsEnum::UICAPTION: case PyObjectsEnum::UICAPTION:
if (((PyUICaptionObject*)self)->data->click_callable)
ptr = ((PyUICaptionObject*)self)->data->click_callable->borrow(); ptr = ((PyUICaptionObject*)self)->data->click_callable->borrow();
else
ptr = NULL;
break; break;
case PyObjectsEnum::UISPRITE: case PyObjectsEnum::UISPRITE:
if (((PyUISpriteObject*)self)->data->click_callable)
ptr = ((PyUISpriteObject*)self)->data->click_callable->borrow(); ptr = ((PyUISpriteObject*)self)->data->click_callable->borrow();
else
ptr = NULL;
break; break;
case PyObjectsEnum::UIGRID: case PyObjectsEnum::UIGRID:
if (((PyUIGridObject*)self)->data->click_callable)
ptr = ((PyUIGridObject*)self)->data->click_callable->borrow(); ptr = ((PyUIGridObject*)self)->data->click_callable->borrow();
else
ptr = NULL;
break; break;
default: default:
PyErr_SetString(PyExc_TypeError, "no idea how you did that; invalid UIDrawable derived instance for _get_click"); PyErr_SetString(PyExc_TypeError, "no idea how you did that; invalid UIDrawable derived instance for _get_click");
@ -93,389 +79,3 @@ void UIDrawable::click_register(PyObject* callable)
{ {
click_callable = std::make_unique<PyClickCallable>(callable); click_callable = std::make_unique<PyClickCallable>(callable);
} }
PyObject* UIDrawable::get_int(PyObject* self, void* closure) {
PyObjectsEnum objtype = static_cast<PyObjectsEnum>(reinterpret_cast<long>(closure));
UIDrawable* drawable = nullptr;
switch (objtype) {
case PyObjectsEnum::UIFRAME:
drawable = ((PyUIFrameObject*)self)->data.get();
break;
case PyObjectsEnum::UICAPTION:
drawable = ((PyUICaptionObject*)self)->data.get();
break;
case PyObjectsEnum::UISPRITE:
drawable = ((PyUISpriteObject*)self)->data.get();
break;
case PyObjectsEnum::UIGRID:
drawable = ((PyUIGridObject*)self)->data.get();
break;
default:
PyErr_SetString(PyExc_TypeError, "Invalid UIDrawable derived instance");
return NULL;
}
return PyLong_FromLong(drawable->z_index);
}
int UIDrawable::set_int(PyObject* self, PyObject* value, void* closure) {
PyObjectsEnum objtype = static_cast<PyObjectsEnum>(reinterpret_cast<long>(closure));
UIDrawable* drawable = nullptr;
switch (objtype) {
case PyObjectsEnum::UIFRAME:
drawable = ((PyUIFrameObject*)self)->data.get();
break;
case PyObjectsEnum::UICAPTION:
drawable = ((PyUICaptionObject*)self)->data.get();
break;
case PyObjectsEnum::UISPRITE:
drawable = ((PyUISpriteObject*)self)->data.get();
break;
case PyObjectsEnum::UIGRID:
drawable = ((PyUIGridObject*)self)->data.get();
break;
default:
PyErr_SetString(PyExc_TypeError, "Invalid UIDrawable derived instance");
return -1;
}
if (!PyLong_Check(value)) {
PyErr_SetString(PyExc_TypeError, "z_index must be an integer");
return -1;
}
long z = PyLong_AsLong(value);
if (z == -1 && PyErr_Occurred()) {
return -1;
}
// Clamp to int range
if (z < INT_MIN) z = INT_MIN;
if (z > INT_MAX) z = INT_MAX;
int old_z_index = drawable->z_index;
drawable->z_index = static_cast<int>(z);
// Notify of z_index change
if (old_z_index != drawable->z_index) {
drawable->notifyZIndexChanged();
}
return 0;
}
void UIDrawable::notifyZIndexChanged() {
// Mark the current scene as needing sort
// This works for elements in the scene's ui_elements collection
McRFPy_API::markSceneNeedsSort();
// TODO: In the future, we could add parent tracking to handle Frame children
// For now, Frame children will need manual sorting or collection modification
// to trigger a resort
}
PyObject* UIDrawable::get_name(PyObject* self, void* closure) {
PyObjectsEnum objtype = static_cast<PyObjectsEnum>(reinterpret_cast<long>(closure));
UIDrawable* drawable = nullptr;
switch (objtype) {
case PyObjectsEnum::UIFRAME:
drawable = ((PyUIFrameObject*)self)->data.get();
break;
case PyObjectsEnum::UICAPTION:
drawable = ((PyUICaptionObject*)self)->data.get();
break;
case PyObjectsEnum::UISPRITE:
drawable = ((PyUISpriteObject*)self)->data.get();
break;
case PyObjectsEnum::UIGRID:
drawable = ((PyUIGridObject*)self)->data.get();
break;
default:
PyErr_SetString(PyExc_TypeError, "Invalid UIDrawable derived instance");
return NULL;
}
return PyUnicode_FromString(drawable->name.c_str());
}
int UIDrawable::set_name(PyObject* self, PyObject* value, void* closure) {
PyObjectsEnum objtype = static_cast<PyObjectsEnum>(reinterpret_cast<long>(closure));
UIDrawable* drawable = nullptr;
switch (objtype) {
case PyObjectsEnum::UIFRAME:
drawable = ((PyUIFrameObject*)self)->data.get();
break;
case PyObjectsEnum::UICAPTION:
drawable = ((PyUICaptionObject*)self)->data.get();
break;
case PyObjectsEnum::UISPRITE:
drawable = ((PyUISpriteObject*)self)->data.get();
break;
case PyObjectsEnum::UIGRID:
drawable = ((PyUIGridObject*)self)->data.get();
break;
default:
PyErr_SetString(PyExc_TypeError, "Invalid UIDrawable derived instance");
return -1;
}
if (value == NULL || value == Py_None) {
drawable->name = "";
return 0;
}
if (!PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError, "name must be a string");
return -1;
}
const char* name_str = PyUnicode_AsUTF8(value);
if (!name_str) {
return -1;
}
drawable->name = name_str;
return 0;
}
void UIDrawable::enableRenderTexture(unsigned int width, unsigned int height) {
// Create or recreate RenderTexture if size changed
if (!render_texture || render_texture->getSize().x != width || render_texture->getSize().y != height) {
render_texture = std::make_unique<sf::RenderTexture>();
if (!render_texture->create(width, height)) {
render_texture.reset();
use_render_texture = false;
return;
}
render_sprite.setTexture(render_texture->getTexture());
}
use_render_texture = true;
render_dirty = true;
}
void UIDrawable::updateRenderTexture() {
if (!use_render_texture || !render_texture) {
return;
}
// Clear the RenderTexture
render_texture->clear(sf::Color::Transparent);
// Render content to RenderTexture
// This will be overridden by derived classes
// For now, just display the texture
render_texture->display();
// Update the sprite
render_sprite.setTexture(render_texture->getTexture());
}
PyObject* UIDrawable::get_float_member(PyObject* self, void* closure) {
PyObjectsEnum objtype = static_cast<PyObjectsEnum>(reinterpret_cast<intptr_t>(closure) >> 8);
int member = reinterpret_cast<intptr_t>(closure) & 0xFF;
UIDrawable* drawable = nullptr;
switch (objtype) {
case PyObjectsEnum::UIFRAME:
drawable = ((PyUIFrameObject*)self)->data.get();
break;
case PyObjectsEnum::UICAPTION:
drawable = ((PyUICaptionObject*)self)->data.get();
break;
case PyObjectsEnum::UISPRITE:
drawable = ((PyUISpriteObject*)self)->data.get();
break;
case PyObjectsEnum::UIGRID:
drawable = ((PyUIGridObject*)self)->data.get();
break;
default:
PyErr_SetString(PyExc_TypeError, "Invalid UIDrawable derived instance");
return NULL;
}
switch (member) {
case 0: // x
return PyFloat_FromDouble(drawable->position.x);
case 1: // y
return PyFloat_FromDouble(drawable->position.y);
case 2: // w (width) - delegate to get_bounds
return PyFloat_FromDouble(drawable->get_bounds().width);
case 3: // h (height) - delegate to get_bounds
return PyFloat_FromDouble(drawable->get_bounds().height);
default:
PyErr_SetString(PyExc_AttributeError, "Invalid float member");
return NULL;
}
}
int UIDrawable::set_float_member(PyObject* self, PyObject* value, void* closure) {
PyObjectsEnum objtype = static_cast<PyObjectsEnum>(reinterpret_cast<intptr_t>(closure) >> 8);
int member = reinterpret_cast<intptr_t>(closure) & 0xFF;
UIDrawable* drawable = nullptr;
switch (objtype) {
case PyObjectsEnum::UIFRAME:
drawable = ((PyUIFrameObject*)self)->data.get();
break;
case PyObjectsEnum::UICAPTION:
drawable = ((PyUICaptionObject*)self)->data.get();
break;
case PyObjectsEnum::UISPRITE:
drawable = ((PyUISpriteObject*)self)->data.get();
break;
case PyObjectsEnum::UIGRID:
drawable = ((PyUIGridObject*)self)->data.get();
break;
default:
PyErr_SetString(PyExc_TypeError, "Invalid UIDrawable derived instance");
return -1;
}
float val = 0.0f;
if (PyFloat_Check(value)) {
val = PyFloat_AsDouble(value);
} else if (PyLong_Check(value)) {
val = static_cast<float>(PyLong_AsLong(value));
} else {
PyErr_SetString(PyExc_TypeError, "Value must be a number (int or float)");
return -1;
}
switch (member) {
case 0: // x
drawable->position.x = val;
drawable->onPositionChanged();
break;
case 1: // y
drawable->position.y = val;
drawable->onPositionChanged();
break;
case 2: // w
case 3: // h
{
sf::FloatRect bounds = drawable->get_bounds();
if (member == 2) {
drawable->resize(val, bounds.height);
} else {
drawable->resize(bounds.width, val);
}
}
break;
default:
PyErr_SetString(PyExc_AttributeError, "Invalid float member");
return -1;
}
return 0;
}
PyObject* UIDrawable::get_pos(PyObject* self, void* closure) {
PyObjectsEnum objtype = static_cast<PyObjectsEnum>(reinterpret_cast<long>(closure));
UIDrawable* drawable = nullptr;
switch (objtype) {
case PyObjectsEnum::UIFRAME:
drawable = ((PyUIFrameObject*)self)->data.get();
break;
case PyObjectsEnum::UICAPTION:
drawable = ((PyUICaptionObject*)self)->data.get();
break;
case PyObjectsEnum::UISPRITE:
drawable = ((PyUISpriteObject*)self)->data.get();
break;
case PyObjectsEnum::UIGRID:
drawable = ((PyUIGridObject*)self)->data.get();
break;
default:
PyErr_SetString(PyExc_TypeError, "Invalid UIDrawable derived instance");
return NULL;
}
// Create a Python Vector object from position
PyObject* module = PyImport_ImportModule("mcrfpy");
if (!module) return NULL;
PyObject* vector_type = PyObject_GetAttrString(module, "Vector");
Py_DECREF(module);
if (!vector_type) return NULL;
PyObject* args = Py_BuildValue("(ff)", drawable->position.x, drawable->position.y);
PyObject* result = PyObject_CallObject(vector_type, args);
Py_DECREF(vector_type);
Py_DECREF(args);
return result;
}
int UIDrawable::set_pos(PyObject* self, PyObject* value, void* closure) {
PyObjectsEnum objtype = static_cast<PyObjectsEnum>(reinterpret_cast<long>(closure));
UIDrawable* drawable = nullptr;
switch (objtype) {
case PyObjectsEnum::UIFRAME:
drawable = ((PyUIFrameObject*)self)->data.get();
break;
case PyObjectsEnum::UICAPTION:
drawable = ((PyUICaptionObject*)self)->data.get();
break;
case PyObjectsEnum::UISPRITE:
drawable = ((PyUISpriteObject*)self)->data.get();
break;
case PyObjectsEnum::UIGRID:
drawable = ((PyUIGridObject*)self)->data.get();
break;
default:
PyErr_SetString(PyExc_TypeError, "Invalid UIDrawable derived instance");
return -1;
}
// Accept tuple or Vector
float x, y;
if (PyTuple_Check(value) && PyTuple_Size(value) == 2) {
PyObject* x_obj = PyTuple_GetItem(value, 0);
PyObject* y_obj = PyTuple_GetItem(value, 1);
if (PyFloat_Check(x_obj) || PyLong_Check(x_obj)) {
x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : static_cast<float>(PyLong_AsLong(x_obj));
} else {
PyErr_SetString(PyExc_TypeError, "Position x must be a number");
return -1;
}
if (PyFloat_Check(y_obj) || PyLong_Check(y_obj)) {
y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : static_cast<float>(PyLong_AsLong(y_obj));
} else {
PyErr_SetString(PyExc_TypeError, "Position y must be a number");
return -1;
}
} else {
// Try to get as Vector
PyObject* module = PyImport_ImportModule("mcrfpy");
if (!module) return -1;
PyObject* vector_type = PyObject_GetAttrString(module, "Vector");
Py_DECREF(module);
if (!vector_type) return -1;
int is_vector = PyObject_IsInstance(value, vector_type);
Py_DECREF(vector_type);
if (is_vector) {
PyVectorObject* vec = (PyVectorObject*)value;
x = vec->data.x;
y = vec->data.y;
} else {
PyErr_SetString(PyExc_TypeError, "Position must be a tuple (x, y) or Vector");
return -1;
}
}
drawable->position = sf::Vector2f(x, y);
drawable->onPositionChanged();
return 0;
}

View File

@ -28,8 +28,7 @@ class UIDrawable
{ {
public: public:
void render(); void render();
//virtual void render(sf::Vector2f) = 0; virtual void render(sf::Vector2f) = 0;
virtual void render(sf::Vector2f, sf::RenderTarget&) = 0;
virtual PyObjectsEnum derived_type() = 0; virtual PyObjectsEnum derived_type() = 0;
// Mouse input handling - callable object, methods to find event's destination // Mouse input handling - callable object, methods to find event's destination
@ -42,68 +41,6 @@ public:
static PyObject* get_click(PyObject* self, void* closure); static PyObject* get_click(PyObject* self, void* closure);
static int set_click(PyObject* self, PyObject* value, void* closure); static int set_click(PyObject* self, PyObject* value, void* closure);
static PyObject* get_int(PyObject* self, void* closure);
static int set_int(PyObject* self, PyObject* value, void* closure);
static PyObject* get_name(PyObject* self, void* closure);
static int set_name(PyObject* self, PyObject* value, void* closure);
// Common position getters/setters for Python API
static PyObject* get_float_member(PyObject* self, void* closure);
static int set_float_member(PyObject* self, PyObject* value, void* closure);
static PyObject* get_pos(PyObject* self, void* closure);
static int set_pos(PyObject* self, PyObject* value, void* closure);
// Z-order for rendering (lower values rendered first, higher values on top)
int z_index = 0;
// Notification for z_index changes
void notifyZIndexChanged();
// Name for finding elements
std::string name;
// Position in pixel coordinates (moved from derived classes)
sf::Vector2f position;
// New properties for Phase 1
bool visible = true; // #87 - visibility flag
float opacity = 1.0f; // #88 - opacity (0.0 = transparent, 1.0 = opaque)
// New virtual methods for Phase 1
virtual sf::FloatRect get_bounds() const = 0; // #89 - get bounding box
virtual void move(float dx, float dy) = 0; // #98 - move by offset
virtual void resize(float w, float h) = 0; // #98 - resize to dimensions
// Called when position changes to allow derived classes to sync
virtual void onPositionChanged() {}
// Animation support
virtual bool setProperty(const std::string& name, float value) { return false; }
virtual bool setProperty(const std::string& name, int value) { return false; }
virtual bool setProperty(const std::string& name, const sf::Color& value) { return false; }
virtual bool setProperty(const std::string& name, const sf::Vector2f& value) { return false; }
virtual bool setProperty(const std::string& name, const std::string& value) { return false; }
virtual bool getProperty(const std::string& name, float& value) const { return false; }
virtual bool getProperty(const std::string& name, int& value) const { return false; }
virtual bool getProperty(const std::string& name, sf::Color& value) const { return false; }
virtual bool getProperty(const std::string& name, sf::Vector2f& value) const { return false; }
virtual bool getProperty(const std::string& name, std::string& value) const { return false; }
protected:
// RenderTexture support (opt-in)
std::unique_ptr<sf::RenderTexture> render_texture;
sf::Sprite render_sprite;
bool use_render_texture = false;
bool render_dirty = true;
// Enable RenderTexture for this drawable
void enableRenderTexture(unsigned int width, unsigned int height);
void updateRenderTexture();
public:
// Mark this drawable as needing redraw
void markDirty() { render_dirty = true; }
}; };
typedef struct { typedef struct {
@ -119,9 +56,59 @@ typedef struct {
} PyUICollectionIterObject; } PyUICollectionIterObject;
namespace mcrfpydef { namespace mcrfpydef {
// DEPRECATED: RET_PY_INSTANCE macro has been replaced with template functions in PyObjectUtils.h //PyObject* py_instance(std::shared_ptr<UIDrawable> source);
// The macro was difficult to debug and used static type references that could cause initialization order issues. // This function segfaults on tp_alloc for an unknown reason, but works inline with mcrfpydef:: methods.
// Use PyObjectUtils::convertDrawableToPython() or PyObjectUtils::createPyObject<T>() instead.
#define RET_PY_INSTANCE(target) { \
switch (target->derived_type()) \
{ \
case PyObjectsEnum::UIFRAME: \
{ \
PyUIFrameObject* o = (PyUIFrameObject*)((&PyUIFrameType)->tp_alloc(&PyUIFrameType, 0)); \
if (o) \
{ \
auto p = std::static_pointer_cast<UIFrame>(target); \
o->data = p; \
auto utarget = o->data; \
} \
return (PyObject*)o; \
} \
case PyObjectsEnum::UICAPTION: \
{ \
PyUICaptionObject* o = (PyUICaptionObject*)((&PyUICaptionType)->tp_alloc(&PyUICaptionType, 0)); \
if (o) \
{ \
auto p = std::static_pointer_cast<UICaption>(target); \
o->data = p; \
auto utarget = o->data; \
} \
return (PyObject*)o; \
} \
case PyObjectsEnum::UISPRITE: \
{ \
PyUISpriteObject* o = (PyUISpriteObject*)((&PyUISpriteType)->tp_alloc(&PyUISpriteType, 0)); \
if (o) \
{ \
auto p = std::static_pointer_cast<UISprite>(target); \
o->data = p; \
auto utarget = o->data; \
} \
return (PyObject*)o; \
} \
case PyObjectsEnum::UIGRID: \
{ \
PyUIGridObject* o = (PyUIGridObject*)((&PyUIGridType)->tp_alloc(&PyUIGridType, 0)); \
if (o) \
{ \
auto p = std::static_pointer_cast<UIGrid>(target); \
o->data = p; \
auto utarget = o->data; \
} \
return (PyObject*)o; \
} \
} \
}
// end macro definition
//TODO: add this method to class scope; move implementation to .cpp file //TODO: add this method to class scope; move implementation to .cpp file
/* /*

View File

@ -1,60 +1,12 @@
#include "UIEntity.h" #include "UIEntity.h"
#include "UIGrid.h" #include "UIGrid.h"
#include "McRFPy_API.h" #include "McRFPy_API.h"
#include <algorithm>
#include "PyObjectUtils.h"
#include "PyVector.h"
#include "PyArgHelpers.h"
// UIDrawable methods now in UIBase.h
#include "UIEntityPyMethods.h"
UIEntity::UIEntity() {} // this will not work lol. TODO remove default constructor by finding the shared pointer inits that use it
UIEntity::UIEntity(UIGrid& grid)
UIEntity::UIEntity() : gridstate(grid.grid_x * grid.grid_y)
: self(nullptr), grid(nullptr), position(0.0f, 0.0f)
{ {
// Initialize sprite with safe defaults (sprite has its own safe constructor now)
// gridstate vector starts empty - will be lazily initialized when needed
}
// Removed UIEntity(UIGrid&) constructor - using lazy initialization instead
void UIEntity::updateVisibility()
{
if (!grid) return;
// Lazy initialize gridstate if needed
if (gridstate.size() == 0) {
gridstate.resize(grid->grid_x * grid->grid_y);
// Initialize all cells as not visible/discovered
for (auto& state : gridstate) {
state.visible = false;
state.discovered = false;
}
}
// First, mark all cells as not visible
for (auto& state : gridstate) {
state.visible = false;
}
// Compute FOV from entity's position
int x = static_cast<int>(position.x);
int y = static_cast<int>(position.y);
// Use default FOV radius of 10 (can be made configurable later)
grid->computeFOV(x, y, 10);
// Update visible cells based on FOV computation
for (int gy = 0; gy < grid->grid_y; gy++) {
for (int gx = 0; gx < grid->grid_x; gx++) {
int idx = gy * grid->grid_x + gx;
if (grid->isInFOV(gx, gy)) {
gridstate[idx].visible = true;
gridstate[idx].discovered = true; // Once seen, always discovered
}
}
}
} }
PyObject* UIEntity::at(PyUIEntityObject* self, PyObject* o) { PyObject* UIEntity::at(PyUIEntityObject* self, PyObject* o) {
@ -68,178 +20,67 @@ PyObject* UIEntity::at(PyUIEntityObject* self, PyObject* o) {
PyErr_SetString(PyExc_ValueError, "Entity cannot access surroundings because it is not associated with a grid"); PyErr_SetString(PyExc_ValueError, "Entity cannot access surroundings because it is not associated with a grid");
return NULL; return NULL;
} }
/*
// Lazy initialize gridstate if needed PyUIGridPointStateObject* obj = (PyUIGridPointStateObject*)((&mcrfpydef::PyUIGridPointStateType)->tp_alloc(&mcrfpydef::PyUIGridPointStateType, 0));
if (self->data->gridstate.size() == 0) { */
self->data->gridstate.resize(self->data->grid->grid_x * self->data->grid->grid_y);
// Initialize all cells as not visible/discovered
for (auto& state : self->data->gridstate) {
state.visible = false;
state.discovered = false;
}
}
// Bounds check
if (x < 0 || x >= self->data->grid->grid_x || y < 0 || y >= self->data->grid->grid_y) {
PyErr_Format(PyExc_IndexError, "Grid coordinates (%d, %d) out of bounds", x, y);
return NULL;
}
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "GridPointState"); auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "GridPointState");
auto obj = (PyUIGridPointStateObject*)type->tp_alloc(type, 0); auto obj = (PyUIGridPointStateObject*)type->tp_alloc(type, 0);
obj->data = &(self->data->gridstate[y * self->data->grid->grid_x + x]); //auto target = std::static_pointer_cast<UIEntity>(target);
obj->data = &(self->data->gridstate[y + self->data->grid->grid_x * x]);
obj->grid = self->data->grid; obj->grid = self->data->grid;
obj->entity = self->data; obj->entity = self->data;
return (PyObject*)obj; return (PyObject*)obj;
}
PyObject* UIEntity::index(PyUIEntityObject* self, PyObject* Py_UNUSED(ignored)) {
// Check if entity has an associated grid
if (!self->data || !self->data->grid) {
PyErr_SetString(PyExc_RuntimeError, "Entity is not associated with a grid");
return NULL;
}
// Get the grid's entity collection
auto entities = self->data->grid->entities;
if (!entities) {
PyErr_SetString(PyExc_RuntimeError, "Grid has no entity collection");
return NULL;
}
// Find this entity in the collection
int index = 0;
for (auto it = entities->begin(); it != entities->end(); ++it, ++index) {
if (it->get() == self->data.get()) {
return PyLong_FromLong(index);
}
}
// Entity not found in its grid's collection
PyErr_SetString(PyExc_ValueError, "Entity not found in its grid's entity collection");
return NULL;
} }
int UIEntity::init(PyUIEntityObject* self, PyObject* args, PyObject* kwds) { int UIEntity::init(PyUIEntityObject* self, PyObject* args, PyObject* kwds) {
// Try parsing with PyArgHelpers for grid position static const char* keywords[] = { "x", "y", "texture", "sprite_index", "grid", nullptr };
int arg_idx = 0; float x = 0.0f, y = 0.0f, scale = 1.0f;
auto grid_pos_result = PyArgHelpers::parseGridPosition(args, kwds, &arg_idx); int sprite_index = -1;
PyObject* texture = NULL;
PyObject* grid = NULL;
// Default values if (!PyArg_ParseTupleAndKeywords(args, kwds, "ffOi|O",
float grid_x = 0.0f, grid_y = 0.0f; const_cast<char**>(keywords), &x, &y, &texture, &sprite_index, &grid))
int sprite_index = 0; {
PyObject* texture = nullptr;
PyObject* grid_obj = nullptr;
// Case 1: Got grid position from helpers (tuple format)
if (grid_pos_result.valid) {
grid_x = grid_pos_result.grid_x;
grid_y = grid_pos_result.grid_y;
// Parse remaining arguments
static const char* remaining_keywords[] = {
"texture", "sprite_index", "grid", nullptr
};
// Create new tuple with remaining args
Py_ssize_t total_args = PyTuple_Size(args);
PyObject* remaining_args = PyTuple_GetSlice(args, arg_idx, total_args);
if (!PyArg_ParseTupleAndKeywords(remaining_args, kwds, "|OiO",
const_cast<char**>(remaining_keywords),
&texture, &sprite_index, &grid_obj)) {
Py_DECREF(remaining_args);
if (grid_pos_result.error) PyErr_SetString(PyExc_TypeError, grid_pos_result.error);
return -1; return -1;
} }
Py_DECREF(remaining_args);
}
// Case 2: Traditional format
else {
PyErr_Clear(); // Clear any errors from helpers
static const char* keywords[] = {
"grid_x", "grid_y", "texture", "sprite_index", "grid", "grid_pos", nullptr
};
PyObject* grid_pos_obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ffOiOO",
const_cast<char**>(keywords),
&grid_x, &grid_y, &texture, &sprite_index,
&grid_obj, &grid_pos_obj)) {
return -1;
}
// Handle grid_pos keyword override
if (grid_pos_obj && grid_pos_obj != Py_None) {
if (PyTuple_Check(grid_pos_obj) && PyTuple_Size(grid_pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(grid_pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(grid_pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
grid_x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
grid_y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
}
} else {
PyErr_SetString(PyExc_TypeError, "grid_pos must be a tuple (x, y)");
return -1;
}
}
}
// check types for texture // check types for texture
// //
// Set Texture - allow None or use default // Set Texture
// //
std::shared_ptr<PyTexture> texture_ptr = nullptr; if (texture != NULL && !PyObject_IsInstance(texture, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture"))){
if (texture != NULL && texture != Py_None && !PyObject_IsInstance(texture, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture"))){ PyErr_SetString(PyExc_TypeError, "texture must be a mcrfpy.Texture instance");
PyErr_SetString(PyExc_TypeError, "texture must be a mcrfpy.Texture instance or None");
return -1; return -1;
} else if (texture != NULL && texture != Py_None) { } /*else if (texture != NULL) // this section needs to go; texture isn't optional and isn't managed by the UI objects anymore
auto pytexture = (PyTextureObject*)texture; {
texture_ptr = pytexture->data; self->texture = texture;
} else { Py_INCREF(texture);
// Use default texture when None or not provided } else
texture_ptr = McRFPy_API::default_texture; {
} // default tex?
}*/
// Allow creation without texture for testing purposes if (grid != NULL && !PyObject_IsInstance(grid, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
// if (!texture_ptr) {
// PyErr_SetString(PyExc_RuntimeError, "No texture provided and no default texture available");
// return -1;
// }
if (grid_obj != NULL && !PyObject_IsInstance(grid_obj, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
PyErr_SetString(PyExc_TypeError, "grid must be a mcrfpy.Grid instance"); PyErr_SetString(PyExc_TypeError, "grid must be a mcrfpy.Grid instance");
return -1; return -1;
} }
// Always use default constructor for lazy initialization auto pytexture = (PyTextureObject*)texture;
if (grid == NULL)
self->data = std::make_shared<UIEntity>(); self->data = std::make_shared<UIEntity>();
else
// Store reference to Python object self->data = std::make_shared<UIEntity>(*((PyUIGridObject*)grid)->data);
self->data->self = (PyObject*)self;
Py_INCREF(self);
// TODO - PyTextureObjects and IndexTextures are a little bit of a mess with shared/unshared pointers // TODO - PyTextureObjects and IndexTextures are a little bit of a mess with shared/unshared pointers
if (texture_ptr) { self->data->sprite = UISprite(pytexture->data, sprite_index, sf::Vector2f(0,0), 1.0);
self->data->sprite = UISprite(texture_ptr, sprite_index, sf::Vector2f(0,0), 1.0); self->data->position = sf::Vector2f(x, y);
} else { if (grid != NULL) {
// Create an empty sprite for testing PyUIGridObject* pygrid = (PyUIGridObject*)grid;
self->data->sprite = UISprite();
}
// Set position using grid coordinates
self->data->position = sf::Vector2f(grid_x, grid_y);
if (grid_obj != NULL) {
PyUIGridObject* pygrid = (PyUIGridObject*)grid_obj;
self->data->grid = pygrid->data; self->data->grid = pygrid->data;
// todone - on creation of Entity with Grid assignment, also append it to the entity list // todone - on creation of Entity with Grid assignment, also append it to the entity list
pygrid->data->entities->push_back(self->data); pygrid->data->entities->push_back(self->data);
// Don't initialize gridstate here - lazy initialization to support large numbers of entities
// gridstate will be initialized when visibility is updated or accessed
} }
return 0; return 0;
} }
@ -250,62 +91,21 @@ PyObject* UIEntity::get_spritenumber(PyUIEntityObject* self, void* closure) {
return PyLong_FromDouble(self->data->sprite.getSpriteIndex()); return PyLong_FromDouble(self->data->sprite.getSpriteIndex());
} }
PyObject* sfVector2f_to_PyObject(sf::Vector2f vec) { PyObject* sfVector2f_to_PyObject(sf::Vector2f vector) {
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector"); return Py_BuildValue("(ff)", vector.x, vector.y);
auto obj = (PyVectorObject*)type->tp_alloc(type, 0);
if (obj) {
obj->data = vec;
}
return (PyObject*)obj;
}
PyObject* sfVector2i_to_PyObject(sf::Vector2i vec) {
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
auto obj = (PyVectorObject*)type->tp_alloc(type, 0);
if (obj) {
obj->data = sf::Vector2f(static_cast<float>(vec.x), static_cast<float>(vec.y));
}
return (PyObject*)obj;
} }
sf::Vector2f PyObject_to_sfVector2f(PyObject* obj) { sf::Vector2f PyObject_to_sfVector2f(PyObject* obj) {
PyVectorObject* vec = PyVector::from_arg(obj); float x, y;
if (!vec) { if (!PyArg_ParseTuple(obj, "ff", &x, &y)) {
// PyVector::from_arg already set the error return sf::Vector2f(); // TODO / reconsider this default: Return default vector on parse error
return sf::Vector2f(0, 0);
} }
return vec->data; return sf::Vector2f(x, y);
}
sf::Vector2i PyObject_to_sfVector2i(PyObject* obj) {
PyVectorObject* vec = PyVector::from_arg(obj);
if (!vec) {
// PyVector::from_arg already set the error
return sf::Vector2i(0, 0);
}
return sf::Vector2i(static_cast<int>(vec->data.x), static_cast<int>(vec->data.y));
} }
// TODO - deprecate / remove this helper
PyObject* UIGridPointState_to_PyObject(const UIGridPointState& state) { PyObject* UIGridPointState_to_PyObject(const UIGridPointState& state) {
// Create a new GridPointState Python object return PyObject_New(PyObject, (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "GridPointState"));
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "GridPointState");
if (!type) {
return NULL;
}
auto obj = (PyUIGridPointStateObject*)type->tp_alloc(type, 0);
if (!obj) {
Py_DECREF(type);
return NULL;
}
// Allocate new data and copy values
obj->data = new UIGridPointState();
obj->data->visible = state.visible;
obj->data->discovered = state.discovered;
Py_DECREF(type);
return (PyObject*)obj;
} }
PyObject* UIGridPointStateVector_to_PyList(const std::vector<UIGridPointState>& vec) { PyObject* UIGridPointStateVector_to_PyList(const std::vector<UIGridPointState>& vec) {
@ -325,32 +125,11 @@ PyObject* UIGridPointStateVector_to_PyList(const std::vector<UIGridPointState>&
} }
PyObject* UIEntity::get_position(PyUIEntityObject* self, void* closure) { PyObject* UIEntity::get_position(PyUIEntityObject* self, void* closure) {
if (reinterpret_cast<long>(closure) == 0) {
return sfVector2f_to_PyObject(self->data->position); return sfVector2f_to_PyObject(self->data->position);
} else {
// Return integer-cast position for grid coordinates
sf::Vector2i int_pos(static_cast<int>(self->data->position.x),
static_cast<int>(self->data->position.y));
return sfVector2i_to_PyObject(int_pos);
}
} }
int UIEntity::set_position(PyUIEntityObject* self, PyObject* value, void* closure) { int UIEntity::set_position(PyUIEntityObject* self, PyObject* value, void* closure) {
if (reinterpret_cast<long>(closure) == 0) { self->data->position = PyObject_to_sfVector2f(value);
sf::Vector2f vec = PyObject_to_sfVector2f(value);
if (PyErr_Occurred()) {
return -1; // Error already set by PyObject_to_sfVector2f
}
self->data->position = vec;
} else {
// For integer position, convert to float and set position
sf::Vector2i vec = PyObject_to_sfVector2i(value);
if (PyErr_Occurred()) {
return -1; // Error already set by PyObject_to_sfVector2i
}
self->data->position = sf::Vector2f(static_cast<float>(vec.x),
static_cast<float>(vec.y));
}
return 0; return 0;
} }
@ -365,7 +144,7 @@ int UIEntity::set_spritenumber(PyUIEntityObject* self, PyObject* value, void* cl
val = PyLong_AsLong(value); val = PyLong_AsLong(value);
else else
{ {
PyErr_SetString(PyExc_TypeError, "sprite_index must be an integer"); PyErr_SetString(PyExc_TypeError, "Value must be an integer.");
return -1; return -1;
} }
//self->data->sprite.sprite_index = val; //self->data->sprite.sprite_index = val;
@ -373,253 +152,14 @@ int UIEntity::set_spritenumber(PyUIEntityObject* self, PyObject* value, void* cl
return 0; return 0;
} }
PyObject* UIEntity::get_float_member(PyUIEntityObject* self, void* closure)
{
auto member_ptr = reinterpret_cast<long>(closure);
if (member_ptr == 0) // x
return PyFloat_FromDouble(self->data->position.x);
else if (member_ptr == 1) // y
return PyFloat_FromDouble(self->data->position.y);
else
{
PyErr_SetString(PyExc_AttributeError, "Invalid attribute");
return nullptr;
}
}
int UIEntity::set_float_member(PyUIEntityObject* self, PyObject* value, void* closure)
{
float val;
auto member_ptr = reinterpret_cast<long>(closure);
if (PyFloat_Check(value))
{
val = PyFloat_AsDouble(value);
}
else if (PyLong_Check(value))
{
val = PyLong_AsLong(value);
}
else
{
PyErr_SetString(PyExc_TypeError, "Position must be a number (int or float)");
return -1;
}
if (member_ptr == 0) // x
{
self->data->position.x = val;
}
else if (member_ptr == 1) // y
{
self->data->position.y = val;
}
return 0;
}
PyObject* UIEntity::die(PyUIEntityObject* self, PyObject* Py_UNUSED(ignored))
{
// Check if entity has a grid
if (!self->data || !self->data->grid) {
Py_RETURN_NONE; // Entity not on a grid, nothing to do
}
// Remove entity from grid's entity list
auto grid = self->data->grid;
auto& entities = grid->entities;
// Find and remove this entity from the list
auto it = std::find_if(entities->begin(), entities->end(),
[self](const std::shared_ptr<UIEntity>& e) {
return e.get() == self->data.get();
});
if (it != entities->end()) {
entities->erase(it);
// Clear the grid reference
self->data->grid.reset();
}
Py_RETURN_NONE;
}
PyObject* UIEntity::path_to(PyUIEntityObject* self, PyObject* args, PyObject* kwds) {
static const char* keywords[] = {"target_x", "target_y", "x", "y", nullptr};
int target_x = -1, target_y = -1;
// Parse arguments - support both target_x/target_y and x/y parameter names
if (!PyArg_ParseTupleAndKeywords(args, kwds, "ii", const_cast<char**>(keywords),
&target_x, &target_y)) {
PyErr_Clear();
// Try alternative parameter names
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|iiii", const_cast<char**>(keywords),
&target_x, &target_y, &target_x, &target_y)) {
PyErr_SetString(PyExc_TypeError, "path_to() requires target_x and target_y integer arguments");
return NULL;
}
}
// Check if entity has a grid
if (!self->data || !self->data->grid) {
PyErr_SetString(PyExc_ValueError, "Entity must be associated with a grid to compute paths");
return NULL;
}
// Get current position
int current_x = static_cast<int>(self->data->position.x);
int current_y = static_cast<int>(self->data->position.y);
// Validate target position
auto grid = self->data->grid;
if (target_x < 0 || target_x >= grid->grid_x || target_y < 0 || target_y >= grid->grid_y) {
PyErr_Format(PyExc_ValueError, "Target position (%d, %d) is out of grid bounds (0-%d, 0-%d)",
target_x, target_y, grid->grid_x - 1, grid->grid_y - 1);
return NULL;
}
// Use the grid's Dijkstra implementation
grid->computeDijkstra(current_x, current_y);
auto path = grid->getDijkstraPath(target_x, target_y);
// Convert path to Python list of tuples
PyObject* path_list = PyList_New(path.size());
if (!path_list) return PyErr_NoMemory();
for (size_t i = 0; i < path.size(); ++i) {
PyObject* coord_tuple = PyTuple_New(2);
if (!coord_tuple) {
Py_DECREF(path_list);
return PyErr_NoMemory();
}
PyTuple_SetItem(coord_tuple, 0, PyLong_FromLong(path[i].first));
PyTuple_SetItem(coord_tuple, 1, PyLong_FromLong(path[i].second));
PyList_SetItem(path_list, i, coord_tuple);
}
return path_list;
}
PyObject* UIEntity::update_visibility(PyUIEntityObject* self, PyObject* Py_UNUSED(ignored))
{
self->data->updateVisibility();
Py_RETURN_NONE;
}
PyMethodDef UIEntity::methods[] = { PyMethodDef UIEntity::methods[] = {
{"at", (PyCFunction)UIEntity::at, METH_O}, {"at", (PyCFunction)UIEntity::at, METH_O},
{"index", (PyCFunction)UIEntity::index, METH_NOARGS, "Return the index of this entity in its grid's entity collection"},
{"die", (PyCFunction)UIEntity::die, METH_NOARGS, "Remove this entity from its grid"},
{"path_to", (PyCFunction)UIEntity::path_to, METH_VARARGS | METH_KEYWORDS,
"path_to(x: int, y: int) -> bool\n\n"
"Find and follow path to target position using A* pathfinding.\n\n"
"Args:\n"
" x: Target X coordinate\n"
" y: Target Y coordinate\n\n"
"Returns:\n"
" True if a path was found and the entity started moving, False otherwise\n\n"
"The entity will automatically move along the path over multiple frames.\n"
"Call this again to change the target or repath."},
{"update_visibility", (PyCFunction)UIEntity::update_visibility, METH_NOARGS,
"update_visibility() -> None\n\n"
"Update entity's visibility state based on current FOV.\n\n"
"Recomputes which cells are visible from the entity's position and updates\n"
"the entity's gridstate to track explored areas. This is called automatically\n"
"when the entity moves if it has a grid with perspective set."},
{NULL, NULL, 0, NULL} {NULL, NULL, 0, NULL}
}; };
// Define the PyObjectType alias for the macros
typedef PyUIEntityObject PyObjectType;
// Combine base methods with entity-specific methods
PyMethodDef UIEntity_all_methods[] = {
UIDRAWABLE_METHODS,
{"at", (PyCFunction)UIEntity::at, METH_O},
{"index", (PyCFunction)UIEntity::index, METH_NOARGS, "Return the index of this entity in its grid's entity collection"},
{"die", (PyCFunction)UIEntity::die, METH_NOARGS, "Remove this entity from its grid"},
{"path_to", (PyCFunction)UIEntity::path_to, METH_VARARGS | METH_KEYWORDS,
"path_to(x: int, y: int) -> bool\n\n"
"Find and follow path to target position using A* pathfinding.\n\n"
"Args:\n"
" x: Target X coordinate\n"
" y: Target Y coordinate\n\n"
"Returns:\n"
" True if a path was found and the entity started moving, False otherwise\n\n"
"The entity will automatically move along the path over multiple frames.\n"
"Call this again to change the target or repath."},
{"update_visibility", (PyCFunction)UIEntity::update_visibility, METH_NOARGS,
"update_visibility() -> None\n\n"
"Update entity's visibility state based on current FOV.\n\n"
"Recomputes which cells are visible from the entity's position and updates\n"
"the entity's gridstate to track explored areas. This is called automatically\n"
"when the entity moves if it has a grid with perspective set."},
{NULL} // Sentinel
};
PyGetSetDef UIEntity::getsetters[] = { PyGetSetDef UIEntity::getsetters[] = {
{"draw_pos", (getter)UIEntity::get_position, (setter)UIEntity::set_position, "Entity position (graphically)", (void*)0}, {"position", (getter)UIEntity::get_position, (setter)UIEntity::set_position, "Entity position", NULL},
{"pos", (getter)UIEntity::get_position, (setter)UIEntity::set_position, "Entity position (integer grid coordinates)", (void*)1},
{"gridstate", (getter)UIEntity::get_gridstate, NULL, "Grid point states for the entity", NULL}, {"gridstate", (getter)UIEntity::get_gridstate, NULL, "Grid point states for the entity", NULL},
{"sprite_index", (getter)UIEntity::get_spritenumber, (setter)UIEntity::set_spritenumber, "Sprite index on the texture on the display", NULL}, {"sprite_number", (getter)UIEntity::get_spritenumber, (setter)UIEntity::set_spritenumber, "Sprite number (index) on the texture on the display", NULL},
{"sprite_number", (getter)UIEntity::get_spritenumber, (setter)UIEntity::set_spritenumber, "Sprite index (DEPRECATED: use sprite_index instead)", NULL},
{"x", (getter)UIEntity::get_float_member, (setter)UIEntity::set_float_member, "Entity x position", (void*)0},
{"y", (getter)UIEntity::get_float_member, (setter)UIEntity::set_float_member, "Entity y position", (void*)1},
{"visible", (getter)UIEntity_get_visible, (setter)UIEntity_set_visible, "Visibility flag", NULL},
{"opacity", (getter)UIEntity_get_opacity, (setter)UIEntity_set_opacity, "Opacity (0.0 = transparent, 1.0 = opaque)", NULL},
{"name", (getter)UIEntity_get_name, (setter)UIEntity_set_name, "Name for finding elements", NULL},
{NULL} /* Sentinel */ {NULL} /* Sentinel */
}; };
PyObject* UIEntity::repr(PyUIEntityObject* self) {
std::ostringstream ss;
if (!self->data) ss << "<Entity (invalid internal object)>";
else {
auto ent = self->data;
ss << "<Entity (x=" << self->data->position.x << ", y=" << self->data->position.y << ", sprite_index=" << self->data->sprite.getSpriteIndex() <<
")>";
}
std::string repr_str = ss.str();
return PyUnicode_DecodeUTF8(repr_str.c_str(), repr_str.size(), "replace");
}
// Property system implementation for animations
bool UIEntity::setProperty(const std::string& name, float value) {
if (name == "x") {
position.x = value;
// Don't update sprite position here - UIGrid::render() handles the pixel positioning
return true;
}
else if (name == "y") {
position.y = value;
// Don't update sprite position here - UIGrid::render() handles the pixel positioning
return true;
}
else if (name == "sprite_scale") {
sprite.setScale(sf::Vector2f(value, value));
return true;
}
return false;
}
bool UIEntity::setProperty(const std::string& name, int value) {
if (name == "sprite_index" || name == "sprite_number") {
sprite.setSpriteIndex(value);
return true;
}
return false;
}
bool UIEntity::getProperty(const std::string& name, float& value) const {
if (name == "x") {
value = position.x;
return true;
}
else if (name == "y") {
value = position.y;
return true;
}
else if (name == "sprite_scale") {
value = sprite.getScale().x; // Assuming uniform scale
return true;
}
return false;
}

View File

@ -8,7 +8,6 @@
#include "PyCallable.h" #include "PyCallable.h"
#include "PyTexture.h" #include "PyTexture.h"
#include "PyDrawable.h"
#include "PyColor.h" #include "PyColor.h"
#include "PyVector.h" #include "PyVector.h"
#include "PyFont.h" #include "PyFont.h"
@ -27,42 +26,26 @@ class UIGrid;
//} PyUIEntityObject; //} PyUIEntityObject;
// helper methods with no namespace requirement // helper methods with no namespace requirement
PyObject* sfVector2f_to_PyObject(sf::Vector2f vector); static PyObject* sfVector2f_to_PyObject(sf::Vector2f vector);
sf::Vector2f PyObject_to_sfVector2f(PyObject* obj); static sf::Vector2f PyObject_to_sfVector2f(PyObject* obj);
PyObject* UIGridPointState_to_PyObject(const UIGridPointState& state); static PyObject* UIGridPointState_to_PyObject(const UIGridPointState& state);
PyObject* UIGridPointStateVector_to_PyList(const std::vector<UIGridPointState>& vec); static PyObject* UIGridPointStateVector_to_PyList(const std::vector<UIGridPointState>& vec);
// TODO: make UIEntity a drawable // TODO: make UIEntity a drawable
class UIEntity//: public UIDrawable class UIEntity//: public UIDrawable
{ {
public: public:
PyObject* self = nullptr; // Reference to the Python object (if created from Python) //PyObject* self;
std::shared_ptr<UIGrid> grid; std::shared_ptr<UIGrid> grid;
std::vector<UIGridPointState> gridstate; std::vector<UIGridPointState> gridstate;
UISprite sprite; UISprite sprite;
sf::Vector2f position; //(x,y) in grid coordinates; float for animation sf::Vector2f position; //(x,y) in grid coordinates; float for animation
//void render(sf::Vector2f); //override final; void render(sf::Vector2f); //override final;
UIEntity(); UIEntity();
UIEntity(UIGrid&);
// Visibility methods
void updateVisibility(); // Update gridstate from current FOV
// Property system for animations
bool setProperty(const std::string& name, float value);
bool setProperty(const std::string& name, int value);
bool getProperty(const std::string& name, float& value) const;
// Methods that delegate to sprite
sf::FloatRect get_bounds() const { return sprite.get_bounds(); }
void move(float dx, float dy) { sprite.move(dx, dy); position.x += dx; position.y += dy; }
void resize(float w, float h) { /* Entities don't support direct resizing */ }
static PyObject* at(PyUIEntityObject* self, PyObject* o); static PyObject* at(PyUIEntityObject* self, PyObject* o);
static PyObject* index(PyUIEntityObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* die(PyUIEntityObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* path_to(PyUIEntityObject* self, PyObject* args, PyObject* kwds);
static PyObject* update_visibility(PyUIEntityObject* self, PyObject* Py_UNUSED(ignored));
static int init(PyUIEntityObject* self, PyObject* args, PyObject* kwds); static int init(PyUIEntityObject* self, PyObject* args, PyObject* kwds);
static PyObject* get_position(PyUIEntityObject* self, void* closure); static PyObject* get_position(PyUIEntityObject* self, void* closure);
@ -70,28 +53,149 @@ public:
static PyObject* get_gridstate(PyUIEntityObject* self, void* closure); static PyObject* get_gridstate(PyUIEntityObject* self, void* closure);
static PyObject* get_spritenumber(PyUIEntityObject* self, void* closure); static PyObject* get_spritenumber(PyUIEntityObject* self, void* closure);
static int set_spritenumber(PyUIEntityObject* self, PyObject* value, void* closure); static int set_spritenumber(PyUIEntityObject* self, PyObject* value, void* closure);
static PyObject* get_float_member(PyUIEntityObject* self, void* closure);
static int set_float_member(PyUIEntityObject* self, PyObject* value, void* closure);
static PyMethodDef methods[]; static PyMethodDef methods[];
static PyGetSetDef getsetters[]; static PyGetSetDef getsetters[];
static PyObject* repr(PyUIEntityObject* self);
}; };
// Forward declaration of methods array
extern PyMethodDef UIEntity_all_methods[];
namespace mcrfpydef { namespace mcrfpydef {
/*
//TODO: add this method to class scope; move implementation to .cpp file; reconsider for moving to "UIBase.h/.cpp"
// TODO: sf::Vector2f convenience functions here might benefit from a PyVectorObject much like PyColorObject
// Utility function to convert sf::Vector2f to PyObject*
static PyObject* sfVector2f_to_PyObject(sf::Vector2f vector) {
return Py_BuildValue("(ff)", vector.x, vector.y);
}
//TODO: add this method to class scope; move implementation to .cpp file; reconsider for moving to "UIBase.h/.cpp"
// Utility function to convert PyObject* to sf::Vector2f
static sf::Vector2f PyObject_to_sfVector2f(PyObject* obj) {
float x, y;
if (!PyArg_ParseTuple(obj, "ff", &x, &y)) {
return sf::Vector2f(); // TODO / reconsider this default: Return default vector on parse error
}
return sf::Vector2f(x, y);
}
//TODO: add this method to class scope; move implementation to .cpp file
// Utility function to convert UIGridPointState to PyObject*
static PyObject* UIGridPointState_to_PyObject(const UIGridPointState& state) {
PyObject* obj = PyObject_New(PyObject, &PyUIGridPointStateType);
if (!obj) return PyErr_NoMemory();
// Assuming PyUIGridPointStateObject structure has a UIGridPointState* member called 'data'
//((PyUIGridPointStateObject*)obj)->data = new UIGridPointState(state); // Copy constructor // wontimplement / feat - don't use new, get shared_ptr working
return obj;
}
//TODO: add this method to class scope; move implementation to .cpp file
// Function to convert std::vector<UIGridPointState> to a Python list TODO need a PyUICollection style iterable
static PyObject* UIGridPointStateVector_to_PyList(const std::vector<UIGridPointState>& vec) {
PyObject* list = PyList_New(vec.size());
if (!list) return PyErr_NoMemory();
for (size_t i = 0; i < vec.size(); ++i) {
PyObject* obj = UIGridPointState_to_PyObject(vec[i]);
if (!obj) { // Cleanup on failure
Py_DECREF(list);
return NULL;
}
PyList_SET_ITEM(list, i, obj); // This steals a reference to obj
}
return list;
}
//TODO: add this method to class scope; move implementation to .cpp file
static PyObject* PyUIEntity_get_position(PyUIEntityObject* self, void* closure) {
return sfVector2f_to_PyObject(self->data->position);
}
//TODO: add this method to class scope; move implementation to .cpp file
static int PyUIEntity_set_position(PyUIEntityObject* self, PyObject* value, void* closure) {
self->data->position = PyObject_to_sfVector2f(value);
return 0;
}
//TODO: add this method to class scope; move implementation to .cpp file
static PyObject* PyUIEntity_get_gridstate(PyUIEntityObject* self, void* closure) {
// Assuming a function to convert std::vector<UIGridPointState> to PyObject* list
return UIGridPointStateVector_to_PyList(self->data->gridstate);
}
//TODO: add this method to class scope; move implementation to .cpp file
static PyObject* PyUIEntity_get_spritenumber(PyUIEntityObject* self, void* closure) {
return PyLong_FromDouble(self->data->sprite.getSpriteIndex());
}
//TODO: add this method to class scope; move implementation to .cpp file
static int PyUIEntity_set_spritenumber(PyUIEntityObject* self, PyObject* value, void* closure) {
int val;
if (PyLong_Check(value))
val = PyLong_AsLong(value);
else
{
PyErr_SetString(PyExc_TypeError, "Value must be an integer.");
return -1;
}
//self->data->sprite.sprite_index = val;
self->data->sprite.setSpriteIndex(val); // todone - I don't like ".sprite.sprite" in this stack of UIEntity.UISprite.sf::Sprite
return 0;
}
//TODO: add this method to class scope; move implementation to .cpp file
static PyObject* PyUIEntity_at(PyUIEntityObject* self, PyObject* o)
{
int x, y;
if (!PyArg_ParseTuple(o, "ii", &x, &y)) {
PyErr_SetString(PyExc_TypeError, "UIEntity.at requires two integer arguments: (x, y)");
return NULL;
}
if (self->data->grid == NULL) {
PyErr_SetString(PyExc_ValueError, "Entity cannot access surroundings because it is not associated with a grid");
return NULL;
}
PyUIGridPointStateObject* obj = (PyUIGridPointStateObject*)((&PyUIGridPointStateType)->tp_alloc(&PyUIGridPointStateType, 0));
//auto target = std::static_pointer_cast<UIEntity>(target);
obj->data = &(self->data->gridstate[y + self->data->grid->grid_x * x]);
obj->grid = self->data->grid;
obj->entity = self->data;
return (PyObject*)obj;
}
//TODO: add this static array to class scope; move implementation to .cpp file
static PyMethodDef PyUIEntity_methods[] = {
{"at", (PyCFunction)UIEntity::at, METH_O},
{NULL, NULL, 0, NULL}
};
//TODO: add this static array to class scope; move implementation to .cpp file
// Define getters and setters
static PyGetSetDef PyUIEntity_getsetters[] = {
{"position", (getter)PyUIEntity_get_position, (setter)PyUIEntity_set_position, "Entity position", NULL},
{"gridstate", (getter)PyUIEntity_get_gridstate, NULL, "Grid point states for the entity", NULL},
{"sprite_number", (getter)PyUIEntity_get_spritenumber, (setter)PyUIEntity_set_spritenumber, "Sprite number (index) on the texture on the display", NULL},
{NULL} // Sentinel
};
//TODO: add this method to class scope; forward declaration not required after .h/.cpp split
//static int PyUIEntity_init(PyUIEntityObject*, PyObject*, PyObject*); // forward declare
*/
// Define the PyTypeObject for UIEntity
static PyTypeObject PyUIEntityType = { static PyTypeObject PyUIEntityType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0}, //PyVarObject_HEAD_INIT(NULL, 0)
.tp_name = "mcrfpy.Entity", .tp_name = "mcrfpy.Entity",
.tp_basicsize = sizeof(PyUIEntityObject), .tp_basicsize = sizeof(PyUIEntityObject),
.tp_itemsize = 0, .tp_itemsize = 0,
.tp_repr = (reprfunc)UIEntity::repr, // Methods omitted for brevity
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = "UIEntity objects", .tp_doc = "UIEntity objects",
.tp_methods = UIEntity_all_methods, .tp_methods = UIEntity::methods,
.tp_getset = UIEntity::getsetters, .tp_getset = UIEntity::getsetters,
.tp_base = &mcrfpydef::PyDrawableType,
.tp_init = (initproc)UIEntity::init, .tp_init = (initproc)UIEntity::init,
.tp_new = PyType_GenericNew, .tp_new = PyType_GenericNew,
}; };

View File

@ -1,75 +0,0 @@
#pragma once
#include "UIEntity.h"
#include "UIBase.h"
// UIEntity-specific property implementations
// These delegate to the wrapped sprite member
// Visible property
static PyObject* UIEntity_get_visible(PyUIEntityObject* self, void* closure)
{
return PyBool_FromLong(self->data->sprite.visible);
}
static int UIEntity_set_visible(PyUIEntityObject* self, PyObject* value, void* closure)
{
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "visible must be a boolean");
return -1;
}
self->data->sprite.visible = PyObject_IsTrue(value);
return 0;
}
// Opacity property
static PyObject* UIEntity_get_opacity(PyUIEntityObject* self, void* closure)
{
return PyFloat_FromDouble(self->data->sprite.opacity);
}
static int UIEntity_set_opacity(PyUIEntityObject* self, PyObject* value, void* closure)
{
float opacity;
if (PyFloat_Check(value)) {
opacity = PyFloat_AsDouble(value);
} else if (PyLong_Check(value)) {
opacity = PyLong_AsDouble(value);
} else {
PyErr_SetString(PyExc_TypeError, "opacity must be a number");
return -1;
}
// Clamp to valid range
if (opacity < 0.0f) opacity = 0.0f;
if (opacity > 1.0f) opacity = 1.0f;
self->data->sprite.opacity = opacity;
return 0;
}
// Name property - delegate to sprite
static PyObject* UIEntity_get_name(PyUIEntityObject* self, void* closure)
{
return PyUnicode_FromString(self->data->sprite.name.c_str());
}
static int UIEntity_set_name(PyUIEntityObject* self, PyObject* value, void* closure)
{
if (value == NULL || value == Py_None) {
self->data->sprite.name = "";
return 0;
}
if (!PyUnicode_Check(value)) {
PyErr_SetString(PyExc_TypeError, "name must be a string");
return -1;
}
const char* name_str = PyUnicode_AsUTF8(value);
if (!name_str) {
return -1;
}
self->data->sprite.name = name_str;
return 0;
}

View File

@ -1,57 +1,35 @@
#include "UIFrame.h" #include "UIFrame.h"
#include "UICollection.h" #include "UICollection.h"
#include "GameEngine.h" #include "GameEngine.h"
#include "PyVector.h"
#include "UICaption.h"
#include "UISprite.h"
#include "UIGrid.h"
#include "McRFPy_API.h"
#include "PyArgHelpers.h"
// UIDrawable methods now in UIBase.h
UIDrawable* UIFrame::click_at(sf::Vector2f point) UIDrawable* UIFrame::click_at(sf::Vector2f point)
{ {
// Check bounds first (optimization) for (auto e: *children)
float x = position.x, y = position.y, w = box.getSize().x, h = box.getSize().y; {
if (point.x < x || point.y < y || point.x >= x+w || point.y >= y+h) { auto p = e->click_at(point + box.getPosition());
return nullptr; if (p)
return p;
} }
if (click_callable)
// Transform to local coordinates for children {
sf::Vector2f localPoint = point - position; float x = box.getPosition().x, y = box.getPosition().y, w = box.getSize().x, h = box.getSize().y;
if (point.x > x && point.y > y && point.x < x+w && point.y < y+h) return this;
// Check children in reverse order (top to bottom, highest z-index first)
for (auto it = children->rbegin(); it != children->rend(); ++it) {
auto& child = *it;
if (!child->visible) continue;
if (auto target = child->click_at(localPoint)) {
return target;
} }
} return NULL;
// No child handled it, check if we have a handler
if (click_callable) {
return this;
}
return nullptr;
} }
UIFrame::UIFrame() UIFrame::UIFrame()
: outline(0) : outline(0)
{ {
children = std::make_shared<std::vector<std::shared_ptr<UIDrawable>>>(); children = std::make_shared<std::vector<std::shared_ptr<UIDrawable>>>();
position = sf::Vector2f(0, 0); // Set base class position box.setPosition(0, 0);
box.setPosition(position); // Sync box position
box.setSize(sf::Vector2f(0, 0)); box.setSize(sf::Vector2f(0, 0));
} }
UIFrame::UIFrame(float _x, float _y, float _w, float _h) UIFrame::UIFrame(float _x, float _y, float _w, float _h)
: outline(0) : outline(0)
{ {
position = sf::Vector2f(_x, _y); // Set base class position box.setPosition(_x, _y);
box.setPosition(position); // Sync box position
box.setSize(sf::Vector2f(_w, _h)); box.setSize(sf::Vector2f(_w, _h));
children = std::make_shared<std::vector<std::shared_ptr<UIDrawable>>>(); children = std::make_shared<std::vector<std::shared_ptr<UIDrawable>>>();
} }
@ -66,102 +44,14 @@ PyObjectsEnum UIFrame::derived_type()
return PyObjectsEnum::UIFRAME; return PyObjectsEnum::UIFRAME;
} }
// Phase 1 implementations void UIFrame::render(sf::Vector2f offset)
sf::FloatRect UIFrame::get_bounds() const
{ {
auto size = box.getSize();
return sf::FloatRect(position.x, position.y, size.x, size.y);
}
void UIFrame::move(float dx, float dy)
{
position.x += dx;
position.y += dy;
box.setPosition(position); // Keep box in sync
}
void UIFrame::resize(float w, float h)
{
box.setSize(sf::Vector2f(w, h));
}
void UIFrame::onPositionChanged()
{
// Sync box position with base class position
box.setPosition(position);
}
void UIFrame::render(sf::Vector2f offset, sf::RenderTarget& target)
{
// Check visibility
if (!visible) return;
// TODO: Apply opacity when SFML supports it on shapes
// Check if we need to use RenderTexture for clipping
if (clip_children && !children->empty()) {
// Enable RenderTexture if not already enabled
if (!use_render_texture) {
auto size = box.getSize();
enableRenderTexture(static_cast<unsigned int>(size.x),
static_cast<unsigned int>(size.y));
}
// Update RenderTexture if dirty
if (use_render_texture && render_dirty) {
// Clear the RenderTexture
render_texture->clear(sf::Color::Transparent);
// Draw the frame box to RenderTexture
box.setPosition(0, 0); // Render at origin in texture
render_texture->draw(box);
// Sort children by z_index if needed
if (children_need_sort && !children->empty()) {
std::sort(children->begin(), children->end(),
[](const std::shared_ptr<UIDrawable>& a, const std::shared_ptr<UIDrawable>& b) {
return a->z_index < b->z_index;
});
children_need_sort = false;
}
// Render children to RenderTexture at local coordinates
for (auto drawable : *children) {
drawable->render(sf::Vector2f(0, 0), *render_texture);
}
// Finalize the RenderTexture
render_texture->display();
// Update sprite
render_sprite.setTexture(render_texture->getTexture());
render_dirty = false;
}
// Draw the RenderTexture sprite
if (use_render_texture) {
render_sprite.setPosition(offset + box.getPosition());
target.draw(render_sprite);
}
} else {
// Standard rendering without clipping
box.move(offset); box.move(offset);
target.draw(box); Resources::game->getWindow().draw(box);
box.move(-offset); box.move(-offset);
// Sort children by z_index if needed
if (children_need_sort && !children->empty()) {
std::sort(children->begin(), children->end(),
[](const std::shared_ptr<UIDrawable>& a, const std::shared_ptr<UIDrawable>& b) {
return a->z_index < b->z_index;
});
children_need_sort = false;
}
for (auto drawable : *children) { for (auto drawable : *children) {
drawable->render(offset + box.getPosition(), target); drawable->render(offset + box.getPosition());
}
} }
} }
@ -211,39 +101,19 @@ int UIFrame::set_float_member(PyUIFrameObject* self, PyObject* value, void* clos
} }
else else
{ {
PyErr_SetString(PyExc_TypeError, "Value must be a number (int or float)"); PyErr_SetString(PyExc_TypeError, "Value must be an integer.");
return -1; return -1;
} }
if (member_ptr == 0) { //x if (member_ptr == 0) //x
self->data->box.setPosition(val, self->data->box.getPosition().y); self->data->box.setPosition(val, self->data->box.getPosition().y);
self->data->markDirty(); else if (member_ptr == 1) //y
}
else if (member_ptr == 1) { //y
self->data->box.setPosition(self->data->box.getPosition().x, val); self->data->box.setPosition(self->data->box.getPosition().x, val);
self->data->markDirty(); else if (member_ptr == 2) //w
}
else if (member_ptr == 2) { //w
self->data->box.setSize(sf::Vector2f(val, self->data->box.getSize().y)); self->data->box.setSize(sf::Vector2f(val, self->data->box.getSize().y));
if (self->data->use_render_texture) { else if (member_ptr == 3) //h
// Need to recreate RenderTexture with new size
self->data->enableRenderTexture(static_cast<unsigned int>(self->data->box.getSize().x),
static_cast<unsigned int>(self->data->box.getSize().y));
}
self->data->markDirty();
}
else if (member_ptr == 3) { //h
self->data->box.setSize(sf::Vector2f(self->data->box.getSize().x, val)); self->data->box.setSize(sf::Vector2f(self->data->box.getSize().x, val));
if (self->data->use_render_texture) { else if (member_ptr == 4) //outline
// Need to recreate RenderTexture with new size
self->data->enableRenderTexture(static_cast<unsigned int>(self->data->box.getSize().x),
static_cast<unsigned int>(self->data->box.getSize().y));
}
self->data->markDirty();
}
else if (member_ptr == 4) { //outline
self->data->box.setOutlineThickness(val); self->data->box.setOutlineThickness(val);
self->data->markDirty();
}
return 0; return 0;
} }
@ -320,12 +190,10 @@ int UIFrame::set_color_member(PyUIFrameObject* self, PyObject* value, void* clos
if (member_ptr == 0) if (member_ptr == 0)
{ {
self->data->box.setFillColor(sf::Color(r, g, b, a)); self->data->box.setFillColor(sf::Color(r, g, b, a));
self->data->markDirty();
} }
else if (member_ptr == 1) else if (member_ptr == 1)
{ {
self->data->box.setOutlineColor(sf::Color(r, g, b, a)); self->data->box.setOutlineColor(sf::Color(r, g, b, a));
self->data->markDirty();
} }
else else
{ {
@ -336,74 +204,16 @@ int UIFrame::set_color_member(PyUIFrameObject* self, PyObject* value, void* clos
return 0; return 0;
} }
PyObject* UIFrame::get_pos(PyUIFrameObject* self, void* closure)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
auto obj = (PyVectorObject*)type->tp_alloc(type, 0);
if (obj) {
auto pos = self->data->box.getPosition();
obj->data = sf::Vector2f(pos.x, pos.y);
}
return (PyObject*)obj;
}
int UIFrame::set_pos(PyUIFrameObject* self, PyObject* value, void* closure)
{
PyVectorObject* vec = PyVector::from_arg(value);
if (!vec) {
PyErr_SetString(PyExc_TypeError, "pos must be a Vector or convertible to Vector");
return -1;
}
self->data->box.setPosition(vec->data);
self->data->markDirty();
return 0;
}
PyObject* UIFrame::get_clip_children(PyUIFrameObject* self, void* closure)
{
return PyBool_FromLong(self->data->clip_children);
}
int UIFrame::set_clip_children(PyUIFrameObject* self, PyObject* value, void* closure)
{
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "clip_children must be a boolean");
return -1;
}
bool new_clip = PyObject_IsTrue(value);
if (new_clip != self->data->clip_children) {
self->data->clip_children = new_clip;
self->data->markDirty(); // Mark as needing redraw
}
return 0;
}
// Define the PyObjectType alias for the macros
typedef PyUIFrameObject PyObjectType;
// Method definitions
PyMethodDef UIFrame_methods[] = {
UIDRAWABLE_METHODS,
{NULL} // Sentinel
};
PyGetSetDef UIFrame::getsetters[] = { PyGetSetDef UIFrame::getsetters[] = {
{"x", (getter)UIDrawable::get_float_member, (setter)UIDrawable::set_float_member, "X coordinate of top-left corner", (void*)((intptr_t)PyObjectsEnum::UIFRAME << 8 | 0)}, {"x", (getter)UIFrame::get_float_member, (setter)UIFrame::set_float_member, "X coordinate of top-left corner", (void*)0},
{"y", (getter)UIDrawable::get_float_member, (setter)UIDrawable::set_float_member, "Y coordinate of top-left corner", (void*)((intptr_t)PyObjectsEnum::UIFRAME << 8 | 1)}, {"y", (getter)UIFrame::get_float_member, (setter)UIFrame::set_float_member, "Y coordinate of top-left corner", (void*)1},
{"w", (getter)UIDrawable::get_float_member, (setter)UIDrawable::set_float_member, "width of the rectangle", (void*)((intptr_t)PyObjectsEnum::UIFRAME << 8 | 2)}, {"w", (getter)UIFrame::get_float_member, (setter)UIFrame::set_float_member, "width of the rectangle", (void*)2},
{"h", (getter)UIDrawable::get_float_member, (setter)UIDrawable::set_float_member, "height of the rectangle", (void*)((intptr_t)PyObjectsEnum::UIFRAME << 8 | 3)}, {"h", (getter)UIFrame::get_float_member, (setter)UIFrame::set_float_member, "height of the rectangle", (void*)3},
{"outline", (getter)UIFrame::get_float_member, (setter)UIFrame::set_float_member, "Thickness of the border", (void*)4}, {"outline", (getter)UIFrame::get_float_member, (setter)UIFrame::set_float_member, "Thickness of the border", (void*)4},
{"fill_color", (getter)UIFrame::get_color_member, (setter)UIFrame::set_color_member, "Fill color of the rectangle", (void*)0}, {"fill_color", (getter)UIFrame::get_color_member, (setter)UIFrame::set_color_member, "Fill color of the rectangle", (void*)0},
{"outline_color", (getter)UIFrame::get_color_member, (setter)UIFrame::set_color_member, "Outline color of the rectangle", (void*)1}, {"outline_color", (getter)UIFrame::get_color_member, (setter)UIFrame::set_color_member, "Outline color of the rectangle", (void*)1},
{"children", (getter)UIFrame::get_children, NULL, "UICollection of objects on top of this one", NULL}, {"children", (getter)UIFrame::get_children, NULL, "UICollection of objects on top of this one", NULL},
{"click", (getter)UIDrawable::get_click, (setter)UIDrawable::set_click, "Object called with (x, y, button) when clicked", (void*)PyObjectsEnum::UIFRAME}, {"click", (getter)UIDrawable::get_click, (setter)UIDrawable::set_click, "Object called with (x, y, button) when clicked", (void*)PyObjectsEnum::UIFRAME},
{"z_index", (getter)UIDrawable::get_int, (setter)UIDrawable::set_int, "Z-order for rendering (lower values rendered first)", (void*)PyObjectsEnum::UIFRAME},
{"name", (getter)UIDrawable::get_name, (setter)UIDrawable::set_name, "Name for finding elements", (void*)PyObjectsEnum::UIFRAME},
{"pos", (getter)UIDrawable::get_pos, (setter)UIDrawable::set_pos, "Position as a Vector", (void*)PyObjectsEnum::UIFRAME},
{"clip_children", (getter)UIFrame::get_clip_children, (setter)UIFrame::set_clip_children, "Whether to clip children to frame bounds", NULL},
UIDRAWABLE_GETSETTERS,
{NULL} {NULL}
}; };
@ -415,7 +225,7 @@ PyObject* UIFrame::repr(PyUIFrameObject* self)
auto box = self->data->box; auto box = self->data->box;
auto fc = box.getFillColor(); auto fc = box.getFillColor();
auto oc = box.getOutlineColor(); auto oc = box.getOutlineColor();
ss << "<Frame (x=" << box.getPosition().x << ", y=" << box.getPosition().y << ", w=" << ss << "<Frame (x=" << box.getPosition().x << ", y=" << box.getPosition().y << ", x=" <<
box.getSize().x << ", w=" << box.getSize().y << ", " << box.getSize().x << ", w=" << box.getSize().y << ", " <<
"outline=" << box.getOutlineThickness() << ", " << "outline=" << box.getOutlineThickness() << ", " <<
"fill_color=(" << (int)fc.r << ", " << (int)fc.g << ", " << (int)fc.b << ", " << (int)fc.a <<"), " << "fill_color=(" << (int)fc.r << ", " << (int)fc.g << ", " << (int)fc.b << ", " << (int)fc.a <<"), " <<
@ -429,108 +239,18 @@ PyObject* UIFrame::repr(PyUIFrameObject* self)
int UIFrame::init(PyUIFrameObject* self, PyObject* args, PyObject* kwds) int UIFrame::init(PyUIFrameObject* self, PyObject* args, PyObject* kwds)
{ {
// Initialize children first //std::cout << "Init called\n";
self->data->children = std::make_shared<std::vector<std::shared_ptr<UIDrawable>>>(); const char* keywords[] = { "x", "y", "w", "h", "fill_color", "outline_color", "outline", nullptr };
// Try parsing with PyArgHelpers
int arg_idx = 0;
auto pos_result = PyArgHelpers::parsePosition(args, kwds, &arg_idx);
auto size_result = PyArgHelpers::parseSize(args, kwds, &arg_idx);
// Default values
float x = 0.0f, y = 0.0f, w = 0.0f, h=0.0f, outline=0.0f; float x = 0.0f, y = 0.0f, w = 0.0f, h=0.0f, outline=0.0f;
PyObject* fill_color = nullptr; PyObject* fill_color = 0;
PyObject* outline_color = nullptr; PyObject* outline_color = 0;
PyObject* children_arg = nullptr;
PyObject* click_handler = nullptr;
// Case 1: Got position and size from helpers (tuple format) if (!PyArg_ParseTupleAndKeywords(args, kwds, "ffff|OOf", const_cast<char**>(keywords), &x, &y, &w, &h, &fill_color, &outline_color, &outline))
if (pos_result.valid && size_result.valid) { {
x = pos_result.x;
y = pos_result.y;
w = size_result.w;
h = size_result.h;
// Parse remaining arguments
static const char* remaining_keywords[] = {
"fill_color", "outline_color", "outline", "children", "click", nullptr
};
// Create new tuple with remaining args
Py_ssize_t total_args = PyTuple_Size(args);
PyObject* remaining_args = PyTuple_GetSlice(args, arg_idx, total_args);
if (!PyArg_ParseTupleAndKeywords(remaining_args, kwds, "|OOfOO",
const_cast<char**>(remaining_keywords),
&fill_color, &outline_color, &outline,
&children_arg, &click_handler)) {
Py_DECREF(remaining_args);
if (pos_result.error) PyErr_SetString(PyExc_TypeError, pos_result.error);
else if (size_result.error) PyErr_SetString(PyExc_TypeError, size_result.error);
return -1;
}
Py_DECREF(remaining_args);
}
// Case 2: Traditional format (x, y, w, h, ...)
else {
PyErr_Clear(); // Clear any errors from helpers
static const char* keywords[] = {
"x", "y", "w", "h", "fill_color", "outline_color", "outline",
"children", "click", "pos", "size", nullptr
};
PyObject* pos_obj = nullptr;
PyObject* size_obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ffffOOfOOOO",
const_cast<char**>(keywords),
&x, &y, &w, &h, &fill_color, &outline_color,
&outline, &children_arg, &click_handler,
&pos_obj, &size_obj)) {
return -1; return -1;
} }
// Handle pos keyword override self->data->box.setPosition(sf::Vector2f(x, y));
if (pos_obj && pos_obj != Py_None) {
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
}
} else if (PyObject_TypeCheck(pos_obj, (PyTypeObject*)PyObject_GetAttrString(
PyImport_ImportModule("mcrfpy"), "Vector"))) {
PyVectorObject* vec = (PyVectorObject*)pos_obj;
x = vec->data.x;
y = vec->data.y;
} else {
PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector");
return -1;
}
}
// Handle size keyword override
if (size_obj && size_obj != Py_None) {
if (PyTuple_Check(size_obj) && PyTuple_Size(size_obj) == 2) {
PyObject* w_val = PyTuple_GetItem(size_obj, 0);
PyObject* h_val = PyTuple_GetItem(size_obj, 1);
if ((PyFloat_Check(w_val) || PyLong_Check(w_val)) &&
(PyFloat_Check(h_val) || PyLong_Check(h_val))) {
w = PyFloat_Check(w_val) ? PyFloat_AsDouble(w_val) : PyLong_AsLong(w_val);
h = PyFloat_Check(h_val) ? PyFloat_AsDouble(h_val) : PyLong_AsLong(h_val);
}
} else {
PyErr_SetString(PyExc_TypeError, "size must be a tuple (w, h)");
return -1;
}
}
}
self->data->position = sf::Vector2f(x, y); // Set base class position
self->data->box.setPosition(self->data->position); // Sync box position
self->data->box.setSize(sf::Vector2f(w, h)); self->data->box.setSize(sf::Vector2f(w, h));
self->data->box.setOutlineThickness(outline); self->data->box.setOutlineThickness(outline);
// getsetter abuse because I haven't standardized Color object parsing (TODO) // getsetter abuse because I haven't standardized Color object parsing (TODO)
@ -541,253 +261,5 @@ int UIFrame::init(PyUIFrameObject* self, PyObject* args, PyObject* kwds)
if (outline_color && outline_color != Py_None) err_val = UIFrame::set_color_member(self, outline_color, (void*)1); if (outline_color && outline_color != Py_None) err_val = UIFrame::set_color_member(self, outline_color, (void*)1);
else self->data->box.setOutlineColor(sf::Color(128,128,128,255)); else self->data->box.setOutlineColor(sf::Color(128,128,128,255));
if (err_val) return err_val; if (err_val) return err_val;
// Process children argument if provided
if (children_arg && children_arg != Py_None) {
if (!PySequence_Check(children_arg)) {
PyErr_SetString(PyExc_TypeError, "children must be a sequence");
return -1;
}
Py_ssize_t len = PySequence_Length(children_arg);
for (Py_ssize_t i = 0; i < len; i++) {
PyObject* child = PySequence_GetItem(children_arg, i);
if (!child) return -1;
// Check if it's a UIDrawable (Frame, Caption, Sprite, or Grid)
PyObject* frame_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame");
PyObject* caption_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption");
PyObject* sprite_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite");
PyObject* grid_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid");
if (!PyObject_IsInstance(child, frame_type) &&
!PyObject_IsInstance(child, caption_type) &&
!PyObject_IsInstance(child, sprite_type) &&
!PyObject_IsInstance(child, grid_type)) {
Py_DECREF(child);
PyErr_SetString(PyExc_TypeError, "children must contain only Frame, Caption, Sprite, or Grid objects");
return -1;
}
// Get the shared_ptr and add to children
std::shared_ptr<UIDrawable> drawable = nullptr;
if (PyObject_IsInstance(child, frame_type)) {
drawable = ((PyUIFrameObject*)child)->data;
} else if (PyObject_IsInstance(child, caption_type)) {
drawable = ((PyUICaptionObject*)child)->data;
} else if (PyObject_IsInstance(child, sprite_type)) {
drawable = ((PyUISpriteObject*)child)->data;
} else if (PyObject_IsInstance(child, grid_type)) {
drawable = ((PyUIGridObject*)child)->data;
}
// Clean up type references
Py_DECREF(frame_type);
Py_DECREF(caption_type);
Py_DECREF(sprite_type);
Py_DECREF(grid_type);
if (drawable) {
self->data->children->push_back(drawable);
self->data->children_need_sort = true;
}
Py_DECREF(child);
}
}
// Process click handler if provided
if (click_handler && click_handler != Py_None) {
if (!PyCallable_Check(click_handler)) {
PyErr_SetString(PyExc_TypeError, "click must be callable");
return -1;
}
self->data->click_register(click_handler);
}
return 0; return 0;
} }
// Animation property system implementation
bool UIFrame::setProperty(const std::string& name, float value) {
if (name == "x") {
position.x = value;
box.setPosition(position); // Keep box in sync
markDirty();
return true;
} else if (name == "y") {
position.y = value;
box.setPosition(position); // Keep box in sync
markDirty();
return true;
} else if (name == "w") {
box.setSize(sf::Vector2f(value, box.getSize().y));
if (use_render_texture) {
// Need to recreate RenderTexture with new size
enableRenderTexture(static_cast<unsigned int>(box.getSize().x),
static_cast<unsigned int>(box.getSize().y));
}
markDirty();
return true;
} else if (name == "h") {
box.setSize(sf::Vector2f(box.getSize().x, value));
if (use_render_texture) {
// Need to recreate RenderTexture with new size
enableRenderTexture(static_cast<unsigned int>(box.getSize().x),
static_cast<unsigned int>(box.getSize().y));
}
markDirty();
return true;
} else if (name == "outline") {
box.setOutlineThickness(value);
markDirty();
return true;
} else if (name == "fill_color.r") {
auto color = box.getFillColor();
color.r = std::clamp(static_cast<int>(value), 0, 255);
box.setFillColor(color);
markDirty();
return true;
} else if (name == "fill_color.g") {
auto color = box.getFillColor();
color.g = std::clamp(static_cast<int>(value), 0, 255);
box.setFillColor(color);
markDirty();
return true;
} else if (name == "fill_color.b") {
auto color = box.getFillColor();
color.b = std::clamp(static_cast<int>(value), 0, 255);
box.setFillColor(color);
markDirty();
return true;
} else if (name == "fill_color.a") {
auto color = box.getFillColor();
color.a = std::clamp(static_cast<int>(value), 0, 255);
box.setFillColor(color);
markDirty();
return true;
} else if (name == "outline_color.r") {
auto color = box.getOutlineColor();
color.r = std::clamp(static_cast<int>(value), 0, 255);
box.setOutlineColor(color);
markDirty();
return true;
} else if (name == "outline_color.g") {
auto color = box.getOutlineColor();
color.g = std::clamp(static_cast<int>(value), 0, 255);
box.setOutlineColor(color);
markDirty();
return true;
} else if (name == "outline_color.b") {
auto color = box.getOutlineColor();
color.b = std::clamp(static_cast<int>(value), 0, 255);
box.setOutlineColor(color);
markDirty();
return true;
} else if (name == "outline_color.a") {
auto color = box.getOutlineColor();
color.a = std::clamp(static_cast<int>(value), 0, 255);
box.setOutlineColor(color);
markDirty();
return true;
}
return false;
}
bool UIFrame::setProperty(const std::string& name, const sf::Color& value) {
if (name == "fill_color") {
box.setFillColor(value);
markDirty();
return true;
} else if (name == "outline_color") {
box.setOutlineColor(value);
markDirty();
return true;
}
return false;
}
bool UIFrame::setProperty(const std::string& name, const sf::Vector2f& value) {
if (name == "position") {
position = value;
box.setPosition(position); // Keep box in sync
markDirty();
return true;
} else if (name == "size") {
box.setSize(value);
if (use_render_texture) {
// Need to recreate RenderTexture with new size
enableRenderTexture(static_cast<unsigned int>(value.x),
static_cast<unsigned int>(value.y));
}
markDirty();
return true;
}
return false;
}
bool UIFrame::getProperty(const std::string& name, float& value) const {
if (name == "x") {
value = position.x;
return true;
} else if (name == "y") {
value = position.y;
return true;
} else if (name == "w") {
value = box.getSize().x;
return true;
} else if (name == "h") {
value = box.getSize().y;
return true;
} else if (name == "outline") {
value = box.getOutlineThickness();
return true;
} else if (name == "fill_color.r") {
value = box.getFillColor().r;
return true;
} else if (name == "fill_color.g") {
value = box.getFillColor().g;
return true;
} else if (name == "fill_color.b") {
value = box.getFillColor().b;
return true;
} else if (name == "fill_color.a") {
value = box.getFillColor().a;
return true;
} else if (name == "outline_color.r") {
value = box.getOutlineColor().r;
return true;
} else if (name == "outline_color.g") {
value = box.getOutlineColor().g;
return true;
} else if (name == "outline_color.b") {
value = box.getOutlineColor().b;
return true;
} else if (name == "outline_color.a") {
value = box.getOutlineColor().a;
return true;
}
return false;
}
bool UIFrame::getProperty(const std::string& name, sf::Color& value) const {
if (name == "fill_color") {
value = box.getFillColor();
return true;
} else if (name == "outline_color") {
value = box.getOutlineColor();
return true;
}
return false;
}
bool UIFrame::getProperty(const std::string& name, sf::Vector2f& value) const {
if (name == "position") {
value = position;
return true;
} else if (name == "size") {
value = box.getSize();
return true;
}
return false;
}

Some files were not shown because too many files have changed in this diff Show More