Compare commits

..

14 Commits

Author SHA1 Message Date
John McCardle 6aa151aba3 UISprite.h/.cpp cleanup 2024-04-19 21:43:58 -04:00
John McCardle ec0374ef50 UIGridPoint.h/.cpp reorganization 2024-04-19 21:37:39 -04:00
John McCardle 2cb7339535 UIGrid.h/.cpp cleanup. I have reservations about the UIEntityCollection[Iter] classes + methods living there, but not enough to fix it right now. 2024-04-19 21:19:25 -04:00
John McCardle 5d6af324bf UIFrame - moving static method into class namespace; no type object access 2024-04-18 22:14:57 -04:00
John McCardle 567218cd7b UIEntity fixes for the UI.h split: There are segfaults in cos_play, I may have missed a type usage or something 2024-04-18 21:23:49 -04:00
John McCardle 76693acd28 delete leftover comments 2024-04-13 00:18:37 -04:00
John McCardle 9efe998a33 some work on UICaption and UICollection; fixing segfaults resulting from mcrfpydef namepace TypeObject usage 2024-04-13 00:17:43 -04:00
John McCardle 714965da45 eliminate extra includes on UICaption 2024-04-12 23:01:42 -04:00
John McCardle 8efa25878f remove a lot of stuff 2024-04-10 23:41:14 -04:00
John McCardle c186d8c7f3 We are compiling again! Started refactoring UICaption to be more idiomatic 2024-04-10 23:10:15 -04:00
John McCardle 1b6e2a709b Still not quite compiling; as predicted, a lot of interdependency and definition order bugs to untangle 2024-04-09 22:42:02 -04:00
John McCardle aa7553a818 PyTexture clean up scribbles and experiments 2024-04-09 22:41:20 -04:00
John McCardle c0201d989a additional unsaved changes 2024-04-09 14:07:01 -04:00
John McCardle 83a63a3093 doesn't compile, but UI.h/.cpp code has been divvy'd up.
refs #43 @2h
2024-04-09 11:04:16 -04:00
263 changed files with 2937 additions and 53637 deletions

21
.gitignore vendored
View File

@ -9,25 +9,4 @@ obj
build
lib
obj
__pycache__
.cache/
7DRL2025 Release/
CMakeFiles/
Makefile
*.md
*.zip
__lib/
_oldscripts/
assets/
cellular_automata_fire/
*.txt
deps/
fetch_issues_txt.py
forest_fire_CA.py
mcrogueface.github.io
scripts/
test_*
tcod_reference
.archive

458
CLAUDE.md
View File

@ -1,458 +0,0 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Gitea-First Workflow
**IMPORTANT**: This project uses Gitea for issue tracking, documentation, and project management. Always consult and update Gitea resources before and during development work.
**Gitea Instance**: https://gamedev.ffwf.net/gitea/john/McRogueFace
### Core Principles
1. **Gitea is the Single Source of Truth**
- Issue tracker contains current tasks, bugs, and feature requests
- Wiki contains living documentation and architecture decisions
- Use Gitea MCP tools to query and update issues programmatically
2. **Always Check Gitea First**
- Before starting work: Check open issues for related tasks or blockers
- When using `/roadmap` command: Query Gitea for up-to-date issue status
- When researching a feature: Search Gitea wiki and issues before grepping codebase
- When encountering a bug: Check if an issue already exists
3. **Create Granular Issues**
- Break large features into separate, focused issues
- Each issue should address one specific problem or enhancement
- Tag issues appropriately: `[Bugfix]`, `[Major Feature]`, `[Minor Feature]`, etc.
- Link related issues using dependencies or blocking relationships
4. **Document as You Go**
- When work on one issue interacts with another system: Add notes to related issues
- When discovering undocumented behavior: Create task to document it
- When documentation misleads you: Create task to correct or expand it
- When implementing a feature: Update the Gitea wiki if appropriate
5. **Cross-Reference Everything**
- Commit messages should reference issue numbers (e.g., "Fixes #104", "Addresses #125")
- Issue comments should link to commits when work is done
- Wiki pages should reference relevant issues for implementation details
- Issues should link to each other when dependencies exist
### Workflow Pattern
```
┌─────────────────────────────────────────────────────┐
│ 1. Check Gitea Issues & Wiki │
│ - Is there an existing issue for this? │
│ - What's the current status? │
│ - Are there related issues or blockers? │
└─────────────────┬───────────────────────────────────┘
┌─────────────────────────────────────────────────────┐
│ 2. Create Issues (if needed) │
│ - Break work into granular tasks │
│ - Tag appropriately │
│ - Link dependencies │
└─────────────────┬───────────────────────────────────┘
┌─────────────────────────────────────────────────────┐
│ 3. Do the Work │
│ - Implement/fix/document │
│ - Write tests first (TDD) │
│ - Add inline documentation │
└─────────────────┬───────────────────────────────────┘
┌─────────────────────────────────────────────────────┐
│ 4. Update Gitea │
│ - Add notes to affected issues │
│ - Create follow-up issues for discovered work │
│ - Update wiki if architecture/APIs changed │
│ - Add documentation correction tasks │
└─────────────────┬───────────────────────────────────┘
┌─────────────────────────────────────────────────────┐
│ 5. Commit & Reference │
│ - Commit messages reference issue numbers │
│ - Close issues or update status │
│ - Add commit links to issue comments │
└─────────────────────────────────────────────────────┘
```
### Benefits of Gitea-First Approach
- **Reduced Context Switching**: Check brief issue descriptions instead of re-reading entire codebase
- **Better Planning**: Issues provide roadmap; avoid duplicate or contradictory work
- **Living Documentation**: Wiki and issues stay current as work progresses
- **Historical Context**: Issue comments capture why decisions were made
- **Efficiency**: MCP tools allow programmatic access to project state
### MCP Tools Available
Claude Code has access to Gitea MCP tools for:
- `list_repo_issues` - Query current issues with filtering
- `get_issue` - Get detailed issue information
- `create_issue` - Create new issues programmatically
- `create_issue_comment` - Add comments to issues
- `edit_issue` - Update issue status, title, body
- `add_issue_labels` - Tag issues appropriately
- `add_issue_dependency` / `add_issue_blocking` - Link related issues
- Plus wiki, milestone, and label management tools
Use these tools liberally to keep the project organized!
## Build Commands
```bash
# Build the project (compiles to ./build directory)
make
# Or use the build script directly
./build.sh
# Run the game
make run
# Clean build artifacts
make clean
# The executable and all assets are in ./build/
cd build
./mcrogueface
```
## Project Architecture
McRogueFace is a C++ game engine with Python scripting support, designed for creating roguelike games. The architecture consists of:
### Core Engine (C++)
- **Entry Point**: `src/main.cpp` initializes the game engine
- **Scene System**: `Scene.h/cpp` manages game states
- **Entity System**: `UIEntity.h/cpp` provides game objects
- **Python Integration**: `McRFPy_API.h/cpp` exposes engine functionality to Python
- **UI Components**: `UIFrame`, `UICaption`, `UISprite`, `UIGrid` for rendering
### Game Logic (Python)
- **Main Script**: `src/scripts/game.py` contains game initialization and scene setup
- **Entity System**: `src/scripts/cos_entities.py` implements game entities (Player, Enemy, Boulder, etc.)
- **Level Generation**: `src/scripts/cos_level.py` uses BSP for procedural dungeon generation
- **Tile System**: `src/scripts/cos_tiles.py` implements Wave Function Collapse for tile placement
### Key Python API (`mcrfpy` module)
The C++ engine exposes these primary functions to Python:
- Scene Management: `createScene()`, `setScene()`, `sceneUI()`
- Entity Creation: `Entity()` with position and sprite properties
- Grid Management: `Grid()` for tilemap rendering
- Input Handling: `keypressScene()` for keyboard events
- Audio: `createSoundBuffer()`, `playSound()`, `setVolume()`
- Timers: `setTimer()`, `delTimer()` for event scheduling
## Development Workflow
### Running the Game
After building, the executable expects:
- `assets/` directory with sprites, fonts, and audio
- `scripts/` directory with Python game files
- Python 3.12 shared libraries in `./lib/`
### Modifying Game Logic
- Game scripts are in `src/scripts/`
- Main game entry is `game.py`
- Entity behavior in `cos_entities.py`
- Level generation in `cos_level.py`
### Adding New Features
1. C++ API additions go in `src/McRFPy_API.cpp`
2. Expose to Python using the existing binding pattern
3. Update Python scripts to use new functionality
## Testing Game Changes
Currently no automated test suite. Manual testing workflow:
1. Build with `make`
2. Run `make run` or `cd build && ./mcrogueface`
3. Test specific features through gameplay
4. Check console output for Python errors
### Quick Testing Commands
```bash
# Test basic functionality
make test
# Run in Python interactive mode
make python
# Test headless mode
cd build
./mcrogueface --headless -c "import mcrfpy; print('Headless test')"
```
## Common Development Tasks
### Compiling McRogueFace
```bash
# Standard build (to ./build directory)
make
# Full rebuild
make clean && make
# Manual CMake build
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)
# The library path issue: if linking fails, check that libraries are in __lib/
# CMakeLists.txt expects: link_directories(${CMAKE_SOURCE_DIR}/__lib)
```
### Running and Capturing Output
```bash
# Run with timeout and capture output
cd build
timeout 5 ./mcrogueface 2>&1 | tee output.log
# Run in background and kill after delay
./mcrogueface > output.txt 2>&1 & PID=$!; sleep 3; kill $PID 2>/dev/null
# Just capture first N lines (useful for crashes)
./mcrogueface 2>&1 | head -50
```
### Debugging with GDB
```bash
# Interactive debugging
gdb ./mcrogueface
(gdb) run
(gdb) bt # backtrace after crash
# Batch mode debugging (non-interactive)
gdb -batch -ex run -ex where -ex quit ./mcrogueface 2>&1
# Get just the backtrace after a crash
gdb -batch -ex "run" -ex "bt" ./mcrogueface 2>&1 | head -50
# Debug with specific commands
echo -e "run\nbt 5\nquit\ny" | gdb ./mcrogueface 2>&1
```
### Testing Different Python Scripts
```bash
# The game automatically runs build/scripts/game.py on startup
# To test different behavior:
# Option 1: Replace game.py temporarily
cd build
cp scripts/my_test_script.py scripts/game.py
./mcrogueface
# Option 2: Backup original and test
mv scripts/game.py scripts/game.py.bak
cp my_test.py scripts/game.py
./mcrogueface
mv scripts/game.py.bak scripts/game.py
# Option 3: For quick tests, create minimal game.py
echo 'import mcrfpy; print("Test"); mcrfpy.createScene("test")' > scripts/game.py
```
### Understanding Key Macros and Patterns
#### RET_PY_INSTANCE Macro (UIDrawable.h)
This macro handles converting C++ UI objects to their Python equivalents:
```cpp
RET_PY_INSTANCE(target);
// Expands to a switch on target->derived_type() that:
// 1. Allocates the correct Python object type (Frame, Caption, Sprite, Grid)
// 2. Sets the shared_ptr data member
// 3. Returns the PyObject*
```
#### Collection Patterns
- `UICollection` wraps `std::vector<std::shared_ptr<UIDrawable>>`
- `UIEntityCollection` wraps `std::list<std::shared_ptr<UIEntity>>`
- Different containers require different iteration code (vector vs list)
#### Python Object Creation Patterns
```cpp
// Pattern 1: Using tp_alloc (most common)
auto o = (PyUIFrameObject*)type->tp_alloc(type, 0);
o->data = std::make_shared<UIFrame>();
// Pattern 2: Getting type from module
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Entity");
auto o = (PyUIEntityObject*)type->tp_alloc(type, 0);
// Pattern 3: Direct shared_ptr assignment
iterObj->data = self->data; // Shares the C++ object
```
### Working Directory Structure
```
build/
├── mcrogueface # The executable
├── scripts/
│ └── game.py # Auto-loaded Python script
├── assets/ # Copied from source during build
└── lib/ # Python libraries (copied from __lib/)
```
### Quick Iteration Tips
- Keep a test script ready for quick experiments
- Use `timeout` to auto-kill hanging processes
- The game expects a window manager; use Xvfb for headless testing
- Python errors go to stderr, game output to stdout
- Segfaults usually mean Python type initialization issues
## Important Notes
- The project uses SFML for graphics/audio and libtcod for roguelike utilities
- Python scripts are loaded at runtime from the `scripts/` directory
- Asset loading expects specific paths relative to the executable
- The game was created for 7DRL 2025 as "Crypt of Sokoban"
- Iterator implementations require careful handling of C++/Python boundaries
## Testing Guidelines
### Test-Driven Development
- **Always write tests first**: Create automation tests in `./tests/` for all bugs and new features
- **Practice TDD**: Write tests that fail to demonstrate the issue, then pass after the fix is applied
- **Close the loop**: Reproduce issue → change code → recompile → verify behavior change
### Two Types of Tests
#### 1. Direct Execution Tests (No Game Loop)
For tests that only need class initialization or direct code execution:
```python
# These tests can treat McRogueFace like a Python interpreter
import mcrfpy
# Test code here
result = mcrfpy.some_function()
assert result == expected_value
print("PASS" if condition else "FAIL")
```
#### 2. Game Loop Tests (Timer-Based)
For tests requiring rendering, game state, or elapsed time:
```python
import mcrfpy
from mcrfpy import automation
import sys
def run_test(runtime):
"""Timer callback - runs after game loop starts"""
# Now rendering is active, screenshots will work
automation.screenshot("test_result.png")
# Run your tests here
automation.click(100, 100)
# Always exit at the end
print("PASS" if success else "FAIL")
sys.exit(0)
# Set up the test scene
mcrfpy.createScene("test")
# ... add UI elements ...
# Schedule test to run after game loop starts
mcrfpy.setTimer("test", run_test, 100) # 0.1 seconds
```
### Key Testing Principles
- **Timer callbacks are essential**: Screenshots and UI interactions only work after the render loop starts
- **Use automation API**: Always create and examine screenshots when visual feedback is required
- **Exit properly**: Call `sys.exit()` at the end of timer-based tests to prevent hanging
- **Headless mode**: Use `--exec` flag for automated testing: `./mcrogueface --headless --exec tests/my_test.py`
### Example Test Pattern
```bash
# Run a test that requires game loop
./build/mcrogueface --headless --exec tests/issue_78_middle_click_test.py
# The test will:
# 1. Set up the scene during script execution
# 2. Register a timer callback
# 3. Game loop starts
# 4. Timer fires after 100ms
# 5. Test runs with full rendering available
# 6. Test takes screenshots and validates behavior
# 7. Test calls sys.exit() to terminate
```
## Development Best Practices
### Testing and Deployment
- **Keep tests in ./tests, not ./build/tests** - ./build gets shipped, and tests shouldn't be included
## Documentation Guidelines
### Inline C++ Documentation Format
When adding new methods or modifying existing ones in C++ source files, use this documentation format in PyMethodDef arrays:
```cpp
{"method_name", (PyCFunction)Class::method, METH_VARARGS | METH_KEYWORDS,
"method_name(arg1: type, arg2: type = default) -> return_type\n\n"
"Brief description of what the method does.\n\n"
"Args:\n"
" arg1: Description of first argument\n"
" arg2: Description of second argument (default: value)\n\n"
"Returns:\n"
" Description of return value\n\n"
"Example:\n"
" result = obj.method_name(value1, value2)\n\n"
"Note:\n"
" Any important notes or caveats"},
```
For properties in PyGetSetDef arrays:
```cpp
{"property_name", (getter)getter_func, (setter)setter_func,
"Brief description of the property. "
"Additional details about valid values, side effects, etc.", NULL},
```
### Regenerating Documentation
After modifying C++ inline documentation:
1. **Rebuild the project**: `make -j$(nproc)`
2. **Generate stub files** (for IDE support):
```bash
./build/mcrogueface --exec generate_stubs.py
```
3. **Generate dynamic documentation** (recommended):
```bash
./build/mcrogueface --exec generate_dynamic_docs.py
```
This creates:
- `docs/api_reference_dynamic.html`
- `docs/API_REFERENCE_DYNAMIC.md`
4. **Update hardcoded documentation** (if still using old system):
- `generate_complete_api_docs.py` - Update method dictionaries
- `generate_complete_markdown_docs.py` - Update method dictionaries
### Important Notes
- **McRogueFace as Python interpreter**: Documentation scripts MUST be run using McRogueFace itself, not system Python
- **Use --exec flag**: `./build/mcrogueface --exec script.py` or `--headless --exec` for CI/automation
- **Dynamic is better**: The new `generate_dynamic_docs.py` extracts documentation directly from compiled module
- **Keep docstrings consistent**: Follow the format above for automatic parsing
### Documentation Pipeline Architecture
1. **C++ Source** → PyMethodDef/PyGetSetDef arrays with docstrings
2. **Compilation** → Docstrings embedded in compiled module
3. **Introspection** → Scripts use `dir()`, `getattr()`, `__doc__` to extract
4. **Generation** → HTML/Markdown/Stub files created
The documentation is only as good as the C++ inline docstrings!

View File

@ -22,6 +22,11 @@ file(GLOB_RECURSE SOURCES "src/*.cpp")
# Create a list of libraries to link against
set(LINK_LIBS
m
dl
util
pthread
python3.12
sfml-graphics
sfml-window
sfml-system
@ -30,33 +35,22 @@ set(LINK_LIBS
# On Windows, add any additional libs and include directories
if(WIN32)
# Windows-specific Python library name (no dots)
list(APPEND LINK_LIBS python312)
# Add the necessary Windows-specific libraries and include directories
# include_directories(path_to_additional_includes)
# link_directories(path_to_additional_libs)
# list(APPEND LINK_LIBS additional_windows_libs)
include_directories(${CMAKE_SOURCE_DIR}/deps/platform/windows)
else()
# Unix/Linux specific libraries
list(APPEND LINK_LIBS python3.12 m dl util pthread)
include_directories(${CMAKE_SOURCE_DIR}/deps/platform/linux)
endif()
# Add the directory where the linker should look for the libraries
#link_directories(${CMAKE_SOURCE_DIR}/deps_linux)
link_directories(${CMAKE_SOURCE_DIR}/__lib)
link_directories(${CMAKE_SOURCE_DIR}/lib)
# Define the executable target before linking libraries
add_executable(mcrogueface ${SOURCES})
# On Windows, set subsystem to WINDOWS to hide console
if(WIN32)
set_target_properties(mcrogueface PROPERTIES
WIN32_EXECUTABLE TRUE
LINK_FLAGS "/SUBSYSTEM:WINDOWS /ENTRY:mainCRTStartup")
endif()
# Now the linker will find the libraries in the specified directory
target_link_libraries(mcrogueface ${LINK_LIBS})
@ -73,28 +67,9 @@ add_custom_command(TARGET mcrogueface POST_BUILD
# Copy Python standard library to build directory
add_custom_command(TARGET mcrogueface POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_directory
${CMAKE_SOURCE_DIR}/__lib $<TARGET_FILE_DIR:mcrogueface>/lib)
${CMAKE_SOURCE_DIR}/lib $<TARGET_FILE_DIR:mcrogueface>/lib)
# On Windows, copy DLLs to executable directory
if(WIN32)
# Copy all DLL files from lib to the executable directory
add_custom_command(TARGET mcrogueface POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_directory
${CMAKE_SOURCE_DIR}/__lib $<TARGET_FILE_DIR:mcrogueface>
COMMAND ${CMAKE_COMMAND} -E echo "Copied DLLs to executable directory")
# Alternative: Copy specific DLLs if you want more control
# file(GLOB DLLS "${CMAKE_SOURCE_DIR}/__lib/*.dll")
# foreach(DLL ${DLLS})
# add_custom_command(TARGET mcrogueface POST_BUILD
# COMMAND ${CMAKE_COMMAND} -E copy_if_different
# ${DLL} $<TARGET_FILE_DIR:mcrogueface>)
# endforeach()
endif()
# rpath for including shared libraries (Linux/Unix only)
if(NOT WIN32)
set_target_properties(mcrogueface PROPERTIES
INSTALL_RPATH "$ORIGIN/./lib")
endif()
# rpath for including shared libraries
set_target_properties(mcrogueface PROPERTIES
INSTALL_RPATH "./lib")

View File

@ -1,54 +0,0 @@
# Convenience Makefile wrapper for McRogueFace
# This delegates to CMake build in the build directory
.PHONY: all build clean run test dist help
# Default target
all: build
# Build the project
build:
@./build.sh
# Clean build artifacts
clean:
@./clean.sh
# Run the game
run: build
@cd build && ./mcrogueface
# Run in Python mode
python: build
@cd build && ./mcrogueface -i
# Test basic functionality
test: build
@echo "Testing McRogueFace..."
@cd build && ./mcrogueface -V
@cd build && ./mcrogueface -c "print('Test passed')"
@cd build && ./mcrogueface --headless -c "import mcrfpy; print('mcrfpy imported successfully')"
# Create distribution archive
dist: build
@echo "Creating distribution archive..."
@cd build && zip -r ../McRogueFace-$$(date +%Y%m%d).zip . -x "*.o" "CMakeFiles/*" "Makefile" "*.cmake"
@echo "Distribution archive created: McRogueFace-$$(date +%Y%m%d).zip"
# Show help
help:
@echo "McRogueFace Build System"
@echo "======================="
@echo ""
@echo "Available targets:"
@echo " make - Build the project (default)"
@echo " make build - Build the project"
@echo " make clean - Remove all build artifacts"
@echo " make run - Build and run the game"
@echo " make python - Build and run in Python interactive mode"
@echo " make test - Run basic tests"
@echo " make dist - Create distribution archive"
@echo " make help - Show this help message"
@echo ""
@echo "Build output goes to: ./build/"
@echo "Distribution archives are created in project root"

161
README.md
View File

@ -1,145 +1,30 @@
# McRogueFace
# McRogueFace - 2D Game Engine
An experimental prototype game engine built for my own use in 7DRL 2023.
*Blame my wife for the name*
A Python-powered 2D game engine for creating roguelike games, built with C++ and SFML.
## Tenets:
* Core roguelike logic from libtcod: field of view, pathfinding
* Animate sprites with multiple frames. Smooth transitions for positions, sizes, zoom, and camera
* Simple GUI element system allows keyboard and mouse input, composition
* No compilation or installation necessary. The runtime is a full Python environment; "Zip And Ship"
* C++ first, Python close behind.
* Entity-Component system based on David Churchill's Memorial University COMP4300 course lectures available on Youtube.
* Graphics, particles and shaders provided by SFML.
* Pathfinding, noise generation, and other Roguelike goodness provided by TCOD.
![ Image ]()
## Why?
**Pre-Alpha Release Demo**: my 7DRL 2025 entry *"Crypt of Sokoban"* - a prototype with buttons, boulders, enemies, and items.
I did the r/RoguelikeDev TCOD tutorial in Python. I loved it, but I did not want to be limited to ASCII. I want to be able to draw pixels on top of my tiles (like lines or circles) and eventually incorporate even more polish.
## Quick Start
## To-do
**Download**:
- The entire McRogueFace visual framework:
- **Sprite**: an image file or one sprite from a shared sprite sheet
- **Caption**: load a font, display text
- **Frame**: A rectangle; put other things on it to move or manage GUIs as modules
- **Grid**: A 2D array of tiles with zoom + position control
- **Entity**: Lives on a Grid, displays a sprite, and can have a perspective or move along a path
- **Animation**: Change any property on any of the above over time
```bash
# Clone and build
git clone <wherever you found this repo>
cd McRogueFace
make
# Run the example game
cd build
./mcrogueface
```
## Example: Creating a Simple Scene
```python
import mcrfpy
# Create a new scene
mcrfpy.createScene("intro")
# Add a text caption
caption = mcrfpy.Caption((50, 50), "Welcome to McRogueFace!")
caption.size = 48
caption.fill_color = (255, 255, 255)
# Add to scene
mcrfpy.sceneUI("intro").append(caption)
# Switch to the scene
mcrfpy.setScene("intro")
```
## Documentation
### 📚 Developer Documentation
For comprehensive documentation about systems, architecture, and development workflows:
**[Project Wiki](https://gamedev.ffwf.net/gitea/john/McRogueFace/wiki)**
Key wiki pages:
- **[Home](https://gamedev.ffwf.net/gitea/john/McRogueFace/wiki/Home)** - Documentation hub with multiple entry points
- **[Grid System](https://gamedev.ffwf.net/gitea/john/McRogueFace/wiki/Grid-System)** - Three-layer grid architecture
- **[Python Binding System](https://gamedev.ffwf.net/gitea/john/McRogueFace/wiki/Python-Binding-System)** - C++/Python integration
- **[Performance and Profiling](https://gamedev.ffwf.net/gitea/john/McRogueFace/wiki/Performance-and-Profiling)** - Optimization tools
- **[Adding Python Bindings](https://gamedev.ffwf.net/gitea/john/McRogueFace/wiki/Adding-Python-Bindings)** - Step-by-step binding guide
- **[Issue Roadmap](https://gamedev.ffwf.net/gitea/john/McRogueFace/wiki/Issue-Roadmap)** - All 46 open issues organized by system
### 📖 Development Guides
In the repository root:
- **[CLAUDE.md](CLAUDE.md)** - Build instructions, testing guidelines, common tasks
- **[ROADMAP.md](ROADMAP.md)** - Strategic vision and development phases
- **[roguelike_tutorial/](roguelike_tutorial/)** - Complete roguelike tutorial implementations
## Build Requirements
- C++17 compiler (GCC 7+ or Clang 5+)
- CMake 3.14+
- Python 3.12+
- SFML 2.6
- Linux or Windows (macOS untested)
## Project Structure
```
McRogueFace/
├── assets/ # Sprites, fonts, audio
├── build/ # Build output directory: zip + ship
│ ├─ (*)assets/ # (copied location of assets)
│ ├─ (*)scripts/ # (copied location of src/scripts)
│ └─ lib/ # SFML, TCOD libraries, Python + standard library / modules
├── deps/ # Python, SFML, and libtcod imports can be tossed in here to build
│ └─ platform/ # windows, linux subdirectories for OS-specific cpython config
├── docs/ # generated HTML, markdown docs
│ └─ stubs/ # .pyi files for editor integration
├── modules/ # git submodules, to build all of McRogueFace's dependencies from source
├── src/ # C++ engine source
│ └─ scripts/ # Python game scripts (copied during build)
└── tests/ # Automated test suite
└── tools/ # For the McRogueFace ecosystem: docs generation
```
If you are building McRogueFace to implement game logic or scene configuration in C++, you'll have to compile the project.
If you are writing a game in Python using McRogueFace, you only need to rename and zip/distribute the `build` directory.
## Philosophy
- **C++ every frame, Python every tick**: All rendering data is handled in C++. Structure your UI and program animations in Python, and they are rendered without Python. All game logic can be written in Python.
- **No Compiling Required; Zip And Ship**: Implement your game objects with Python, zip up McRogueFace with your "game.py" to ship
- **Built-in Roguelike Support**: Dungeon generation, pathfinding, and field-of-view via libtcod
- **Hands-Off Testing**: PyAutoGUI-inspired event generation framework. All McRogueFace interactions can be performed headlessly via script: for software testing or AI integration
- **Interactive Development**: Python REPL integration for live game debugging. Use `mcrogueface` like a Python interpreter
## Contributing
PRs will be considered! Please include explicit mention that your contribution is your own work and released under the MIT license in the pull request.
### Issue Tracking
The project uses [Gitea Issues](https://gamedev.ffwf.net/gitea/john/McRogueFace/issues) for task tracking and bug reports. Issues are organized with labels:
- **System labels** (grid, animation, python-binding, etc.) - identify which codebase area
- **Priority labels** (tier1-active, tier2-foundation, tier3-future) - development timeline
- **Type labels** (Major Feature, Minor Feature, Bugfix, etc.) - effort and scope
See the [Issue Roadmap](https://gamedev.ffwf.net/gitea/john/McRogueFace/wiki/Issue-Roadmap) on the wiki for organized view of all open tasks.
## License
This project is licensed under the MIT License - see LICENSE file for details.
## Acknowledgments
- Developed for 7-Day Roguelike 2023, 2024, 2025 - here's to many more
- Built with [SFML](https://www.sfml-dev.org/), [libtcod](https://github.com/libtcod/libtcod), and Python
- Inspired by David Churchill's COMP4300 game engine lectures
* ✅ Initial Commit
* ✅ Integrate scene, action, entity, component system from COMP4300 engine
* ✅ Windows / Visual Studio project
* ✅ Draw Sprites
* ✅ Play Sounds
* ✅ Draw UI, spawn entity from Python code
* ❌ Python AI for entities (NPCs on set paths, enemies towards player)
* ✅ Walking / Collision
* ❌ "Boards" (stairs / doors / walk off edge of screen)
* ❌ Cutscenes - interrupt normal controls, text scroll, character portraits
* ❌ Mouse integration - tooltips, zoom, click to select targets, cursors

View File

@ -1,222 +0,0 @@
# McRogueFace - Development Roadmap
## Project Status
**Current State**: Active development - C++ game engine with Python scripting
**Latest Release**: Alpha 0.1
**Issue Tracking**: See [Gitea Issues](https://gamedev.ffwf.net/gitea/john/McRogueFace/issues) for current tasks and bugs
---
## 🎯 Strategic Vision
### Engine Philosophy
- **C++ First**: Performance-critical code stays in C++
- **Python Close Behind**: Rich scripting without frame-rate impact
- **Game-Ready**: Each improvement should benefit actual game development
### Architecture Goals
1. **Clean Inheritance**: Drawable → UI components, proper type preservation
2. **Collection Consistency**: Uniform iteration, indexing, and search patterns
3. **Resource Management**: RAII everywhere, proper lifecycle handling
4. **Multi-Platform**: Windows/Linux feature parity maintained
---
## 🏗️ Architecture Decisions
### Three-Layer Grid Architecture
Following successful roguelike patterns (Caves of Qud, Cogmind, DCSS):
1. **Visual Layer** (UIGridPoint) - Sprites, colors, animations
2. **World State Layer** (TCODMap) - Walkability, transparency, physics
3. **Entity Perspective Layer** (UIGridPointState) - Per-entity FOV, knowledge
### Performance Architecture
Critical for large maps (1000x1000):
- **Spatial Hashing** for entity queries (not quadtrees!)
- **Batch Operations** with context managers (10-100x speedup)
- **Memory Pooling** for entities and components
- **Dirty Flag System** to avoid unnecessary updates
- **Zero-Copy NumPy Integration** via buffer protocol
### Key Insight from Research
"Minimizing Python/C++ boundary crossings matters more than individual function complexity"
- Batch everything possible
- Use context managers for logical operations
- Expose arrays, not individual cells
- Profile and optimize hot paths only
---
## 🚀 Development Phases
For detailed task tracking and current priorities, see the [Gitea issue tracker](https://gamedev.ffwf.net/gitea/john/McRogueFace/issues).
### Phase 1: Foundation Stabilization ✅
**Status**: Complete
**Key Issues**: #7 (Safe Constructors), #71 (Base Class), #87 (Visibility), #88 (Opacity)
### Phase 2: Constructor & API Polish ✅
**Status**: Complete
**Key Features**: Pythonic API, tuple support, standardized defaults
### Phase 3: Entity Lifecycle Management ✅
**Status**: Complete
**Key Issues**: #30 (Entity.die()), #93 (Vector methods), #94 (Color helpers), #103 (Timer objects)
### Phase 4: Visibility & Performance ✅
**Status**: Complete
**Key Features**: AABB culling, name system, profiling tools
### Phase 5: Window/Scene Architecture ✅
**Status**: Complete
**Key Issues**: #34 (Window object), #61 (Scene object), #1 (Resize events), #105 (Scene transitions)
### Phase 6: Rendering Revolution ✅
**Status**: Complete
**Key Issues**: #50 (Grid backgrounds), #6 (RenderTexture), #8 (Viewport rendering)
### Phase 7: Documentation & Distribution
**Status**: In Progress
**Key Issues**: #85 (Docstrings), #86 (Parameter docs), #108 (Type stubs), #97 (API docs)
See [current open issues](https://gamedev.ffwf.net/gitea/john/McRogueFace/issues?state=open) for active work.
---
## 🔮 Future Vision: Pure Python Extension Architecture
### Concept: McRogueFace as a Traditional Python Package
**Status**: Long-term vision
**Complexity**: Major architectural overhaul
Instead of being a C++ application that embeds Python, McRogueFace could be redesigned as a pure Python extension module that can be installed via `pip install mcrogueface`.
### Technical Approach
1. **Separate Core Engine from Python Embedding**
- Extract SFML rendering, audio, and input into C++ extension modules
- Remove embedded CPython interpreter
- Use Python's C API to expose functionality
2. **Module Structure**
```
mcrfpy/
├── __init__.py # Pure Python coordinator
├── _core.so # C++ rendering/game loop extension
├── _sfml.so # SFML bindings
├── _audio.so # Audio system bindings
└── engine.py # Python game engine logic
```
3. **Inverted Control Flow**
- Python drives the main loop instead of C++
- C++ extensions handle performance-critical operations
- Python manages game logic, scenes, and entity systems
### Benefits
- **Standard Python Packaging**: `pip install mcrogueface`
- **Virtual Environment Support**: Works with venv, conda, poetry
- **Better IDE Integration**: Standard Python development workflow
- **Easier Testing**: Use pytest, standard Python testing tools
- **Cross-Python Compatibility**: Support multiple Python versions
- **Modular Architecture**: Users can import only what they need
### Challenges
- **Major Refactoring**: Complete restructure of codebase
- **Performance Considerations**: Python-driven main loop overhead
- **Build Complexity**: Multiple extension modules to compile
- **Platform Support**: Need wheels for many platform/Python combinations
- **API Stability**: Would need careful design to maintain compatibility
### Example Usage (Future Vision)
```python
import mcrfpy
from mcrfpy import Scene, Frame, Sprite, Grid
# Create game directly in Python
game = mcrfpy.Game(width=1024, height=768)
# Define scenes using Python classes
class MainMenu(Scene):
def on_enter(self):
self.ui.append(Frame(100, 100, 200, 50))
self.ui.append(Sprite("logo.png", x=400, y=100))
def on_keypress(self, key, pressed):
if key == "ENTER" and pressed:
self.game.set_scene("game")
# Run the game
game.add_scene("menu", MainMenu())
game.run()
```
This architecture would make McRogueFace a first-class Python citizen, following standard Python packaging conventions while maintaining high performance through C++ extensions.
---
## 📋 Major Feature Areas
For current status and detailed tasks, see the corresponding Gitea issue labels:
### Core Systems
- **UI/Rendering System**: Issues tagged `[Major Feature]` related to rendering
- **Grid/Entity System**: Pathfinding, FOV, entity management
- **Animation System**: Property animation, easing functions, callbacks
- **Scene/Window Management**: Scene lifecycle, transitions, viewport
### Performance Optimization
- **#115**: SpatialHash for 10,000+ entities
- **#116**: Dirty flag system
- **#113**: Batch operations for NumPy-style access
- **#117**: Memory pool for entities
### Advanced Features
- **#118**: Scene as Drawable (scenes can be drawn/animated)
- **#122**: Parent-Child UI System
- **#123**: Grid Subgrid System (256x256 chunks)
- **#124**: Grid Point Animation
- **#106**: Shader support
- **#107**: Particle system
### Documentation
- **#92**: Inline C++ documentation system
- **#91**: Python type stub files (.pyi)
- **#97**: Automated API documentation extraction
- **#126**: Generate perfectly consistent Python interface
---
## 📚 Resources
- **Issue Tracker**: [Gitea Issues](https://gamedev.ffwf.net/gitea/john/McRogueFace/issues)
- **Source Code**: [Gitea Repository](https://gamedev.ffwf.net/gitea/john/McRogueFace)
- **Documentation**: See `CLAUDE.md` for build instructions and development guide
- **Tutorial**: See `roguelike_tutorial/` for implementation examples
- **Workflow**: See "Gitea-First Workflow" section in `CLAUDE.md` for issue management best practices
---
## 🔄 Development Workflow
**Gitea is the Single Source of Truth** for this project. Before starting any work:
1. **Check Gitea Issues** for existing tasks, bugs, or related work
2. **Create granular issues** for new features or problems
3. **Update issues** when work affects other systems
4. **Document discoveries** - if something is undocumented or misleading, create a task to fix it
5. **Cross-reference commits** with issue numbers (e.g., "Fixes #104")
See the "Gitea-First Workflow" section in `CLAUDE.md` for detailed guidelines on efficient development practices using the Gitea MCP tools.
---
*For current priorities, task tracking, and bug reports, please use the [Gitea issue tracker](https://gamedev.ffwf.net/gitea/john/McRogueFace/issues).*

Binary file not shown.

Before

Width:  |  Height:  |  Size: 181 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 674 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,54 +0,0 @@
#!/bin/bash
# Build script for McRogueFace - compiles everything into ./build directory
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
echo -e "${GREEN}McRogueFace Build Script${NC}"
echo "========================="
# Create build directory if it doesn't exist
if [ ! -d "build" ]; then
echo -e "${YELLOW}Creating build directory...${NC}"
mkdir build
fi
# Change to build directory
cd build
# Run CMake to generate build files
echo -e "${YELLOW}Running CMake...${NC}"
cmake .. -DCMAKE_BUILD_TYPE=Release
# Check if CMake succeeded
if [ $? -ne 0 ]; then
echo -e "${RED}CMake configuration failed!${NC}"
exit 1
fi
# Run make with parallel jobs
echo -e "${YELLOW}Building with make...${NC}"
make -j$(nproc)
# Check if make succeeded
if [ $? -ne 0 ]; then
echo -e "${RED}Build failed!${NC}"
exit 1
fi
echo -e "${GREEN}Build completed successfully!${NC}"
echo ""
echo "The build directory contains:"
ls -la
echo ""
echo -e "${GREEN}To run McRogueFace:${NC}"
echo " cd build"
echo " ./mcrogueface"
echo ""
echo -e "${GREEN}To create a distribution archive:${NC}"
echo " cd build"
echo " zip -r ../McRogueFace-$(date +%Y%m%d).zip ."

View File

@ -1,36 +0,0 @@
@echo off
REM Windows build script for McRogueFace
REM Run this over SSH without Visual Studio GUI
echo Building McRogueFace for Windows...
REM Clean previous build
if exist build_win rmdir /s /q build_win
mkdir build_win
cd build_win
REM Generate Visual Studio project files with CMake
REM Use -G to specify generator, -A for architecture
REM Visual Studio 2022 = "Visual Studio 17 2022"
REM Visual Studio 2019 = "Visual Studio 16 2019"
cmake -G "Visual Studio 17 2022" -A x64 ..
if errorlevel 1 (
echo CMake configuration failed!
exit /b 1
)
REM Build using MSBuild (comes with Visual Studio)
REM You can also use cmake --build . --config Release
msbuild McRogueFace.sln /p:Configuration=Release /p:Platform=x64 /m
if errorlevel 1 (
echo Build failed!
exit /b 1
)
echo Build completed successfully!
echo Executable location: build_win\Release\mcrogueface.exe
REM Alternative: Using cmake to build (works with any generator)
REM cmake --build . --config Release --parallel
cd ..

View File

@ -1,42 +0,0 @@
@echo off
REM Windows build script using cmake --build (generator-agnostic)
REM This version works with any CMake generator
echo Building McRogueFace for Windows using CMake...
REM Set build directory
set BUILD_DIR=build_win
set CONFIG=Release
REM Clean previous build
if exist %BUILD_DIR% rmdir /s /q %BUILD_DIR%
mkdir %BUILD_DIR%
cd %BUILD_DIR%
REM Configure with CMake
REM You can change the generator here if needed:
REM -G "Visual Studio 17 2022" (VS 2022)
REM -G "Visual Studio 16 2019" (VS 2019)
REM -G "MinGW Makefiles" (MinGW)
REM -G "Ninja" (Ninja build system)
cmake -G "Visual Studio 17 2022" -A x64 -DCMAKE_BUILD_TYPE=%CONFIG% ..
if errorlevel 1 (
echo CMake configuration failed!
cd ..
exit /b 1
)
REM Build using cmake (works with any generator)
cmake --build . --config %CONFIG% --parallel
if errorlevel 1 (
echo Build failed!
cd ..
exit /b 1
)
echo.
echo Build completed successfully!
echo Executable: %BUILD_DIR%\%CONFIG%\mcrogueface.exe
echo.
cd ..

View File

@ -1,112 +0,0 @@
[
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/GameEngine.cpp.o -c /home/john/Development/McRogueFace/src/GameEngine.cpp",
"file": "/home/john/Development/McRogueFace/src/GameEngine.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/IndexTexture.cpp.o -c /home/john/Development/McRogueFace/src/IndexTexture.cpp",
"file": "/home/john/Development/McRogueFace/src/IndexTexture.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/McRFPy_API.cpp.o -c /home/john/Development/McRogueFace/src/McRFPy_API.cpp",
"file": "/home/john/Development/McRogueFace/src/McRFPy_API.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyCallable.cpp.o -c /home/john/Development/McRogueFace/src/PyCallable.cpp",
"file": "/home/john/Development/McRogueFace/src/PyCallable.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyColor.cpp.o -c /home/john/Development/McRogueFace/src/PyColor.cpp",
"file": "/home/john/Development/McRogueFace/src/PyColor.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyFont.cpp.o -c /home/john/Development/McRogueFace/src/PyFont.cpp",
"file": "/home/john/Development/McRogueFace/src/PyFont.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyScene.cpp.o -c /home/john/Development/McRogueFace/src/PyScene.cpp",
"file": "/home/john/Development/McRogueFace/src/PyScene.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyTexture.cpp.o -c /home/john/Development/McRogueFace/src/PyTexture.cpp",
"file": "/home/john/Development/McRogueFace/src/PyTexture.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyVector.cpp.o -c /home/john/Development/McRogueFace/src/PyVector.cpp",
"file": "/home/john/Development/McRogueFace/src/PyVector.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/Resources.cpp.o -c /home/john/Development/McRogueFace/src/Resources.cpp",
"file": "/home/john/Development/McRogueFace/src/Resources.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/Scene.cpp.o -c /home/john/Development/McRogueFace/src/Scene.cpp",
"file": "/home/john/Development/McRogueFace/src/Scene.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/Timer.cpp.o -c /home/john/Development/McRogueFace/src/Timer.cpp",
"file": "/home/john/Development/McRogueFace/src/Timer.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UICaption.cpp.o -c /home/john/Development/McRogueFace/src/UICaption.cpp",
"file": "/home/john/Development/McRogueFace/src/UICaption.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UICollection.cpp.o -c /home/john/Development/McRogueFace/src/UICollection.cpp",
"file": "/home/john/Development/McRogueFace/src/UICollection.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIDrawable.cpp.o -c /home/john/Development/McRogueFace/src/UIDrawable.cpp",
"file": "/home/john/Development/McRogueFace/src/UIDrawable.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIEntity.cpp.o -c /home/john/Development/McRogueFace/src/UIEntity.cpp",
"file": "/home/john/Development/McRogueFace/src/UIEntity.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIFrame.cpp.o -c /home/john/Development/McRogueFace/src/UIFrame.cpp",
"file": "/home/john/Development/McRogueFace/src/UIFrame.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIGrid.cpp.o -c /home/john/Development/McRogueFace/src/UIGrid.cpp",
"file": "/home/john/Development/McRogueFace/src/UIGrid.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIGridPoint.cpp.o -c /home/john/Development/McRogueFace/src/UIGridPoint.cpp",
"file": "/home/john/Development/McRogueFace/src/UIGridPoint.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UISprite.cpp.o -c /home/john/Development/McRogueFace/src/UISprite.cpp",
"file": "/home/john/Development/McRogueFace/src/UISprite.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UITestScene.cpp.o -c /home/john/Development/McRogueFace/src/UITestScene.cpp",
"file": "/home/john/Development/McRogueFace/src/UITestScene.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/main.cpp.o -c /home/john/Development/McRogueFace/src/main.cpp",
"file": "/home/john/Development/McRogueFace/src/main.cpp"
}
]

157
css_colors.txt Normal file
View File

@ -0,0 +1,157 @@
aqua #00FFFF
black #000000
blue #0000FF
fuchsia #FF00FF
gray #808080
green #008000
lime #00FF00
maroon #800000
navy #000080
olive #808000
purple #800080
red #FF0000
silver #C0C0C0
teal #008080
white #FFFFFF
yellow #FFFF00
aliceblue #F0F8FF
antiquewhite #FAEBD7
aqua #00FFFF
aquamarine #7FFFD4
azure #F0FFFF
beige #F5F5DC
bisque #FFE4C4
black #000000
blanchedalmond #FFEBCD
blue #0000FF
blueviolet #8A2BE2
brown #A52A2A
burlywood #DEB887
cadetblue #5F9EA0
chartreuse #7FFF00
chocolate #D2691E
coral #FF7F50
cornflowerblue #6495ED
cornsilk #FFF8DC
crimson #DC143C
cyan #00FFFF
darkblue #00008B
darkcyan #008B8B
darkgoldenrod #B8860B
darkgray #A9A9A9
darkgreen #006400
darkkhaki #BDB76B
darkmagenta #8B008B
darkolivegreen #556B2F
darkorange #FF8C00
darkorchid #9932CC
darkred #8B0000
darksalmon #E9967A
darkseagreen #8FBC8F
darkslateblue #483D8B
darkslategray #2F4F4F
darkturquoise #00CED1
darkviolet #9400D3
deeppink #FF1493
deepskyblue #00BFFF
dimgray #696969
dodgerblue #1E90FF
firebrick #B22222
floralwhite #FFFAF0
forestgreen #228B22
fuchsia #FF00FF
gainsboro #DCDCDC
ghostwhite #F8F8FF
gold #FFD700
goldenrod #DAA520
gray #7F7F7F
green #008000
greenyellow #ADFF2F
honeydew #F0FFF0
hotpink #FF69B4
indianred #CD5C5C
indigo #4B0082
ivory #FFFFF0
khaki #F0E68C
lavender #E6E6FA
lavenderblush #FFF0F5
lawngreen #7CFC00
lemonchiffon #FFFACD
lightblue #ADD8E6
lightcoral #F08080
lightcyan #E0FFFF
lightgoldenrodyellow #FAFAD2
lightgreen #90EE90
lightgrey #D3D3D3
lightpink #FFB6C1
lightsalmon #FFA07A
lightseagreen #20B2AA
lightskyblue #87CEFA
lightslategray #778899
lightsteelblue #B0C4DE
lightyellow #FFFFE0
lime #00FF00
limegreen #32CD32
linen #FAF0E6
magenta #FF00FF
maroon #800000
mediumaquamarine #66CDAA
mediumblue #0000CD
mediumorchid #BA55D3
mediumpurple #9370DB
mediumseagreen #3CB371
mediumslateblue #7B68EE
mediumspringgreen #00FA9A
mediumturquoise #48D1CC
mediumvioletred #C71585
midnightblue #191970
mintcream #F5FFFA
mistyrose #FFE4E1
moccasin #FFE4B5
navajowhite #FFDEAD
navy #000080
navyblue #9FAFDF
oldlace #FDF5E6
olive #808000
olivedrab #6B8E23
orange #FFA500
orangered #FF4500
orchid #DA70D6
palegoldenrod #EEE8AA
palegreen #98FB98
paleturquoise #AFEEEE
palevioletred #DB7093
papayawhip #FFEFD5
peachpuff #FFDAB9
peru #CD853F
pink #FFC0CB
plum #DDA0DD
powderblue #B0E0E6
purple #800080
red #FF0000
rosybrown #BC8F8F
royalblue #4169E1
saddlebrown #8B4513
salmon #FA8072
sandybrown #FA8072
seagreen #2E8B57
seashell #FFF5EE
sienna #A0522D
silver #C0C0C0
skyblue #87CEEB
slateblue #6A5ACD
slategray #708090
snow #FFFAFA
springgreen #00FF7F
steelblue #4682B4
tan #D2B48C
teal #008080
thistle #D8BFD8
tomato #FF6347
turquoise #40E0D0
violet #EE82EE
wheat #F5DEB3
white #FFFFFF
whitesmoke #F5F5F5
yellow #FFFF00
yellowgreen #9ACD32

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,532 +0,0 @@
"""Type stubs for McRogueFace Python API.
Core game engine interface for creating roguelike games with Python.
"""
from typing import Any, List, Dict, Tuple, Optional, Callable, Union, overload
# Type aliases
UIElement = Union['Frame', 'Caption', 'Sprite', 'Grid']
Transition = Union[str, None]
# Classes
class Color:
"""SFML Color Object for RGBA colors."""
r: int
g: int
b: int
a: int
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, r: int, g: int, b: int, a: int = 255) -> None: ...
def from_hex(self, hex_string: str) -> 'Color':
"""Create color from hex string (e.g., '#FF0000' or 'FF0000')."""
...
def to_hex(self) -> str:
"""Convert color to hex string format."""
...
def lerp(self, other: 'Color', t: float) -> 'Color':
"""Linear interpolation between two colors."""
...
class Vector:
"""SFML Vector Object for 2D coordinates."""
x: float
y: float
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float, y: float) -> None: ...
def add(self, other: 'Vector') -> 'Vector': ...
def subtract(self, other: 'Vector') -> 'Vector': ...
def multiply(self, scalar: float) -> 'Vector': ...
def divide(self, scalar: float) -> 'Vector': ...
def distance(self, other: 'Vector') -> float: ...
def normalize(self) -> 'Vector': ...
def dot(self, other: 'Vector') -> float: ...
class Texture:
"""SFML Texture Object for images."""
def __init__(self, filename: str) -> None: ...
filename: str
width: int
height: int
sprite_count: int
class Font:
"""SFML Font Object for text rendering."""
def __init__(self, filename: str) -> None: ...
filename: str
family: str
class Drawable:
"""Base class for all drawable UI elements."""
x: float
y: float
visible: bool
z_index: int
name: str
pos: Vector
def get_bounds(self) -> Tuple[float, float, float, float]:
"""Get bounding box as (x, y, width, height)."""
...
def move(self, dx: float, dy: float) -> None:
"""Move by relative offset (dx, dy)."""
...
def resize(self, width: float, height: float) -> None:
"""Resize to new dimensions (width, height)."""
...
class Frame(Drawable):
"""Frame(x=0, y=0, w=0, h=0, fill_color=None, outline_color=None, outline=0, click=None, children=None)
A rectangular frame UI element that can contain other drawable elements.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float = 0, y: float = 0, w: float = 0, h: float = 0,
fill_color: Optional[Color] = None, outline_color: Optional[Color] = None,
outline: float = 0, click: Optional[Callable] = None,
children: Optional[List[UIElement]] = None) -> None: ...
w: float
h: float
fill_color: Color
outline_color: Color
outline: float
click: Optional[Callable[[float, float, int], None]]
children: 'UICollection'
clip_children: bool
class Caption(Drawable):
"""Caption(text='', x=0, y=0, font=None, fill_color=None, outline_color=None, outline=0, click=None)
A text display UI element with customizable font and styling.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, text: str = '', x: float = 0, y: float = 0,
font: Optional[Font] = None, fill_color: Optional[Color] = None,
outline_color: Optional[Color] = None, outline: float = 0,
click: Optional[Callable] = None) -> None: ...
text: str
font: Font
fill_color: Color
outline_color: Color
outline: float
click: Optional[Callable[[float, float, int], None]]
w: float # Read-only, computed from text
h: float # Read-only, computed from text
class Sprite(Drawable):
"""Sprite(x=0, y=0, texture=None, sprite_index=0, scale=1.0, click=None)
A sprite UI element that displays a texture or portion of a texture atlas.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float = 0, y: float = 0, texture: Optional[Texture] = None,
sprite_index: int = 0, scale: float = 1.0,
click: Optional[Callable] = None) -> None: ...
texture: Texture
sprite_index: int
scale: float
click: Optional[Callable[[float, float, int], None]]
w: float # Read-only, computed from texture
h: float # Read-only, computed from texture
class Grid(Drawable):
"""Grid(x=0, y=0, grid_size=(20, 20), texture=None, tile_width=16, tile_height=16, scale=1.0, click=None)
A grid-based tilemap UI element for rendering tile-based levels and game worlds.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float = 0, y: float = 0, grid_size: Tuple[int, int] = (20, 20),
texture: Optional[Texture] = None, tile_width: int = 16, tile_height: int = 16,
scale: float = 1.0, click: Optional[Callable] = None) -> None: ...
grid_size: Tuple[int, int]
tile_width: int
tile_height: int
texture: Texture
scale: float
points: List[List['GridPoint']]
entities: 'EntityCollection'
background_color: Color
click: Optional[Callable[[int, int, int], None]]
def at(self, x: int, y: int) -> 'GridPoint':
"""Get grid point at tile coordinates."""
...
class GridPoint:
"""Grid point representing a single tile."""
texture_index: int
solid: bool
color: Color
class GridPointState:
"""State information for a grid point."""
texture_index: int
color: Color
class Entity(Drawable):
"""Entity(grid_x=0, grid_y=0, texture=None, sprite_index=0, name='')
Game entity that lives within a Grid.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, grid_x: float = 0, grid_y: float = 0, texture: Optional[Texture] = None,
sprite_index: int = 0, name: str = '') -> None: ...
grid_x: float
grid_y: float
texture: Texture
sprite_index: int
grid: Optional[Grid]
def at(self, grid_x: float, grid_y: float) -> None:
"""Move entity to grid position."""
...
def die(self) -> None:
"""Remove entity from its grid."""
...
def index(self) -> int:
"""Get index in parent grid's entity collection."""
...
class UICollection:
"""Collection of UI drawable elements (Frame, Caption, Sprite, Grid)."""
def __len__(self) -> int: ...
def __getitem__(self, index: int) -> UIElement: ...
def __setitem__(self, index: int, value: UIElement) -> None: ...
def __delitem__(self, index: int) -> None: ...
def __contains__(self, item: UIElement) -> bool: ...
def __iter__(self) -> Any: ...
def __add__(self, other: 'UICollection') -> 'UICollection': ...
def __iadd__(self, other: 'UICollection') -> 'UICollection': ...
def append(self, item: UIElement) -> None: ...
def extend(self, items: List[UIElement]) -> None: ...
def remove(self, item: UIElement) -> None: ...
def index(self, item: UIElement) -> int: ...
def count(self, item: UIElement) -> int: ...
class EntityCollection:
"""Collection of Entity objects."""
def __len__(self) -> int: ...
def __getitem__(self, index: int) -> Entity: ...
def __setitem__(self, index: int, value: Entity) -> None: ...
def __delitem__(self, index: int) -> None: ...
def __contains__(self, item: Entity) -> bool: ...
def __iter__(self) -> Any: ...
def __add__(self, other: 'EntityCollection') -> 'EntityCollection': ...
def __iadd__(self, other: 'EntityCollection') -> 'EntityCollection': ...
def append(self, item: Entity) -> None: ...
def extend(self, items: List[Entity]) -> None: ...
def remove(self, item: Entity) -> None: ...
def index(self, item: Entity) -> int: ...
def count(self, item: Entity) -> int: ...
class Scene:
"""Base class for object-oriented scenes."""
name: str
def __init__(self, name: str) -> None: ...
def activate(self) -> None:
"""Called when scene becomes active."""
...
def deactivate(self) -> None:
"""Called when scene becomes inactive."""
...
def get_ui(self) -> UICollection:
"""Get UI elements collection."""
...
def on_keypress(self, key: str, pressed: bool) -> None:
"""Handle keyboard events."""
...
def on_click(self, x: float, y: float, button: int) -> None:
"""Handle mouse clicks."""
...
def on_enter(self) -> None:
"""Called when entering the scene."""
...
def on_exit(self) -> None:
"""Called when leaving the scene."""
...
def on_resize(self, width: int, height: int) -> None:
"""Handle window resize events."""
...
def update(self, dt: float) -> None:
"""Update scene logic."""
...
class Timer:
"""Timer object for scheduled callbacks."""
name: str
interval: int
active: bool
def __init__(self, name: str, callback: Callable[[float], None], interval: int) -> None: ...
def pause(self) -> None:
"""Pause the timer."""
...
def resume(self) -> None:
"""Resume the timer."""
...
def cancel(self) -> None:
"""Cancel and remove the timer."""
...
class Window:
"""Window singleton for managing the game window."""
resolution: Tuple[int, int]
fullscreen: bool
vsync: bool
title: str
fps_limit: int
game_resolution: Tuple[int, int]
scaling_mode: str
@staticmethod
def get() -> 'Window':
"""Get the window singleton instance."""
...
class Animation:
"""Animation object for animating UI properties."""
target: Any
property: str
duration: float
easing: str
loop: bool
on_complete: Optional[Callable]
def __init__(self, target: Any, property: str, start_value: Any, end_value: Any,
duration: float, easing: str = 'linear', loop: bool = False,
on_complete: Optional[Callable] = None) -> None: ...
def start(self) -> None:
"""Start the animation."""
...
def update(self, dt: float) -> bool:
"""Update animation, returns True if still running."""
...
def get_current_value(self) -> Any:
"""Get the current interpolated value."""
...
# Module functions
def createSoundBuffer(filename: str) -> int:
"""Load a sound effect from a file and return its buffer ID."""
...
def loadMusic(filename: str) -> None:
"""Load and immediately play background music from a file."""
...
def setMusicVolume(volume: int) -> None:
"""Set the global music volume (0-100)."""
...
def setSoundVolume(volume: int) -> None:
"""Set the global sound effects volume (0-100)."""
...
def playSound(buffer_id: int) -> None:
"""Play a sound effect using a previously loaded buffer."""
...
def getMusicVolume() -> int:
"""Get the current music volume level (0-100)."""
...
def getSoundVolume() -> int:
"""Get the current sound effects volume level (0-100)."""
...
def sceneUI(scene: Optional[str] = None) -> UICollection:
"""Get all UI elements for a scene."""
...
def currentScene() -> str:
"""Get the name of the currently active scene."""
...
def setScene(scene: str, transition: Optional[str] = None, duration: float = 0.0) -> None:
"""Switch to a different scene with optional transition effect."""
...
def createScene(name: str) -> None:
"""Create a new empty scene."""
...
def keypressScene(handler: Callable[[str, bool], None]) -> None:
"""Set the keyboard event handler for the current scene."""
...
def setTimer(name: str, handler: Callable[[float], None], interval: int) -> None:
"""Create or update a recurring timer."""
...
def delTimer(name: str) -> None:
"""Stop and remove a timer."""
...
def exit() -> None:
"""Cleanly shut down the game engine and exit the application."""
...
def setScale(multiplier: float) -> None:
"""Scale the game window size (deprecated - use Window.resolution)."""
...
def find(name: str, scene: Optional[str] = None) -> Optional[UIElement]:
"""Find the first UI element with the specified name."""
...
def findAll(pattern: str, scene: Optional[str] = None) -> List[UIElement]:
"""Find all UI elements matching a name pattern (supports * wildcards)."""
...
def getMetrics() -> Dict[str, Union[int, float]]:
"""Get current performance metrics."""
...
# Submodule
class automation:
"""Automation API for testing and scripting."""
@staticmethod
def screenshot(filename: str) -> bool:
"""Save a screenshot to the specified file."""
...
@staticmethod
def position() -> Tuple[int, int]:
"""Get current mouse position as (x, y) tuple."""
...
@staticmethod
def size() -> Tuple[int, int]:
"""Get screen size as (width, height) tuple."""
...
@staticmethod
def onScreen(x: int, y: int) -> bool:
"""Check if coordinates are within screen bounds."""
...
@staticmethod
def moveTo(x: int, y: int, duration: float = 0.0) -> None:
"""Move mouse to absolute position."""
...
@staticmethod
def moveRel(xOffset: int, yOffset: int, duration: float = 0.0) -> None:
"""Move mouse relative to current position."""
...
@staticmethod
def dragTo(x: int, y: int, duration: float = 0.0, button: str = 'left') -> None:
"""Drag mouse to position."""
...
@staticmethod
def dragRel(xOffset: int, yOffset: int, duration: float = 0.0, button: str = 'left') -> None:
"""Drag mouse relative to current position."""
...
@staticmethod
def click(x: Optional[int] = None, y: Optional[int] = None, clicks: int = 1,
interval: float = 0.0, button: str = 'left') -> None:
"""Click mouse at position."""
...
@staticmethod
def mouseDown(x: Optional[int] = None, y: Optional[int] = None, button: str = 'left') -> None:
"""Press mouse button down."""
...
@staticmethod
def mouseUp(x: Optional[int] = None, y: Optional[int] = None, button: str = 'left') -> None:
"""Release mouse button."""
...
@staticmethod
def keyDown(key: str) -> None:
"""Press key down."""
...
@staticmethod
def keyUp(key: str) -> None:
"""Release key."""
...
@staticmethod
def press(key: str) -> None:
"""Press and release a key."""
...
@staticmethod
def typewrite(text: str, interval: float = 0.0) -> None:
"""Type text with optional interval between characters."""
...

View File

@ -1,209 +0,0 @@
"""Type stubs for McRogueFace Python API.
Auto-generated - do not edit directly.
"""
from typing import Any, List, Dict, Tuple, Optional, Callable, Union
# Module documentation
# McRogueFace Python API\n\nCore game engine interface for creating roguelike games with Python.\n\nThis module provides:\n- Scene management (createScene, setScene, currentScene)\n- UI components (Frame, Caption, Sprite, Grid)\n- Entity system for game objects\n- Audio playback (sound effects and music)\n- Timer system for scheduled events\n- Input handling\n- Performance metrics\n\nExample:\n import mcrfpy\n \n # Create a new scene\n mcrfpy.createScene('game')\n mcrfpy.setScene('game')\n \n # Add UI elements\n frame = mcrfpy.Frame(10, 10, 200, 100)\n caption = mcrfpy.Caption('Hello World', 50, 50)\n mcrfpy.sceneUI().extend([frame, caption])\n
# Classes
class Animation:
"""Animation object for animating UI properties"""
def __init__(selftype(self)) -> None: ...
def get_current_value(self, *args, **kwargs) -> Any: ...
def start(self, *args, **kwargs) -> Any: ...
def update(selfreturns True if still running) -> Any: ...
class Caption:
"""Caption(text='', x=0, y=0, font=None, fill_color=None, outline_color=None, outline=0, click=None)"""
def __init__(selftype(self)) -> None: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class Color:
"""SFML Color Object"""
def __init__(selftype(self)) -> None: ...
def from_hex(selfe.g., '#FF0000' or 'FF0000') -> Any: ...
def lerp(self, *args, **kwargs) -> Any: ...
def to_hex(self, *args, **kwargs) -> Any: ...
class Drawable:
"""Base class for all drawable UI elements"""
def __init__(selftype(self)) -> None: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class Entity:
"""UIEntity objects"""
def __init__(selftype(self)) -> None: ...
def at(self, *args, **kwargs) -> Any: ...
def die(self, *args, **kwargs) -> Any: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def index(self, *args, **kwargs) -> Any: ...
def move(selfdx, dy) -> Any: ...
def path_to(selfx: int, y: int) -> bool: ...
def resize(selfwidth, height) -> Any: ...
def update_visibility(self) -> None: ...
class EntityCollection:
"""Iterable, indexable collection of Entities"""
def __init__(selftype(self)) -> None: ...
def append(self, *args, **kwargs) -> Any: ...
def count(self, *args, **kwargs) -> Any: ...
def extend(self, *args, **kwargs) -> Any: ...
def index(self, *args, **kwargs) -> Any: ...
def remove(self, *args, **kwargs) -> Any: ...
class Font:
"""SFML Font Object"""
def __init__(selftype(self)) -> None: ...
class Frame:
"""Frame(x=0, y=0, w=0, h=0, fill_color=None, outline_color=None, outline=0, click=None, children=None)"""
def __init__(selftype(self)) -> None: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class Grid:
"""Grid(x=0, y=0, grid_size=(20, 20), texture=None, tile_width=16, tile_height=16, scale=1.0, click=None)"""
def __init__(selftype(self)) -> None: ...
def at(self, *args, **kwargs) -> Any: ...
def compute_astar_path(selfx1: int, y1: int, x2: int, y2: int, diagonal_cost: float = 1.41) -> List[Tuple[int, int]]: ...
def compute_dijkstra(selfroot_x: int, root_y: int, diagonal_cost: float = 1.41) -> None: ...
def compute_fov(selfx: int, y: int, radius: int = 0, light_walls: bool = True, algorithm: int = FOV_BASIC) -> None: ...
def find_path(selfx1: int, y1: int, x2: int, y2: int, diagonal_cost: float = 1.41) -> List[Tuple[int, int]]: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def get_dijkstra_distance(selfx: int, y: int) -> Optional[float]: ...
def get_dijkstra_path(selfx: int, y: int) -> List[Tuple[int, int]]: ...
def is_in_fov(selfx: int, y: int) -> bool: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class GridPoint:
"""UIGridPoint object"""
def __init__(selftype(self)) -> None: ...
class GridPointState:
"""UIGridPointState object"""
def __init__(selftype(self)) -> None: ...
class Scene:
"""Base class for object-oriented scenes"""
def __init__(selftype(self)) -> None: ...
def activate(self, *args, **kwargs) -> Any: ...
def get_ui(self, *args, **kwargs) -> Any: ...
def register_keyboard(selfalternative to overriding on_keypress) -> Any: ...
class Sprite:
"""Sprite(x=0, y=0, texture=None, sprite_index=0, scale=1.0, click=None)"""
def __init__(selftype(self)) -> None: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class Texture:
"""SFML Texture Object"""
def __init__(selftype(self)) -> None: ...
class Timer:
"""Timer object for scheduled callbacks"""
def __init__(selftype(self)) -> None: ...
def cancel(self, *args, **kwargs) -> Any: ...
def pause(self, *args, **kwargs) -> Any: ...
def restart(self, *args, **kwargs) -> Any: ...
def resume(self, *args, **kwargs) -> Any: ...
class UICollection:
"""Iterable, indexable collection of UI objects"""
def __init__(selftype(self)) -> None: ...
def append(self, *args, **kwargs) -> Any: ...
def count(self, *args, **kwargs) -> Any: ...
def extend(self, *args, **kwargs) -> Any: ...
def index(self, *args, **kwargs) -> Any: ...
def remove(self, *args, **kwargs) -> Any: ...
class UICollectionIter:
"""Iterator for a collection of UI objects"""
def __init__(selftype(self)) -> None: ...
class UIEntityCollectionIter:
"""Iterator for a collection of UI objects"""
def __init__(selftype(self)) -> None: ...
class Vector:
"""SFML Vector Object"""
def __init__(selftype(self)) -> None: ...
def angle(self, *args, **kwargs) -> Any: ...
def copy(self, *args, **kwargs) -> Any: ...
def distance_to(self, *args, **kwargs) -> Any: ...
def dot(self, *args, **kwargs) -> Any: ...
def magnitude(self, *args, **kwargs) -> Any: ...
def magnitude_squared(self, *args, **kwargs) -> Any: ...
def normalize(self, *args, **kwargs) -> Any: ...
class Window:
"""Window singleton for accessing and modifying the game window properties"""
def __init__(selftype(self)) -> None: ...
def center(self, *args, **kwargs) -> Any: ...
def get(self, *args, **kwargs) -> Any: ...
def screenshot(self, *args, **kwargs) -> Any: ...
# Functions
def createScene(name: str) -> None: ...
def createSoundBuffer(filename: str) -> int: ...
def currentScene() -> str: ...
def delTimer(name: str) -> None: ...
def exit() -> None: ...
def find(name: str, scene: str = None) -> UIDrawable | None: ...
def findAll(pattern: str, scene: str = None) -> list: ...
def getMetrics() -> dict: ...
def getMusicVolume() -> int: ...
def getSoundVolume() -> int: ...
def keypressScene(handler: callable) -> None: ...
def loadMusic(filename: str) -> None: ...
def playSound(buffer_id: int) -> None: ...
def sceneUI(scene: str = None) -> list: ...
def setMusicVolume(volume: int) -> None: ...
def setScale(multiplier: float) -> None: ...
def setScene(scene: str, transition: str = None, duration: float = 0.0) -> None: ...
def setSoundVolume(volume: int) -> None: ...
def setTimer(name: str, handler: callable, interval: int) -> None: ...
# Constants
FOV_BASIC: int
FOV_DIAMOND: int
FOV_PERMISSIVE_0: int
FOV_PERMISSIVE_1: int
FOV_PERMISSIVE_2: int
FOV_PERMISSIVE_3: int
FOV_PERMISSIVE_4: int
FOV_PERMISSIVE_5: int
FOV_PERMISSIVE_6: int
FOV_PERMISSIVE_7: int
FOV_PERMISSIVE_8: int
FOV_RESTRICTIVE: int
FOV_SHADOW: int
default_font: Any
default_texture: Any

View File

@ -1,24 +0,0 @@
"""Type stubs for McRogueFace automation API."""
from typing import Optional, Tuple
def click(x=None, y=None, clicks=1, interval=0.0, button='left') -> Any: ...
def doubleClick(x=None, y=None) -> Any: ...
def dragRel(xOffset, yOffset, duration=0.0, button='left') -> Any: ...
def dragTo(x, y, duration=0.0, button='left') -> Any: ...
def hotkey(*keys) - Press a hotkey combination (e.g., hotkey('ctrl', 'c')) -> Any: ...
def keyDown(key) -> Any: ...
def keyUp(key) -> Any: ...
def middleClick(x=None, y=None) -> Any: ...
def mouseDown(x=None, y=None, button='left') -> Any: ...
def mouseUp(x=None, y=None, button='left') -> Any: ...
def moveRel(xOffset, yOffset, duration=0.0) -> Any: ...
def moveTo(x, y, duration=0.0) -> Any: ...
def onScreen(x, y) -> Any: ...
def position() - Get current mouse position as (x, y) -> Any: ...
def rightClick(x=None, y=None) -> Any: ...
def screenshot(filename) -> Any: ...
def scroll(clicks, x=None, y=None) -> Any: ...
def size() - Get screen size as (width, height) -> Any: ...
def tripleClick(x=None, y=None) -> Any: ...
def typewrite(message, interval=0.0) -> Any: ...

View File

View File

@ -1,393 +0,0 @@
# McRogueFace Tutorial Parts 6-8: Implementation Plan
**Date**: Monday, July 28, 2025
**Target Delivery**: Tuesday, July 29, 2025
## Executive Summary
This document outlines the implementation plan for Parts 6-8 of the McRogueFace roguelike tutorial, adapting the libtcod Python tutorial to McRogueFace's architecture. The key discovery is that Python classes can successfully inherit from `mcrfpy.Entity` and store custom attributes, enabling a clean, Pythonic implementation.
## Key Architectural Insights
### Entity Inheritance Works!
```python
class GameEntity(mcrfpy.Entity):
def __init__(self, x, y, **kwargs):
super().__init__(x=x, y=y, **kwargs)
# Custom attributes work perfectly!
self.hp = 10
self.inventory = []
self.any_attribute = "works"
```
This completely changes our approach from wrapper patterns to direct inheritance.
---
## Part 6: Doing (and Taking) Some Damage
### Overview
Implement a combat system with HP tracking, damage calculation, and death mechanics using entity inheritance.
### Core Components
#### 1. CombatEntity Base Class
```python
class CombatEntity(mcrfpy.Entity):
"""Base class for entities that can fight and take damage"""
def __init__(self, x, y, hp=10, defense=0, power=1, **kwargs):
super().__init__(x=x, y=y, **kwargs)
# Combat stats as direct attributes
self.hp = hp
self.max_hp = hp
self.defense = defense
self.power = power
self.is_alive = True
self.blocks_movement = True
def calculate_damage(self, attacker):
"""Simple damage formula: power - defense"""
return max(0, attacker.power - self.defense)
def take_damage(self, damage, attacker=None):
"""Apply damage and handle death"""
self.hp = max(0, self.hp - damage)
if self.hp == 0 and self.is_alive:
self.is_alive = False
self.on_death(attacker)
def on_death(self, killer=None):
"""Handle death - override in subclasses"""
self.sprite_index = self.sprite_index + 180 # Corpse offset
self.blocks_movement = False
```
#### 2. Entity Types
```python
class PlayerEntity(CombatEntity):
"""Player: HP=30, Defense=2, Power=5"""
def __init__(self, x, y, **kwargs):
kwargs['sprite_index'] = 64 # Hero sprite
super().__init__(x=x, y=y, hp=30, defense=2, power=5, **kwargs)
self.entity_type = "player"
class OrcEntity(CombatEntity):
"""Orc: HP=10, Defense=0, Power=3"""
def __init__(self, x, y, **kwargs):
kwargs['sprite_index'] = 65 # Orc sprite
super().__init__(x=x, y=y, hp=10, defense=0, power=3, **kwargs)
self.entity_type = "orc"
class TrollEntity(CombatEntity):
"""Troll: HP=16, Defense=1, Power=4"""
def __init__(self, x, y, **kwargs):
kwargs['sprite_index'] = 66 # Troll sprite
super().__init__(x=x, y=y, hp=16, defense=1, power=4, **kwargs)
self.entity_type = "troll"
```
#### 3. Combat Integration
- Extend `on_bump()` from Part 5 to include combat
- Add attack animations (quick bump toward target)
- Console messages initially, UI messages in Part 7
- Death changes sprite and removes blocking
### Key Differences from Original Tutorial
- No Fighter component - stats are direct attributes
- No AI component - behavior in entity methods
- Integrated animations for visual feedback
- Simpler architecture overall
---
## Part 7: Creating the Interface
### Overview
Add visual UI elements including health bars, message logs, and colored feedback for combat events.
### Core Components
#### 1. Health Bar
```python
class HealthBar:
"""Health bar that reads entity HP directly"""
def __init__(self, entity, pos=(10, 740), size=(200, 20)):
self.entity = entity # Direct reference!
# Background (dark red)
self.bg = mcrfpy.Frame(pos=pos, size=size)
self.bg.fill_color = mcrfpy.Color(64, 16, 16)
# Foreground (green)
self.fg = mcrfpy.Frame(pos=pos, size=size)
self.fg.fill_color = mcrfpy.Color(0, 96, 0)
# Text overlay
self.text = mcrfpy.Caption(
pos=(pos[0] + 5, pos[1] + 2),
text=f"HP: {entity.hp}/{entity.max_hp}"
)
def update(self):
"""Update based on entity's current HP"""
ratio = self.entity.hp / self.entity.max_hp
self.fg.w = int(self.bg.w * ratio)
self.text.text = f"HP: {self.entity.hp}/{self.entity.max_hp}"
# Color changes at low health
if ratio < 0.25:
self.fg.fill_color = mcrfpy.Color(196, 16, 16) # Red
elif ratio < 0.5:
self.fg.fill_color = mcrfpy.Color(196, 196, 16) # Yellow
```
#### 2. Message Log
```python
class MessageLog:
"""Scrolling message log for combat feedback"""
def __init__(self, pos=(10, 600), size=(400, 120), max_messages=6):
self.frame = mcrfpy.Frame(pos=pos, size=size)
self.messages = [] # List of (text, color) tuples
self.captions = [] # Pre-allocated Caption pool
def add_message(self, text, color=None):
"""Add message with optional color"""
# Handle duplicate detection (x2, x3, etc.)
# Update caption display
```
#### 3. Color System
```python
class Colors:
# Combat colors
PLAYER_ATTACK = mcrfpy.Color(224, 224, 224)
ENEMY_ATTACK = mcrfpy.Color(255, 192, 192)
PLAYER_DEATH = mcrfpy.Color(255, 48, 48)
ENEMY_DEATH = mcrfpy.Color(255, 160, 48)
HEALTH_RECOVERED = mcrfpy.Color(0, 255, 0)
```
### UI Layout
- Health bar at bottom of screen
- Message log above health bar
- Direct binding to entity attributes
- Real-time updates during gameplay
---
## Part 8: Items and Inventory
### Overview
Implement items as entities, inventory management, and a hotbar-style UI for item usage.
### Core Components
#### 1. Item Entities
```python
class ItemEntity(mcrfpy.Entity):
"""Base class for pickupable items"""
def __init__(self, x, y, name, sprite, **kwargs):
kwargs['sprite_index'] = sprite
super().__init__(x=x, y=y, **kwargs)
self.item_name = name
self.blocks_movement = False
self.item_type = "generic"
class HealingPotion(ItemEntity):
"""Consumable healing item"""
def __init__(self, x, y, healing_amount=4):
super().__init__(x, y, "Healing Potion", sprite=33)
self.healing_amount = healing_amount
self.item_type = "consumable"
def use(self, user):
"""Use the potion - returns (success, message)"""
if hasattr(user, 'hp'):
healed = min(self.healing_amount, user.max_hp - user.hp)
if healed > 0:
user.hp += healed
return True, f"You heal {healed} HP!"
```
#### 2. Inventory System
```python
class InventoryMixin:
"""Mixin for entities with inventory"""
def __init__(self, *args, capacity=10, **kwargs):
super().__init__(*args, **kwargs)
self.inventory = []
self.inventory_capacity = capacity
def pickup_item(self, item):
"""Pick up an item entity"""
if len(self.inventory) >= self.inventory_capacity:
return False, "Inventory full!"
self.inventory.append(item)
item.die() # Remove from grid
return True, f"Picked up {item.item_name}."
```
#### 3. Inventory UI
```python
class InventoryDisplay:
"""Hotbar-style inventory display"""
def __init__(self, entity, pos=(200, 700), slots=10):
# Create slot frames and sprites
# Number keys 1-9, 0 for slots
# Highlight selected slot
# Update based on entity.inventory
```
### Key Features
- Items exist as entities on the grid
- Direct inventory attribute on player
- Hotkey-based usage (1-9, 0)
- Visual hotbar display
- Item effects (healing, future: damage boost, etc.)
---
## Implementation Timeline
### Tuesday Morning (Priority 1: Core Systems)
1. **8:00-9:30**: Implement CombatEntity and entity types
2. **9:30-10:30**: Add combat to bump interactions
3. **10:30-11:30**: Basic health display (text or simple bar)
4. **11:30-12:00**: ItemEntity and pickup system
### Tuesday Afternoon (Priority 2: Integration)
1. **1:00-2:00**: Message log implementation
2. **2:00-3:00**: Full health bar with colors
3. **3:00-4:00**: Inventory UI (hotbar)
4. **4:00-5:00**: Testing and bug fixes
### Tuesday Evening (Priority 3: Polish)
1. **5:00-6:00**: Combat animations and effects
2. **6:00-7:00**: Sound integration (use CoS splat sounds)
3. **7:00-8:00**: Additional item types
4. **8:00-9:00**: Documentation and cleanup
---
## Testing Strategy
### Automated Tests
```python
# tests/test_part6_combat.py
- Test damage calculation
- Test death mechanics
- Test combat messages
# tests/test_part7_ui.py
- Test health bar updates
- Test message log scrolling
- Test color system
# tests/test_part8_inventory.py
- Test item pickup/drop
- Test inventory capacity
- Test item usage
```
### Visual Tests
- Screenshot combat states
- Verify UI element positioning
- Check animation smoothness
---
## File Structure
```
roguelike_tutorial/
├── part_6.py # Combat implementation
├── part_7.py # UI enhancements
├── part_8.py # Inventory system
├── combat.py # Shared combat utilities
├── ui_components.py # Reusable UI classes
├── colors.py # Color definitions
└── items.py # Item definitions
```
---
## Risk Mitigation
### Potential Issues
1. **Performance**: Many UI updates per frame
- Solution: Update only on state changes
2. **Entity Collection Bugs**: Known segfault issues
- Solution: Use index-based access when needed
3. **Animation Timing**: Complex with turn-based combat
- Solution: Queue animations, process sequentially
### Fallback Options
1. Start with console messages, add UI later
2. Simple health numbers before bars
3. Basic inventory list before hotbar
---
## Success Criteria
### Part 6
- [x] Entities can have HP and take damage
- [x] Death changes sprite and walkability
- [x] Combat messages appear
- [x] Player can kill enemies
### Part 7
- [x] Health bar shows current/max HP
- [x] Messages appear in scrolling log
- [x] Colors differentiate message types
- [x] UI updates in real-time
### Part 8
- [x] Items can be picked up
- [x] Inventory has capacity limit
- [x] Items can be used/consumed
- [x] Hotbar shows inventory items
---
## Notes for Implementation
1. **Keep It Simple**: Start with minimum viable features
2. **Build Incrementally**: Test each component before integrating
3. **Use Part 5**: Leverage existing entity interaction system
4. **Document Well**: Clear comments for tutorial purposes
5. **Visual Feedback**: McRogueFace excels at animations - use them!
---
## Comparison with Original Tutorial
### What We Keep
- Same combat formula (power - defense)
- Same entity stats (Player, Orc, Troll)
- Same item types (healing potions to start)
- Same UI elements (health bar, message log)
### What's Different
- Direct inheritance instead of components
- Integrated animations and visual effects
- Hotbar inventory instead of menu
- Built-in sound support
- Cleaner architecture overall
### What's Better
- More Pythonic with real inheritance
- Better visual feedback
- Smoother animations
- Simpler to understand
- Leverages McRogueFace's strengths
---
## Conclusion
This implementation plan leverages McRogueFace's support for Python entity inheritance to create a clean, intuitive tutorial series. By using direct attributes instead of components, we simplify the architecture while maintaining all the functionality of the original tutorial. The addition of animations, sound effects, and rich UI elements showcases McRogueFace's capabilities while keeping the code beginner-friendly.
The Tuesday delivery timeline is aggressive but achievable by focusing on core functionality first, then integration, then polish. The modular design allows for easy testing and incremental development.

View File

@ -1,100 +0,0 @@
# Simple TCOD Tutorial Part 1 - Drawing the player sprite and moving it around
This is Part 1 of the Simple TCOD Tutorial adapted for McRogueFace. It implements the sophisticated, refactored TCOD tutorial approach with professional architecture from day one.
## Running the Code
From your tutorial build directory (separate from the engine development build):
```bash
cd simple_tcod_tutorial/build
./mcrogueface scripts/main.py
```
Note: The `scripts` folder should be a symlink to your `simple_tcod_tutorial` directory.
## Architecture Overview
### Package Structure
```
simple_tcod_tutorial/
├── main.py # Entry point - ties everything together
├── game/ # Game package with proper separation
│ ├── __init__.py
│ ├── entity.py # Entity class - all game objects
│ ├── engine.py # Engine class - game coordinator
│ ├── actions.py # Action classes - command pattern
│ └── input_handlers.py # Input handling - extensible system
```
### Key Concepts Demonstrated
1. **Entity-Centric Design**
- Everything in the game is an Entity
- Entities have position, appearance, and behavior
- Designed to scale to items, NPCs, and effects
2. **Action-Based Command Pattern**
- All player actions are Action objects
- Separates input from game logic
- Enables undo, replay, and AI using same system
3. **Professional Input Handling**
- BaseEventHandler for different input contexts
- Complete movement key support (arrows, numpad, vi, WASD)
- Ready for menus, targeting, and other modes
4. **Engine as Coordinator**
- Manages game state without becoming a god object
- Delegates to appropriate systems
- Clean boundaries between systems
5. **Type Safety**
- Full type annotations throughout
- Forward references with TYPE_CHECKING
- Modern Python best practices
## Differences from Vanilla McRogueFace Tutorial
### Removed
- Animation system (instant movement instead)
- Complex UI elements (focus on core mechanics)
- Real-time features (pure turn-based)
- Visual effects (camera following, smooth scrolling)
- Entity color property (sprites handle appearance)
### Added
- Complete movement key support
- Professional architecture patterns
- Proper package structure
- Type annotations
- Action-based design
- Extensible handler system
- Proper exit handling (Escape/Q actually quits)
### Adapted
- Grid rendering with proper centering
- Simplified entity system (position + sprite ID)
- Using simple_tutorial.png sprite sheet (12 sprites)
- Floor tiles using ground sprites (indices 1 and 2)
- Direct sprite indices instead of character mapping
## Learning Objectives
Students completing Part 1 will understand:
- How to structure a game project professionally
- The value of entity-centric design
- Command pattern for game actions
- Input handling that scales to complex UIs
- Type-driven development in Python
- Architecture that grows without refactoring
## What's Next
Part 2 will add:
- The GameMap class for world representation
- Tile-based movement and collision
- Multiple entities in the world
- Basic terrain (walls and floors)
- Rendering order for entities
The architecture we've built in Part 1 makes these additions natural and painless, demonstrating the value of starting with good patterns.

View File

@ -1,82 +0,0 @@
# Simple TCOD Tutorial Part 2 - The generic Entity, the map, and walls
This is Part 2 of the Simple TCOD Tutorial adapted for McRogueFace. Building on Part 1's foundation, we now introduce proper world representation and collision detection.
## Running the Code
From your tutorial build directory:
```bash
cd simple_tcod_tutorial/build
./mcrogueface scripts/main.py
```
## New Architecture Components
### GameMap Class (`game/game_map.py`)
The GameMap inherits from `mcrfpy.Grid` and adds:
- **Tile Management**: Uses Grid's built-in point system with walkable property
- **Entity Container**: Manages entity lifecycle with `add_entity()` and `remove_entity()`
- **Spatial Queries**: `get_entities_at()`, `get_blocking_entity_at()`, `is_walkable()`
- **Direct Integration**: Leverages Grid's walkable and tilesprite properties
### Tiles System (`game/tiles.py`)
- **Simple Tile Types**: Using NamedTuple for clean tile definitions
- **Tile Types**: Floor (walkable) and Wall (blocks movement)
- **Grid Integration**: Maps directly to Grid point properties
- **Future-Ready**: Includes transparency for FOV system in Part 4
### Entity Placement System
- **Bidirectional References**: Entities know their map, maps track their entities
- **`place()` Method**: Handles all bookkeeping when entities move between maps
- **Lifecycle Management**: Automatic cleanup when entities leave maps
## Key Changes from Part 1
### Engine Updates
- Replaced direct grid management with GameMap
- Engine creates and configures the GameMap
- Player is placed using the new `place()` method
### Movement System
- MovementAction now checks `is_walkable()` before moving
- Collision detection for both walls and blocking entities
- Clean separation between validation and execution
### Visual Changes
- Walls rendered as trees (sprite index 3)
- Border of walls around the map edge
- Floor tiles still use alternating pattern
## Architectural Benefits
### McRogueFace Integration
- **No NumPy Dependency**: Uses Grid's native tile management
- **Direct Walkability**: Grid points have built-in walkable property
- **Unified System**: Visual and logical tile data in one place
### Separation of Concerns
- **GameMap**: Knows about tiles and spatial relationships
- **Engine**: Coordinates high-level game state
- **Entity**: Manages its own lifecycle through `place()`
- **Actions**: Validate their own preconditions
### Extensibility
- Easy to add new tile types
- Simple to implement different map generation
- Ready for FOV, pathfinding, and complex queries
- Entity system scales to items and NPCs
### Type Safety
- TYPE_CHECKING imports prevent circular dependencies
- Proper type hints throughout
- Forward references maintain clean architecture
## What's Next
Part 3 will add:
- Procedural dungeon generation
- Room and corridor creation
- Multiple entities in the world
- Foundation for enemy placement
The architecture established in Part 2 makes these additions straightforward, demonstrating the value of proper design from the beginning.

View File

@ -1,87 +0,0 @@
# Simple TCOD Tutorial Part 3 - Generating a dungeon
This is Part 3 of the Simple TCOD Tutorial adapted for McRogueFace. We now add procedural dungeon generation to create interesting, playable levels.
## Running the Code
From your tutorial build directory:
```bash
cd simple_tcod_tutorial/build
./mcrogueface scripts/main.py
```
## New Features
### Procedural Generation Module (`game/procgen.py`)
This dedicated module demonstrates separation of concerns - dungeon generation logic is kept separate from the game map implementation.
#### RectangularRoom Class
- **Clean Abstraction**: Represents a room with position and dimensions
- **Utility Properties**:
- `center` - Returns room center for connections
- `inner` - Returns slice objects for efficient carving
- **Intersection Detection**: `intersects()` method prevents overlapping rooms
#### Tunnel Generation
- **L-Shaped Corridors**: Simple but effective connection method
- **Iterator Pattern**: `tunnel_between()` yields coordinates efficiently
- **Random Variation**: 50/50 chance of horizontal-first vs vertical-first
#### Dungeon Generation Algorithm
```python
def generate_dungeon(max_rooms, room_min_size, room_max_size,
map_width, map_height, engine) -> GameMap:
```
- **Simple Algorithm**: Try to place random rooms, reject overlaps
- **Automatic Connection**: Each room connects to the previous one
- **Player Placement**: First room contains the player
- **Entity-Centric**: Uses `player.place()` for proper lifecycle
## Architecture Benefits
### Modular Design
- Generation logic separate from GameMap
- Easy to swap algorithms later
- Room class reusable for other features
### Forward Thinking
- Engine parameter anticipates entity spawning
- Room list available for future features
- Iterator-based tunnel generation is memory efficient
### Clean Integration
- Works seamlessly with existing entity placement
- Respects GameMap's tile management
- No special cases or hacks needed
## Visual Changes
- Map size increased to 80x45 for better dungeons
- Zoom reduced to 1.0 to see more of the map
- Random room layouts each time
- Connected rooms and corridors
## Algorithm Details
The generation follows these steps:
1. Start with a map filled with walls
2. Try to place up to `max_rooms` rooms
3. For each room attempt:
- Generate random size and position
- Check for intersections with existing rooms
- If valid, carve out the room
- Connect to previous room (if any)
4. Place player in center of first room
This simple algorithm creates playable dungeons while being easy to understand and modify.
## What's Next
Part 4 will add:
- Field of View (FOV) system
- Explored vs unexplored areas
- Light and dark tile rendering
- Torch radius around player
The modular dungeon generation makes it easy to add these visual features without touching the generation code.

View File

@ -1,131 +0,0 @@
# Part 4: Field of View and Exploration
## Overview
Part 4 introduces the Field of View (FOV) system, transforming our fully-visible dungeon into an atmospheric exploration experience. We leverage McRogueFace's built-in FOV capabilities and perspective system for efficient rendering.
## What's New in Part 4
### Field of View System
- **FOV Calculation**: Using `Grid.compute_fov()` with configurable radius
- **Perspective System**: Grid tracks which entity is the viewer
- **Visibility States**: Unexplored (black), explored (dark), visible (lit)
- **Automatic Updates**: FOV recalculates on player movement
### Implementation Details
#### FOV with McRogueFace's Grid
Unlike TCOD which uses numpy arrays for visibility tracking, McRogueFace's Grid has built-in FOV support:
```python
# In GameMap.update_fov()
self.compute_fov(viewer_x, viewer_y, radius, light_walls=True, algorithm=mcrfpy.FOV_BASIC)
```
The Grid automatically:
- Tracks which tiles have been explored
- Applies appropriate color overlays (shroud, dark, light)
- Updates entity visibility based on FOV
#### Perspective System
McRogueFace uses a perspective-based rendering approach:
```python
# Set the viewer
self.game_map.perspective = self.player
# Grid automatically renders from this entity's viewpoint
```
This is more efficient than manually updating tile colors every turn.
#### Color Overlays
We define overlay colors but let the Grid handle application:
```python
# In tiles.py
SHROUD = mcrfpy.Color(0, 0, 0, 255) # Unexplored
DARK = mcrfpy.Color(100, 100, 150, 128) # Explored but not visible
LIGHT = mcrfpy.Color(255, 255, 255, 0) # Currently visible
```
### Key Differences from TCOD
| TCOD Approach | McRogueFace Approach |
|---------------|----------------------|
| `visible` and `explored` numpy arrays | Grid's built-in FOV state |
| Manual tile color switching | Automatic overlay system |
| `tcod.map.compute_fov()` | `Grid.compute_fov()` |
| Render conditionals for each tile | Perspective-based rendering |
### Movement and FOV Updates
The action system now updates FOV after player movement:
```python
# In MovementAction.perform()
if self.entity == engine.player:
engine.update_fov()
```
## Architecture Notes
### Why Grid Perspective?
The perspective system provides several benefits:
1. **Efficiency**: No per-tile color updates needed
2. **Flexibility**: Easy to switch viewpoints (for debugging or features)
3. **Automatic**: Grid handles all rendering details
4. **Clean**: Separates game logic from rendering concerns
### Entity Visibility
Entities automatically update their visibility state:
```python
# After FOV calculation
self.player.update_visibility()
```
This ensures entities are only rendered when visible to the current perspective.
## Files Modified
- `game/tiles.py`: Added FOV color overlay constants
- `game/game_map.py`: Added `update_fov()` method
- `game/engine.py`: Added FOV initialization and update method
- `game/actions.py`: Update FOV after player movement
- `main.py`: Updated part description
## What's Next
Part 5 will add enemies to our dungeon, introducing:
- Enemy entities with AI
- Combat system
- Turn-based gameplay
- Health and damage
The FOV system will make enemies appear and disappear as you explore, adding tension and strategy to the gameplay.
## Learning Points
1. **Leverage Framework Features**: Use McRogueFace's built-in systems rather than reimplementing
2. **Perspective-Based Design**: Think in terms of viewpoints, not global state
3. **Automatic Systems**: Let the framework handle rendering details
4. **Clean Integration**: FOV updates fit naturally into the action system
## Running Part 4
```bash
cd simple_tcod_tutorial/build
./mcrogueface scripts/main.py
```
You'll now see:
- Black unexplored areas
- Dark blue tint on previously seen areas
- Full brightness only in your field of view
- Smooth exploration as you move through the dungeon

View File

@ -1,169 +0,0 @@
# Part 5: Placing Enemies and Fighting Them
## Overview
Part 5 brings our dungeon to life with enemies! We add rats and spiders that populate the rooms, implement a combat system with melee attacks, and handle entity death by turning creatures into gravestones.
## What's New in Part 5
### Actor System
- **Actor Class**: Extends Entity with combat stats (HP, defense, power)
- **Combat Properties**: Health tracking, damage calculation, alive status
- **Death Handling**: Entities become gravestones when killed
### Enemy Types
Using our sprite sheet, we have two enemy types:
- **Rat** (sprite 5): 10 HP, 0 defense, 3 power - Common enemy
- **Spider** (sprite 4): 16 HP, 1 defense, 4 power - Tougher enemy
### Combat System
#### Bump-to-Attack
When the player tries to move into an enemy:
```python
# In MovementAction.perform()
target = engine.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
if self.entity == engine.player:
from game.entity import Actor
if isinstance(target, Actor) and target != engine.player:
return MeleeAction(self.entity, self.dx, self.dy).perform(engine)
```
#### Damage Calculation
Simple formula with defense reduction:
```python
damage = attacker.power - target.defense
```
#### Death System
Dead entities become gravestones:
```python
def die(self) -> None:
"""Handle death by becoming a gravestone."""
self.sprite_index = 6 # Tombstone sprite
self.blocks_movement = False
self.name = f"Grave of {self.name}"
```
### Entity Factories
Factory functions create pre-configured entities:
```python
def rat(x: int, y: int, texture: mcrfpy.Texture) -> Actor:
return Actor(
x=x, y=y,
sprite_id=5, # Rat sprite
texture=texture,
name="Rat",
hp=10, defense=0, power=3,
)
```
### Dungeon Population
Enemies are placed randomly in rooms:
```python
def place_entities(room, dungeon, max_monsters, texture):
number_of_monsters = random.randint(0, max_monsters)
for _ in range(number_of_monsters):
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
if not any(entity.x == x and entity.y == y for entity in dungeon.entities):
# 80% rats, 20% spiders
if random.random() < 0.8:
monster = entity_factories.rat(x, y, texture)
else:
monster = entity_factories.spider(x, y, texture)
monster.place(x, y, dungeon)
```
## Key Implementation Details
### FOV and Enemy Visibility
Enemies are automatically shown/hidden by the FOV system:
```python
def update_fov(self) -> None:
# Update visibility for all entities
for entity in self.game_map.entities:
entity.update_visibility()
```
### Action System Extension
The action system now handles combat:
- **MovementAction**: Detects collision, triggers attack
- **MeleeAction**: New action for melee combat
- Actions remain decoupled from entity logic
### Gravestone System
Instead of removing dead entities:
- Sprite changes to tombstone (index 6)
- Name changes to "Grave of [Name]"
- No longer blocks movement
- Remains visible as dungeon decoration
## Architecture Notes
### Why Actor Extends Entity?
- Maintains entity hierarchy
- Combat stats only for creatures
- Future items/decorations won't have HP
- Clean separation of concerns
### Why Factory Functions?
- Centralized entity configuration
- Easy to add new enemy types
- Consistent stat management
- Type-safe entity creation
### Combat in Actions
Combat logic lives in actions, not entities:
- Entities store stats
- Actions perform combat
- Clean separation of data and behavior
- Extensible for future combat types
## Files Modified
- `game/entity.py`: Added Actor class with combat stats and death handling
- `game/entity_factories.py`: New module with entity creation functions
- `game/actions.py`: Added MeleeAction for combat
- `game/procgen.py`: Added enemy placement in rooms
- `game/engine.py`: Updated to use Actor type and handle all entity visibility
- `main.py`: Updated to use entity factories and Part 5 description
## What's Next
Part 6 will enhance the combat experience with:
- Health display UI
- Game over conditions
- Combat messages window
- More strategic combat mechanics
## Learning Points
1. **Entity Specialization**: Use inheritance to add features to specific entity types
2. **Factory Pattern**: Centralize object creation for consistency
3. **State Transformation**: Dead entities become decorations, not deletions
4. **Action Extensions**: Combat fits naturally into the action system
5. **Automatic Systems**: FOV handles entity visibility without special code
## Running Part 5
```bash
cd simple_tcod_tutorial/build
./mcrogueface scripts/main.py
```
You'll now encounter rats and spiders as you explore! Walk into them to attack. Dead enemies become gravestones that mark your battles.
## Sprite Adaptations
Following our sprite sheet (`sprite_sheet.md`), we made these thematic changes:
- Orcs → Rats (same stats, different sprite)
- Trolls → Spiders (same stats, different sprite)
- Corpses → Gravestones (all use same tombstone sprite)
The gameplay remains identical to the TCOD tutorial, just with different visual theming.

View File

@ -1,187 +0,0 @@
# Part 6: Doing (and Taking) Damage
## Overview
Part 6 transforms our basic combat into a complete gameplay loop with visual feedback, enemy AI, and win/lose conditions. We add a health bar, message log, enemy AI that pursues the player, and proper game over handling.
## What's New in Part 6
### User Interface Components
#### Health Bar
A visual representation of the player's current health:
```python
class HealthBar:
def create_ui(self) -> List[mcrfpy.UIDrawable]:
# Dark red background
self.background = mcrfpy.Frame(pos=(x, y), size=(width, height))
self.background.fill_color = mcrfpy.Color(100, 0, 0, 255)
# Bright colored bar (green/yellow/red based on HP)
self.bar = mcrfpy.Frame(pos=(x, y), size=(width, height))
# Text overlay showing HP numbers
self.text = mcrfpy.Caption(pos=(x+5, y+2),
text=f"HP: {hp}/{max_hp}")
```
The bar changes color based on health percentage:
- Green (>60% health)
- Yellow (30-60% health)
- Red (<30% health)
#### Message Log
A scrolling combat log that replaces console print statements:
```python
class MessageLog:
def __init__(self, max_messages: int = 5):
self.messages: deque[str] = deque(maxlen=max_messages)
def add_message(self, message: str) -> None:
self.messages.append(message)
self.update_display()
```
Messages include:
- Combat actions ("Rat attacks Player for 3 hit points.")
- Death notifications ("Spider is dead!")
- Game state changes ("You have died! Press Escape to quit.")
### Enemy AI System
#### Basic AI Component
Enemies now actively pursue and attack the player:
```python
class BasicAI:
def take_turn(self, engine: Engine) -> None:
distance = max(abs(dx), abs(dy)) # Chebyshev distance
if distance <= 1:
# Adjacent: Attack!
MeleeAction(self.entity, attack_dx, attack_dy).perform(engine)
elif distance <= 6:
# Can see player: Move closer
MovementAction(self.entity, move_dx, move_dy).perform(engine)
```
#### Turn-Based System
After each player action, all enemies take their turn:
```python
def handle_enemy_turns(self) -> None:
for entity in self.game_map.entities:
if isinstance(entity, Actor) and entity.ai and entity.is_alive:
entity.ai.take_turn(self)
```
### Game Over Condition
When the player dies:
1. Game state flag is set (`engine.game_over = True`)
2. Player becomes a gravestone (sprite changes)
3. Input is restricted (only Escape works)
4. Death message appears in the message log
```python
def handle_player_death(self) -> None:
self.game_over = True
self.message_log.add_message("You have died! Press Escape to quit.")
```
## Architecture Improvements
### UI Module (`game/ui.py`)
Separates UI concerns from game logic:
- `MessageLog`: Manages combat messages
- `HealthBar`: Displays player health
- Clean interface for updating displays
### AI Module (`game/ai.py`)
Encapsulates enemy behavior:
- `BasicAI`: Simple pursue-and-attack behavior
- Extensible for different AI types
- Uses existing action system
### Turn Management
Player actions trigger enemy turns:
- Movement → Enemy turns
- Attack → Enemy turns
- Wait → Enemy turns
- Maintains turn-based feel
## Key Implementation Details
### UI Updates
Health bar updates occur:
- After player takes damage
- Automatically via `engine.update_ui()`
- Color changes based on HP percentage
### Message Flow
Combat messages follow this pattern:
1. Action generates message text
2. `engine.message_log.add_message(text)`
3. Message appears in UI Caption
4. Old messages scroll up
### AI Decision Making
Basic AI uses simple rules:
1. Check if player is adjacent → Attack
2. Check if player is visible (within 6 tiles) → Move toward
3. Otherwise → Do nothing
### Game State Management
The `game_over` flag prevents:
- Player movement
- Player attacks
- Player waiting
- But allows Escape to quit
## Files Modified
- `game/ui.py`: New module for UI components
- `game/ai.py`: New module for enemy AI
- `game/engine.py`: Added UI setup, enemy turns, game over handling
- `game/entity.py`: Added AI component to Actor
- `game/entity_factories.py`: Attached AI to enemies
- `game/actions.py`: Integrated message log, added enemy turn triggers
- `main.py`: Updated part description
## What's Next
Part 7 will expand the user interface further with:
- More detailed entity inspection
- Possibly inventory display
- Additional UI panels
- Mouse interaction
## Learning Points
1. **UI Separation**: Keep UI logic separate from game logic
2. **Component Systems**: AI as a component allows different behaviors
3. **Turn-Based Flow**: Player action → Enemy reactions creates tactical gameplay
4. **Visual Feedback**: Health bars and message logs improve player understanding
5. **State Management**: Game over flag controls available actions
## Running Part 6
```bash
cd simple_tcod_tutorial/build
./mcrogueface scripts/main.py
```
You'll now see:
- Health bar at the top showing your current HP
- Message log at the bottom showing combat events
- Enemies that chase you when you're nearby
- Enemies that attack when adjacent
- Death state when HP reaches 0
## Combat Strategy
With enemy AI active, combat becomes more tactical:
- Enemies pursue when they see you
- Fighting in corridors limits how many can attack
- Running away is sometimes the best option
- Health management becomes critical
The game now has a complete combat loop with clear win/lose conditions!

View File

@ -1,204 +0,0 @@
# Part 7: Creating the User Interface
## Overview
Part 7 significantly enhances the user interface, transforming our roguelike from a basic game into a more polished experience. We add mouse interaction, help displays, information panels, and better visual feedback systems.
## What's New in Part 7
### Mouse Interaction
#### Click-to-Inspect System
Since McRogueFace doesn't have mouse motion events, we use click events to show entity information:
```python
def grid_click_handler(pixel_x, pixel_y, button, state):
# Convert pixel coordinates to grid coordinates
grid_x = int(pixel_x / (self.tile_size * self.zoom))
grid_y = int(pixel_y / (self.tile_size * self.zoom))
# Update hover display for this position
self.update_mouse_hover(grid_x, grid_y)
```
Click displays show:
- Entity names
- Current HP for living creatures
- Multiple entities if stacked (e.g., "Grave of Rat")
#### Mouse Handler Registration
The click handler is registered as a local function to avoid issues with bound methods:
```python
# Use a local function instead of a bound method
self.game_map.click = grid_click_handler
```
### Help System
#### Toggle Help Display
Press `?`, `H`, or `F1` to show/hide help:
```python
class HelpDisplay:
def toggle(self) -> None:
self.visible = not self.visible
self.panel.frame.visible = self.visible
```
The help panel includes:
- Movement controls for all input methods
- Combat instructions
- Mouse usage tips
- Gameplay strategies
### Information Panels
#### Player Stats Panel
Always-visible panel showing:
- Player name
- Current/Max HP
- Power and Defense stats
- Current grid position
```python
class InfoPanel:
def create_ui(self, title: str) -> List[mcrfpy.Drawable]:
# Semi-transparent background frame
self.frame = mcrfpy.Frame(pos=(x, y), size=(width, height))
self.frame.fill_color = mcrfpy.Color(20, 20, 40, 200)
# Title and content captions as children
self.frame.children.append(self.title_caption)
self.frame.children.append(self.content_caption)
```
#### Reusable Panel System
The `InfoPanel` class provides:
- Titled panels with borders
- Semi-transparent backgrounds
- Easy content updates
- Consistent visual style
### Enhanced UI Components
#### MouseHoverDisplay Class
Manages tooltip-style hover information:
- Follows mouse position
- Shows/hides automatically
- Offset to avoid cursor overlap
- Multiple entity support
#### UI Module Organization
Clean separation of UI components:
- `MessageLog`: Combat messages
- `HealthBar`: HP visualization
- `MouseHoverDisplay`: Entity inspection
- `InfoPanel`: Generic information display
- `HelpDisplay`: Keyboard controls
## Architecture Improvements
### UI Composition
Using McRogueFace's parent-child system:
```python
# Add caption as child of frame
self.frame.children.append(self.text_caption)
```
Benefits:
- Automatic relative positioning
- Group visibility control
- Clean hierarchy
### Event Handler Extensions
Input handler now manages:
- Keyboard input (existing)
- Mouse motion (new)
- Mouse clicks (prepared for future)
- UI toggles (help display)
### Dynamic Content Updates
All UI elements support real-time updates:
```python
def update_stats_panel(self) -> None:
stats_text = f"""Name: {self.player.name}
HP: {self.player.hp}/{self.player.max_hp}
Power: {self.player.power}
Defense: {self.player.defense}"""
self.stats_panel.update_content(stats_text)
```
## Key Implementation Details
### Mouse Coordinate Conversion
Pixel to grid conversion:
```python
grid_x = int(x / (self.engine.tile_size * self.engine.zoom))
grid_y = int(y / (self.engine.tile_size * self.engine.zoom))
```
### Visibility Management
UI elements can be toggled:
- Help panel starts hidden
- Mouse hover hides when not over entities
- Panels can be shown/hidden dynamically
### Color and Transparency
UI uses semi-transparent overlays:
- Panel backgrounds: `Color(20, 20, 40, 200)`
- Hover tooltips: `Color(255, 255, 200, 255)`
- Borders and outlines for readability
## Files Modified
- `game/ui.py`: Added MouseHoverDisplay, InfoPanel, HelpDisplay classes
- `game/engine.py`: Integrated new UI components, mouse hover handling
- `game/input_handlers.py`: Added mouse motion handling, help toggle
- `main.py`: Registered mouse handlers, updated part description
## What's Next
Part 8 will add items and inventory:
- Collectible items (potions, equipment)
- Inventory management UI
- Item usage mechanics
- Equipment system
## Learning Points
1. **UI Composition**: Use parent-child relationships for complex UI
2. **Event Delegation**: Separate input handling from UI updates
3. **Information Layers**: Multiple UI systems can coexist (hover, panels, help)
4. **Visual Polish**: Small touches like transparency and borders improve UX
5. **Reusable Components**: Generic panels can be specialized for different uses
## Running Part 7
```bash
cd simple_tcod_tutorial/build
./mcrogueface scripts/main.py
```
New features to try:
- Click on entities to see their details
- Press ? or H to toggle help display
- Watch the stats panel update as you take damage
- See entity HP in hover tooltips
- Notice the visual polish in UI panels
## UI Design Principles
### Consistency
- All panels use similar visual style
- Consistent color scheme
- Uniform text sizing
### Non-Intrusive
- Semi-transparent panels don't block view
- Hover info appears near cursor
- Help can be toggled off
### Information Hierarchy
- Critical info (health) always visible
- Contextual info (hover) on demand
- Help info toggleable
The UI now provides a professional feel while maintaining the roguelike aesthetic!

View File

@ -1,297 +0,0 @@
# Part 8: Items and Inventory
## Overview
Part 8 transforms our roguelike into a proper loot-driven game by adding items that can be collected, managed, and used. We implement a flexible inventory system with capacity limits, create consumable items like healing potions, and build UI for inventory management.
## What's New in Part 8
### Parent-Child Entity Architecture
#### Flexible Entity Ownership
Entities now have parent containers, allowing them to exist in different contexts:
```python
class Entity(mcrfpy.Entity):
def __init__(self, parent: Optional[Union[GameMap, Inventory]] = None):
self.parent = parent
@property
def gamemap(self) -> Optional[GameMap]:
"""Get the GameMap through the parent chain"""
if isinstance(self.parent, Inventory):
return self.parent.gamemap
return self.parent
```
Benefits:
- Items can exist in the world or in inventories
- Clean ownership transfer when picking up/dropping
- Automatic visibility management
### Inventory System
#### Container-Based Design
The inventory acts like a specialized entity container:
```python
class Inventory:
def __init__(self, capacity: int):
self.capacity = capacity
self.items: List[Item] = []
self.parent: Optional[Actor] = None
def add_item(self, item: Item) -> None:
if len(self.items) >= self.capacity:
raise Impossible("Your inventory is full.")
# Transfer ownership
self.items.append(item)
item.parent = self
item.visible = False # Hide from map
```
Features:
- Capacity limits (26 items for letter selection)
- Clean item transfer between world and inventory
- Automatic visual management
### Item System
#### Item Entity Class
Items are entities with consumable components:
```python
class Item(Entity):
def __init__(self, consumable: Optional = None):
super().__init__(blocks_movement=False)
self.consumable = consumable
if consumable:
consumable.parent = self
```
#### Consumable Components
Modular system for item effects:
```python
class HealingConsumable(Consumable):
def activate(self, action: ItemAction) -> None:
if consumer.hp >= consumer.max_hp:
raise Impossible("You are already at full health.")
amount_recovered = min(self.amount, consumer.max_hp - consumer.hp)
consumer.hp += amount_recovered
self.consume() # Remove item after use
```
### Exception-Driven Feedback
#### Clean Error Handling
Using exceptions for user feedback:
```python
class Impossible(Exception):
"""Action cannot be performed"""
pass
class PickupAction(Action):
def perform(self, engine: Engine) -> None:
if not items_here:
raise Impossible("There is nothing here to pick up.")
try:
inventory.add_item(item)
engine.message_log.add_message(f"You picked up the {item.name}!")
except Impossible as e:
engine.message_log.add_message(str(e))
```
Benefits:
- Consistent error messaging
- Clean control flow
- Centralized feedback handling
### Inventory UI
#### Modal Inventory Screen
Interactive inventory management:
```python
class InventoryEventHandler(BaseEventHandler):
def create_ui(self) -> None:
# Semi-transparent background
self.background = mcrfpy.Frame(pos=(100, 100), size=(400, 400))
self.background.fill_color = mcrfpy.Color(0, 0, 0, 200)
# List items with letter keys
for i, item in enumerate(inventory.items):
item_caption = mcrfpy.Caption(
pos=(20, 80 + i * 20),
text=f"{chr(ord('a') + i)}) {item.name}"
)
```
Features:
- Letter-based selection (a-z)
- Separate handlers for use/drop
- ESC to cancel
- Visual feedback
### Enhanced Actions
#### Item Actions
New actions for item management:
```python
class PickupAction(Action):
"""Pick up items at current location"""
class ItemAction(Action):
"""Base for item usage actions"""
class DropAction(ItemAction):
"""Drop item from inventory"""
```
Each action:
- Self-validates
- Provides feedback
- Triggers enemy turns
## Architecture Improvements
### Component Relationships
Parent-based component system:
```python
# Components know their parent
consumable.parent = item
item.parent = inventory
inventory.parent = actor
actor.parent = gamemap
gamemap.engine = engine
```
Benefits:
- Access to game context from any component
- Clean ownership transfer
- Simplified entity lifecycle
### Input Handler States
Modal UI through handler switching:
```python
# Main game
engine.current_handler = MainGameEventHandler(engine)
# Open inventory
engine.current_handler = InventoryActivateHandler(engine)
# Back to game
engine.current_handler = MainGameEventHandler(engine)
```
### Entity Lifecycle Management
Proper creation and cleanup:
```python
# Item spawning
item = entity_factories.health_potion(x, y, texture)
item.place(x, y, dungeon)
# Pickup
inventory.add_item(item) # Removes from map
# Drop
inventory.drop(item) # Returns to map
# Death
actor.die() # Drops all items
```
## Key Implementation Details
### Visibility Management
Items hide/show based on container:
```python
def add_item(self, item):
item.visible = False # Hide when in inventory
def drop(self, item):
item.visible = True # Show when on map
```
### Inventory Capacity
Limited to alphabet keys:
```python
if len(inventory.items) >= 26:
raise Impossible("Your inventory is full.")
```
### Item Generation
Procedural item placement:
```python
def place_entities(room, dungeon, max_monsters, max_items, texture):
# Place 0-2 items per room
number_of_items = random.randint(0, max_items)
for _ in range(number_of_items):
if space_available:
item = entity_factories.health_potion(x, y, texture)
item.place(x, y, dungeon)
```
## Files Modified
- `game/entity.py`: Added parent system, Item class, inventory to Actor
- `game/inventory.py`: New inventory container system
- `game/consumable.py`: New consumable component system
- `game/exceptions.py`: New Impossible exception
- `game/actions.py`: Added PickupAction, ItemAction, DropAction
- `game/input_handlers.py`: Added InventoryEventHandler classes
- `game/engine.py`: Added current_handler, inventory UI methods
- `game/procgen.py`: Added item generation
- `game/entity_factories.py`: Added health_potion factory
- `game/ui.py`: Updated help text with inventory controls
- `main.py`: Updated to Part 8, handler management
## What's Next
Part 9 will add ranged attacks and targeting:
- Targeting UI for selecting enemies
- Ranged damage items (lightning staff)
- Area-of-effect items (fireball staff)
- Confusion effects
## Learning Points
1. **Container Architecture**: Entity ownership through parent relationships
2. **Component Systems**: Modular, reusable components with parent references
3. **Exception Handling**: Clean error propagation and user feedback
4. **Modal UI**: State-based input handling for different screens
5. **Item Systems**: Flexible consumable architecture for varied effects
6. **Lifecycle Management**: Proper entity creation, transfer, and cleanup
## Running Part 8
```bash
cd simple_tcod_tutorial/build
./mcrogueface scripts/main.py
```
New features to try:
- Press G to pick up healing potions
- Press I to open inventory and use items
- Press O to drop items from inventory
- Heal yourself when injured in combat
- Manage limited inventory space (26 slots)
- Items drop from dead enemies
## Design Principles
### Flexibility Through Composition
- Items gain behavior through consumable components
- Easy to add new item types
- Reusable effect system
### Clean Ownership Transfer
- Entities always have clear parent
- Automatic visibility management
- No orphaned entities
### User-Friendly Feedback
- Clear error messages
- Consistent UI patterns
- Intuitive controls
The inventory system provides the foundation for equipment, spells, and complex item interactions in future parts!

View File

@ -1,625 +0,0 @@
"""
McRogueFace Tutorial - Part 5: Entity Interactions
This tutorial builds on Part 4 by adding:
- Entity class hierarchy (PlayerEntity, EnemyEntity, BoulderEntity, ButtonEntity)
- Non-blocking movement animations with destination tracking
- Bump interactions (combat, pushing)
- Step-on interactions (buttons, doors)
- Concurrent enemy AI with smooth animations
Key concepts:
- Entities inherit from mcrfpy.Entity for proper C++/Python integration
- Logic operates on destination positions during animations
- Player input is processed immediately, not blocked by animations
"""
import mcrfpy
import random
# ============================================================================
# Entity Classes - Inherit from mcrfpy.Entity
# ============================================================================
class GameEntity(mcrfpy.Entity):
"""Base class for all game entities with interaction logic"""
def __init__(self, x, y, **kwargs):
# Extract grid before passing to parent
grid = kwargs.pop('grid', None)
super().__init__(x=x, y=y, **kwargs)
# Current position is tracked by parent Entity.x/y
# Add destination tracking for animation system
self.dest_x = x
self.dest_y = y
self.is_moving = False
# Game properties
self.blocks_movement = True
self.hp = 10
self.max_hp = 10
self.entity_type = "generic"
# Add to grid if provided
if grid:
grid.entities.append(self)
def start_move(self, new_x, new_y, duration=0.2, callback=None):
"""Start animating movement to new position"""
self.dest_x = new_x
self.dest_y = new_y
self.is_moving = True
# Create animations for smooth movement
if callback:
# Only x animation needs callback since they run in parallel
anim_x = mcrfpy.Animation("x", float(new_x), duration, "easeInOutQuad", callback=callback)
else:
anim_x = mcrfpy.Animation("x", float(new_x), duration, "easeInOutQuad")
anim_y = mcrfpy.Animation("y", float(new_y), duration, "easeInOutQuad")
anim_x.start(self)
anim_y.start(self)
def get_position(self):
"""Get logical position (destination if moving, otherwise current)"""
if self.is_moving:
return (self.dest_x, self.dest_y)
return (int(self.x), int(self.y))
def on_bump(self, other):
"""Called when another entity tries to move into our space"""
return False # Block movement by default
def on_step(self, other):
"""Called when another entity steps on us (non-blocking)"""
pass
def take_damage(self, damage):
"""Apply damage and handle death"""
self.hp -= damage
if self.hp <= 0:
self.hp = 0
self.die()
def die(self):
"""Remove entity from grid"""
# The C++ die() method handles removal from grid
super().die()
class PlayerEntity(GameEntity):
"""The player character"""
def __init__(self, x, y, **kwargs):
kwargs['sprite_index'] = 64 # Hero sprite
super().__init__(x=x, y=y, **kwargs)
self.damage = 3
self.entity_type = "player"
self.blocks_movement = True
def on_bump(self, other):
"""Player bumps into something"""
if other.entity_type == "enemy":
# Deal damage
other.take_damage(self.damage)
return False # Can't move into enemy space
elif other.entity_type == "boulder":
# Try to push
dx = self.dest_x - int(self.x)
dy = self.dest_y - int(self.y)
return other.try_push(dx, dy)
return False
class EnemyEntity(GameEntity):
"""Basic enemy with AI"""
def __init__(self, x, y, **kwargs):
kwargs['sprite_index'] = 65 # Enemy sprite
super().__init__(x=x, y=y, **kwargs)
self.damage = 1
self.entity_type = "enemy"
self.ai_state = "wander"
self.hp = 5
self.max_hp = 5
def on_bump(self, other):
"""Enemy bumps into something"""
if other.entity_type == "player":
other.take_damage(self.damage)
return False
return False
def can_see_player(self, player_pos, grid):
"""Check if enemy can see the player position"""
# Simple check: within 6 tiles and has line of sight
mx, my = self.get_position()
px, py = player_pos
dist = abs(px - mx) + abs(py - my)
if dist > 6:
return False
# Use libtcod for line of sight
line = list(mcrfpy.libtcod.line(mx, my, px, py))
if len(line) > 7: # Too far
return False
for x, y in line[1:-1]: # Skip start and end points
cell = grid.at(x, y)
if cell and not cell.transparent:
return False
return True
def ai_turn(self, grid, player):
"""Decide next move"""
px, py = player.get_position()
mx, my = self.get_position()
# Simple AI: move toward player if visible
if self.can_see_player((px, py), grid):
# Calculate direction toward player
dx = 0
dy = 0
if px > mx:
dx = 1
elif px < mx:
dx = -1
if py > my:
dy = 1
elif py < my:
dy = -1
# Prefer cardinal movement
if dx != 0 and dy != 0:
# Pick horizontal or vertical based on greater distance
if abs(px - mx) > abs(py - my):
dy = 0
else:
dx = 0
return (mx + dx, my + dy)
else:
# Random movement
dx, dy = random.choice([(0,1), (0,-1), (1,0), (-1,0)])
return (mx + dx, my + dy)
class BoulderEntity(GameEntity):
"""Pushable boulder"""
def __init__(self, x, y, **kwargs):
kwargs['sprite_index'] = 7 # Boulder sprite
super().__init__(x=x, y=y, **kwargs)
self.entity_type = "boulder"
self.pushable = True
def try_push(self, dx, dy):
"""Attempt to push boulder in direction"""
new_x = int(self.x) + dx
new_y = int(self.y) + dy
# Check if destination is free
if can_move_to(new_x, new_y):
self.start_move(new_x, new_y)
return True
return False
class ButtonEntity(GameEntity):
"""Pressure plate that triggers when stepped on"""
def __init__(self, x, y, target=None, **kwargs):
kwargs['sprite_index'] = 8 # Button sprite
super().__init__(x=x, y=y, **kwargs)
self.blocks_movement = False # Can be walked over
self.entity_type = "button"
self.pressed = False
self.pressed_by = set() # Track who's pressing
self.target = target # Door or other triggerable
def on_step(self, other):
"""Activate when stepped on"""
if other not in self.pressed_by:
self.pressed_by.add(other)
if not self.pressed:
self.pressed = True
self.sprite_index = 9 # Pressed sprite
if self.target:
self.target.activate()
def on_leave(self, other):
"""Deactivate when entity leaves"""
if other in self.pressed_by:
self.pressed_by.remove(other)
if len(self.pressed_by) == 0 and self.pressed:
self.pressed = False
self.sprite_index = 8 # Unpressed sprite
if self.target:
self.target.deactivate()
class DoorEntity(GameEntity):
"""Door that can be opened by buttons"""
def __init__(self, x, y, **kwargs):
kwargs['sprite_index'] = 3 # Closed door sprite
super().__init__(x=x, y=y, **kwargs)
self.entity_type = "door"
self.is_open = False
def activate(self):
"""Open the door"""
self.is_open = True
self.blocks_movement = False
self.sprite_index = 11 # Open door sprite
def deactivate(self):
"""Close the door"""
self.is_open = False
self.blocks_movement = True
self.sprite_index = 3 # Closed door sprite
# ============================================================================
# Global Game State
# ============================================================================
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Game state
player = None
enemies = []
all_entities = []
is_player_turn = True
move_duration = 0.2
# ============================================================================
# Dungeon Generation (from Part 3)
# ============================================================================
class Room:
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
def center(self):
return ((self.x1 + self.x2) // 2, (self.y1 + self.y2) // 2)
def intersects(self, other):
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
def create_room(room):
"""Carve out a room in the grid"""
for x in range(room.x1 + 1, room.x2):
for y in range(room.y1 + 1, room.y2):
cell = grid.at(x, y)
if cell:
cell.walkable = True
cell.transparent = True
cell.tilesprite = random.choice(FLOOR_TILES)
def create_l_shaped_hallway(x1, y1, x2, y2):
"""Create L-shaped hallway between two points"""
corner_x = x2
corner_y = y1
if random.random() < 0.5:
corner_x = x1
corner_y = y2
for x, y in mcrfpy.libtcod.line(x1, y1, corner_x, corner_y):
cell = grid.at(x, y)
if cell:
cell.walkable = True
cell.transparent = True
cell.tilesprite = random.choice(FLOOR_TILES)
for x, y in mcrfpy.libtcod.line(corner_x, corner_y, x2, y2):
cell = grid.at(x, y)
if cell:
cell.walkable = True
cell.transparent = True
cell.tilesprite = random.choice(FLOOR_TILES)
def generate_dungeon():
"""Generate a simple dungeon with rooms and hallways"""
# Initialize all cells as walls
for x in range(grid_width):
for y in range(grid_height):
cell = grid.at(x, y)
if cell:
cell.walkable = False
cell.transparent = False
cell.tilesprite = random.choice(WALL_TILES)
rooms = []
num_rooms = 0
for _ in range(30):
w = random.randint(4, 8)
h = random.randint(4, 8)
x = random.randint(0, grid_width - w - 1)
y = random.randint(0, grid_height - h - 1)
new_room = Room(x, y, w, h)
# Check if room intersects with existing rooms
if any(new_room.intersects(other_room) for other_room in rooms):
continue
create_room(new_room)
if num_rooms > 0:
# Connect to previous room
new_x, new_y = new_room.center()
prev_x, prev_y = rooms[num_rooms - 1].center()
create_l_shaped_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
num_rooms += 1
return rooms
# ============================================================================
# Entity Management
# ============================================================================
def get_entities_at(x, y):
"""Get all entities at a specific position (including moving ones)"""
entities = []
for entity in all_entities:
ex, ey = entity.get_position()
if ex == x and ey == y:
entities.append(entity)
return entities
def get_blocking_entity_at(x, y):
"""Get the first blocking entity at position"""
for entity in get_entities_at(x, y):
if entity.blocks_movement:
return entity
return None
def can_move_to(x, y):
"""Check if a position is valid for movement"""
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
cell = grid.at(x, y)
if not cell or not cell.walkable:
return False
# Check for blocking entities
if get_blocking_entity_at(x, y):
return False
return True
def can_entity_move_to(entity, x, y):
"""Check if specific entity can move to position"""
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
cell = grid.at(x, y)
if not cell or not cell.walkable:
return False
# Check for other blocking entities (not self)
blocker = get_blocking_entity_at(x, y)
if blocker and blocker != entity:
return False
return True
# ============================================================================
# Turn Management
# ============================================================================
def process_player_move(key):
"""Handle player input with immediate response"""
global is_player_turn
if not is_player_turn or player.is_moving:
return # Not player's turn or still animating
px, py = player.get_position()
new_x, new_y = px, py
# Calculate movement direction
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
else:
return # Not a movement key
if new_x == px and new_y == py:
return # No movement
# Check what's at destination
cell = grid.at(new_x, new_y)
if not cell or not cell.walkable:
return # Can't move into walls
blocking_entity = get_blocking_entity_at(new_x, new_y)
if blocking_entity:
# Try bump interaction
if not player.on_bump(blocking_entity):
# Movement blocked, but turn still happens
is_player_turn = False
mcrfpy.setTimer("enemy_turn", process_enemy_turns, 50)
return
# Movement is valid - start player animation
is_player_turn = False
player.start_move(new_x, new_y, duration=move_duration, callback=player_move_complete)
# Update grid center to follow player
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, move_duration, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, move_duration, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
# Start enemy turns after a short delay (so player sees their move start first)
mcrfpy.setTimer("enemy_turn", process_enemy_turns, 50)
def process_enemy_turns(timer_name):
"""Process all enemy AI decisions and start their animations"""
enemies_to_move = []
for enemy in enemies:
if enemy.hp <= 0: # Skip dead enemies
continue
if enemy.is_moving:
continue # Skip if still animating
# AI decides next move based on player's destination
target_x, target_y = enemy.ai_turn(grid, player)
# Check if move is valid
cell = grid.at(target_x, target_y)
if not cell or not cell.walkable:
continue
# Check what's at the destination
blocking_entity = get_blocking_entity_at(target_x, target_y)
if blocking_entity and blocking_entity != enemy:
# Try bump interaction
enemy.on_bump(blocking_entity)
# Enemy doesn't move but still took its turn
else:
# Valid move - add to list
enemies_to_move.append((enemy, target_x, target_y))
# Start all enemy animations simultaneously
for enemy, tx, ty in enemies_to_move:
enemy.start_move(tx, ty, duration=move_duration)
def player_move_complete(anim, entity):
"""Called when player animation finishes"""
global is_player_turn
player.is_moving = False
# Check for step-on interactions at new position
for entity in get_entities_at(int(player.x), int(player.y)):
if entity != player and not entity.blocks_movement:
entity.on_step(player)
# Update FOV from new position
update_fov()
# Player's turn is ready again
is_player_turn = True
def update_fov():
"""Update field of view from player position"""
px, py = int(player.x), int(player.y)
grid.compute_fov(px, py, radius=8)
player.update_visibility()
# ============================================================================
# Input Handling
# ============================================================================
def handle_keys(key, state):
"""Handle keyboard input"""
if state == "start":
# Movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_player_move(key)
# Register the key handler
mcrfpy.keypressScene(handle_keys)
# ============================================================================
# Initialize Game
# ============================================================================
# Generate dungeon
rooms = generate_dungeon()
# Place player in first room
if rooms:
start_x, start_y = rooms[0].center()
player = PlayerEntity(start_x, start_y, grid=grid)
all_entities.append(player)
# Place enemies in other rooms
for i in range(1, min(6, len(rooms))):
room = rooms[i]
ex, ey = room.center()
enemy = EnemyEntity(ex, ey, grid=grid)
enemies.append(enemy)
all_entities.append(enemy)
# Place some boulders
for i in range(3):
room = random.choice(rooms[1:])
bx = random.randint(room.x1 + 1, room.x2 - 1)
by = random.randint(room.y1 + 1, room.y2 - 1)
if can_move_to(bx, by):
boulder = BoulderEntity(bx, by, grid=grid)
all_entities.append(boulder)
# Place a button and door in one of the rooms
if len(rooms) > 2:
button_room = rooms[-2]
door_room = rooms[-1]
# Place door at entrance to last room
dx, dy = door_room.center()
door = DoorEntity(dx, door_room.y1, grid=grid)
all_entities.append(door)
# Place button in second to last room
bx, by = button_room.center()
button = ButtonEntity(bx, by, target=door, grid=grid)
all_entities.append(button)
# Set grid perspective to player
grid.perspective = player
grid.center_x = (start_x + 0.5) * 16
grid.center_y = (start_y + 0.5) * 16
# Initial FOV calculation
update_fov()
# Add grid to scene
mcrfpy.sceneUI("tutorial").append(grid)
# Show instructions
title = mcrfpy.Caption((320, 10),
text="Part 5: Entity Interactions - WASD to move, bump enemies, push boulders!",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
print("Part 5: Entity Interactions - Tutorial loaded!")
print("- Bump into enemies to attack them")
print("- Push boulders by walking into them")
print("- Step on buttons to open doors")
print("- Enemies will pursue you when they can see you")

View File

@ -1,253 +0,0 @@
# Part 0 - Setting Up McRogueFace
Welcome to the McRogueFace Roguelike Tutorial! This tutorial will teach you how to create a complete roguelike game using the McRogueFace game engine. Unlike traditional Python libraries, McRogueFace is a complete, portable game engine that includes everything you need to make and distribute games.
## What is McRogueFace?
McRogueFace is a high-performance game engine with Python scripting support. Think of it like Unity or Godot, but specifically designed for roguelikes and 2D games. It includes:
- A complete Python 3.12 runtime (no installation needed!)
- High-performance C++ rendering and entity management
- Built-in UI components and scene management
- Integrated audio system
- Professional sprite-based graphics
- Easy distribution - your players don't need Python installed!
## Prerequisites
Before starting this tutorial, you should:
- Have basic Python knowledge (variables, functions, classes)
- Be comfortable editing text files
- Have a text editor (VS Code, Sublime Text, Notepad++, etc.)
That's it! Unlike other roguelike tutorials, you don't need Python installed - McRogueFace includes everything.
## Getting McRogueFace
### Step 1: Download the Engine
1. Visit the McRogueFace releases page
2. Download the version for your operating system:
- `McRogueFace-Windows.zip` for Windows
- `McRogueFace-MacOS.zip` for macOS
- `McRogueFace-Linux.zip` for Linux
### Step 2: Extract the Archive
Extract the downloaded archive to a folder where you want to develop your game. You should see this structure:
```
McRogueFace/
├── mcrogueface (or mcrogueface.exe on Windows)
├── scripts/
│ └── game.py
├── assets/
│ ├── sprites/
│ ├── fonts/
│ └── audio/
└── lib/
```
### Step 3: Run the Engine
Run the McRogueFace executable:
- **Windows**: Double-click `mcrogueface.exe`
- **Mac/Linux**: Open a terminal in the folder and run `./mcrogueface`
You should see a window open with the default McRogueFace demo. This shows the engine is working correctly!
## Your First McRogueFace Script
Let's modify the engine to display "Hello Roguelike!" instead of the default demo.
### Step 1: Open game.py
Open `scripts/game.py` in your text editor. You'll see the default demo code. Replace it entirely with:
```python
import mcrfpy
# Create a new scene called "hello"
mcrfpy.createScene("hello")
# Switch to our new scene
mcrfpy.setScene("hello")
# Get the UI container for our scene
ui = mcrfpy.sceneUI("hello")
# Create a text caption
caption = mcrfpy.Caption("Hello Roguelike!", 400, 300)
caption.font_size = 32
caption.fill_color = mcrfpy.Color(255, 255, 255) # White text
# Add the caption to our scene
ui.append(caption)
# Create a smaller instruction caption
instruction = mcrfpy.Caption("Press ESC to exit", 400, 350)
instruction.font_size = 16
instruction.fill_color = mcrfpy.Color(200, 200, 200) # Light gray
ui.append(instruction)
# Set up a simple key handler
def handle_keys(key, state):
if state == "start" and key == "Escape":
mcrfpy.setScene(None) # This exits the game
mcrfpy.keypressScene(handle_keys)
print("Hello Roguelike is running!")
```
### Step 2: Save and Run
1. Save the file
2. If McRogueFace is still running, it will automatically reload!
3. If not, run the engine again
You should now see "Hello Roguelike!" displayed in the window.
### Step 3: Understanding the Code
Let's break down what we just wrote:
1. **Import mcrfpy**: This is McRogueFace's Python API
2. **Create a scene**: Scenes are like game states (menu, gameplay, inventory, etc.)
3. **UI elements**: We create Caption objects for text display
4. **Colors**: McRogueFace uses RGB colors (0-255 for each component)
5. **Input handling**: We set up a callback for keyboard input
6. **Scene switching**: Setting the scene to None exits the game
## Key Differences from Pure Python Development
### The Game Loop
Unlike typical Python scripts, McRogueFace runs your code inside its game loop:
1. The engine starts and loads `scripts/game.py`
2. Your script sets up scenes, UI elements, and callbacks
3. The engine runs at 60 FPS, handling rendering and input
4. Your callbacks are triggered by game events
### Hot Reloading
McRogueFace can reload your scripts while running! Just save your changes and the engine will reload automatically. This makes development incredibly fast.
### Asset Pipeline
McRogueFace includes a complete asset system:
- **Sprites**: Place images in `assets/sprites/`
- **Fonts**: TrueType fonts in `assets/fonts/`
- **Audio**: Sound effects and music in `assets/audio/`
We'll explore these in later lessons.
## Testing Your Setup
Let's create a more interactive test to ensure everything is working properly:
```python
import mcrfpy
# Create our test scene
mcrfpy.createScene("test")
mcrfpy.setScene("test")
ui = mcrfpy.sceneUI("test")
# Create a background frame
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(20, 20, 30) # Dark blue-gray
ui.append(background)
# Title text
title = mcrfpy.Caption("McRogueFace Setup Test", 512, 100)
title.font_size = 36
title.fill_color = mcrfpy.Color(255, 255, 100) # Yellow
ui.append(title)
# Status text that will update
status_text = mcrfpy.Caption("Press any key to test input...", 512, 300)
status_text.font_size = 20
status_text.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(status_text)
# Instructions
instructions = [
"Arrow Keys: Test movement input",
"Space: Test action input",
"Mouse Click: Test mouse input",
"ESC: Exit"
]
y_offset = 400
for instruction in instructions:
inst_caption = mcrfpy.Caption(instruction, 512, y_offset)
inst_caption.font_size = 16
inst_caption.fill_color = mcrfpy.Color(150, 150, 150)
ui.append(inst_caption)
y_offset += 30
# Input handler
def handle_input(key, state):
if state != "start":
return
if key == "Escape":
mcrfpy.setScene(None)
else:
status_text.text = f"You pressed: {key}"
status_text.fill_color = mcrfpy.Color(100, 255, 100) # Green
# Set up input handling
mcrfpy.keypressScene(handle_input)
print("Setup test is running! Try pressing different keys.")
```
## Troubleshooting
### Engine Won't Start
- **Windows**: Make sure you extracted all files, not just the .exe
- **Mac**: You may need to right-click and select "Open" the first time
- **Linux**: Make sure the file is executable: `chmod +x mcrogueface`
### Scripts Not Loading
- Ensure your script is named exactly `game.py` in the `scripts/` folder
- Check the console output for Python errors
- Make sure you're using Python 3 syntax
### Performance Issues
- McRogueFace should run smoothly at 60 FPS
- If not, check if your graphics drivers are updated
- The engine shows FPS in the window title
## What's Next?
Congratulations! You now have McRogueFace set up and running. You've learned:
- How to download and run the McRogueFace engine
- The basic structure of a McRogueFace project
- How to create scenes and UI elements
- How to handle keyboard input
- The development workflow with hot reloading
In Part 1, we'll create our player character and implement movement. We'll explore McRogueFace's entity system and learn how to create a game world.
## Why McRogueFace?
Before we continue, let's highlight why McRogueFace is excellent for roguelike development:
1. **No Installation Hassles**: Your players just download and run - no Python needed!
2. **Professional Performance**: C++ engine core means smooth gameplay even with hundreds of entities
3. **Built-in Features**: UI, audio, scenes, and animations are already there
4. **Easy Distribution**: Just zip your game folder and share it
5. **Rapid Development**: Hot reloading and Python scripting for quick iteration
Ready to make a roguelike? Let's continue to Part 1!

View File

@ -1,33 +0,0 @@
import mcrfpy
# Create a new scene called "hello"
mcrfpy.createScene("hello")
# Switch to our new scene
mcrfpy.setScene("hello")
# Get the UI container for our scene
ui = mcrfpy.sceneUI("hello")
# Create a text caption
caption = mcrfpy.Caption("Hello Roguelike!", 400, 300)
caption.font_size = 32
caption.fill_color = mcrfpy.Color(255, 255, 255) # White text
# Add the caption to our scene
ui.append(caption)
# Create a smaller instruction caption
instruction = mcrfpy.Caption("Press ESC to exit", 400, 350)
instruction.font_size = 16
instruction.fill_color = mcrfpy.Color(200, 200, 200) # Light gray
ui.append(instruction)
# Set up a simple key handler
def handle_keys(key, state):
if state == "start" and key == "Escape":
mcrfpy.setScene(None) # This exits the game
mcrfpy.keypressScene(handle_keys)
print("Hello Roguelike is running!")

View File

@ -1,55 +0,0 @@
import mcrfpy
# Create our test scene
mcrfpy.createScene("test")
mcrfpy.setScene("test")
ui = mcrfpy.sceneUI("test")
# Create a background frame
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(20, 20, 30) # Dark blue-gray
ui.append(background)
# Title text
title = mcrfpy.Caption("McRogueFace Setup Test", 512, 100)
title.font_size = 36
title.fill_color = mcrfpy.Color(255, 255, 100) # Yellow
ui.append(title)
# Status text that will update
status_text = mcrfpy.Caption("Press any key to test input...", 512, 300)
status_text.font_size = 20
status_text.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(status_text)
# Instructions
instructions = [
"Arrow Keys: Test movement input",
"Space: Test action input",
"Mouse Click: Test mouse input",
"ESC: Exit"
]
y_offset = 400
for instruction in instructions:
inst_caption = mcrfpy.Caption(instruction, 512, y_offset)
inst_caption.font_size = 16
inst_caption.fill_color = mcrfpy.Color(150, 150, 150)
ui.append(inst_caption)
y_offset += 30
# Input handler
def handle_input(key, state):
if state != "start":
return
if key == "Escape":
mcrfpy.setScene(None)
else:
status_text.text = f"You pressed: {key}"
status_text.fill_color = mcrfpy.Color(100, 255, 100) # Green
# Set up input handling
mcrfpy.keypressScene(handle_input)
print("Setup test is running! Try pressing different keys.")

View File

@ -1,457 +0,0 @@
# Part 1 - Drawing the '@' Symbol and Moving It Around
In Part 0, we set up McRogueFace and created a simple "Hello Roguelike" scene. Now it's time to create the foundation of our game: a player character that can move around the screen.
In traditional roguelikes, the player is represented by the '@' symbol. We'll honor that tradition while taking advantage of McRogueFace's powerful sprite-based rendering system.
## Understanding McRogueFace's Architecture
Before we dive into code, let's understand two key concepts in McRogueFace:
### Grid - The Game World
A `Grid` represents your game world. It's a 2D array of tiles where each tile can be:
- **Walkable or not** (for collision detection)
- **Transparent or not** (for field of view, which we'll cover later)
- **Have a visual appearance** (sprite index and color)
Think of the Grid as the dungeon floor, walls, and other static elements.
### Entity - Things That Move
An `Entity` represents anything that can move around on the Grid:
- The player character
- Monsters
- Items (if you want them to be thrown or moved)
- Projectiles
Entities exist "on top of" the Grid and automatically handle smooth movement animation between tiles.
## Creating Our Game World
Let's start by creating a simple room for our player to move around in. Create a new `game.py`:
```python
import mcrfpy
# Define some constants for our tile types
FLOOR_TILE = 0
WALL_TILE = 1
PLAYER_SPRITE = 2
# Window configuration
mcrfpy.createScene("game")
mcrfpy.setScene("game")
# Configure window properties
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 1"
# Get the UI container for our scene
ui = mcrfpy.sceneUI("game")
# Create a dark background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
ui.append(background)
```
Now we need to set up our tileset. For this tutorial, we'll use ASCII-style sprites. McRogueFace comes with a built-in ASCII tileset:
```python
# Load the ASCII tileset
# This tileset has characters mapped to sprite indices
# For example: @ = 64, # = 35, . = 46
tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game grid
# 50x30 tiles is a good size for a roguelike
GRID_WIDTH = 50
GRID_HEIGHT = 30
grid = mcrfpy.Grid(grid_x=GRID_WIDTH, grid_y=GRID_HEIGHT, texture=tileset)
grid.position = (100, 100) # Position on screen
grid.size = (800, 480) # Size in pixels
# Add the grid to our UI
ui.append(grid)
```
## Initializing the Game World
Now let's fill our grid with a simple room:
```python
def create_room():
"""Create a room with walls around the edges"""
# Fill everything with floor tiles first
for y in range(GRID_HEIGHT):
for x in range(GRID_WIDTH):
cell = grid.at(x, y)
cell.walkable = True
cell.transparent = True
cell.sprite_index = 46 # '.' character
cell.color = mcrfpy.Color(50, 50, 50) # Dark gray floor
# Create walls around the edges
for x in range(GRID_WIDTH):
# Top wall
cell = grid.at(x, 0)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100) # Gray walls
# Bottom wall
cell = grid.at(x, GRID_HEIGHT - 1)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
for y in range(GRID_HEIGHT):
# Left wall
cell = grid.at(0, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Right wall
cell = grid.at(GRID_WIDTH - 1, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Create the room
create_room()
```
## Creating the Player
Now let's add our player character:
```python
# Create the player entity
player = mcrfpy.Entity(x=GRID_WIDTH // 2, y=GRID_HEIGHT // 2, grid=grid)
player.sprite_index = 64 # '@' character
player.color = mcrfpy.Color(255, 255, 255) # White
# The entity is automatically added to the grid when we pass grid= parameter
# This is equivalent to: grid.entities.append(player)
```
## Handling Input
McRogueFace uses a callback system for input. For a turn-based roguelike, we only care about key presses, not releases:
```python
def handle_input(key, state):
"""Handle keyboard input for player movement"""
# Only process key presses, not releases
if state != "start":
return
# Movement deltas
dx, dy = 0, 0
# Arrow keys
if key == "Up":
dy = -1
elif key == "Down":
dy = 1
elif key == "Left":
dx = -1
elif key == "Right":
dx = 1
# Numpad movement (for true roguelike feel!)
elif key == "Num7": # Northwest
dx, dy = -1, -1
elif key == "Num8": # North
dy = -1
elif key == "Num9": # Northeast
dx, dy = 1, -1
elif key == "Num4": # West
dx = -1
elif key == "Num6": # East
dx = 1
elif key == "Num1": # Southwest
dx, dy = -1, 1
elif key == "Num2": # South
dy = 1
elif key == "Num3": # Southeast
dx, dy = 1, 1
# Escape to quit
elif key == "Escape":
mcrfpy.setScene(None)
return
# If there's movement, try to move the player
if dx != 0 or dy != 0:
move_player(dx, dy)
# Register the input handler
mcrfpy.keypressScene(handle_input)
```
## Implementing Movement with Collision Detection
Now let's implement the movement function with proper collision detection:
```python
def move_player(dx, dy):
"""Move the player if the destination is walkable"""
# Calculate new position
new_x = player.x + dx
new_y = player.y + dy
# Check bounds
if new_x < 0 or new_x >= GRID_WIDTH or new_y < 0 or new_y >= GRID_HEIGHT:
return
# Check if the destination is walkable
destination = grid.at(new_x, new_y)
if destination.walkable:
# Move the player
player.x = new_x
player.y = new_y
# The entity will automatically animate to the new position!
```
## Adding Visual Polish
Let's add some UI elements to make our game look more polished:
```python
# Add a title
title = mcrfpy.Caption("McRogueFace Roguelike", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100) # Yellow
ui.append(title)
# Add instructions
instructions = mcrfpy.Caption("Arrow Keys or Numpad to move, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200) # Light gray
ui.append(instructions)
# Add a status line at the bottom
status = mcrfpy.Caption("@ You", 100, 600)
status.font_size = 18
status.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(status)
```
## Complete Code
Here's the complete `game.py` for Part 1:
```python
import mcrfpy
# Window configuration
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 1"
# Get the UI container for our scene
ui = mcrfpy.sceneUI("game")
# Create a dark background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
ui.append(background)
# Load the ASCII tileset
tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game grid
GRID_WIDTH = 50
GRID_HEIGHT = 30
grid = mcrfpy.Grid(grid_x=GRID_WIDTH, grid_y=GRID_HEIGHT, texture=tileset)
grid.position = (100, 100)
grid.size = (800, 480)
ui.append(grid)
def create_room():
"""Create a room with walls around the edges"""
# Fill everything with floor tiles first
for y in range(GRID_HEIGHT):
for x in range(GRID_WIDTH):
cell = grid.at(x, y)
cell.walkable = True
cell.transparent = True
cell.sprite_index = 46 # '.' character
cell.color = mcrfpy.Color(50, 50, 50) # Dark gray floor
# Create walls around the edges
for x in range(GRID_WIDTH):
# Top wall
cell = grid.at(x, 0)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100) # Gray walls
# Bottom wall
cell = grid.at(x, GRID_HEIGHT - 1)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
for y in range(GRID_HEIGHT):
# Left wall
cell = grid.at(0, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Right wall
cell = grid.at(GRID_WIDTH - 1, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Create the room
create_room()
# Create the player entity
player = mcrfpy.Entity(x=GRID_WIDTH // 2, y=GRID_HEIGHT // 2, grid=grid)
player.sprite_index = 64 # '@' character
player.color = mcrfpy.Color(255, 255, 255) # White
def move_player(dx, dy):
"""Move the player if the destination is walkable"""
# Calculate new position
new_x = player.x + dx
new_y = player.y + dy
# Check bounds
if new_x < 0 or new_x >= GRID_WIDTH or new_y < 0 or new_y >= GRID_HEIGHT:
return
# Check if the destination is walkable
destination = grid.at(new_x, new_y)
if destination.walkable:
# Move the player
player.x = new_x
player.y = new_y
def handle_input(key, state):
"""Handle keyboard input for player movement"""
# Only process key presses, not releases
if state != "start":
return
# Movement deltas
dx, dy = 0, 0
# Arrow keys
if key == "Up":
dy = -1
elif key == "Down":
dy = 1
elif key == "Left":
dx = -1
elif key == "Right":
dx = 1
# Numpad movement (for true roguelike feel!)
elif key == "Num7": # Northwest
dx, dy = -1, -1
elif key == "Num8": # North
dy = -1
elif key == "Num9": # Northeast
dx, dy = 1, -1
elif key == "Num4": # West
dx = -1
elif key == "Num6": # East
dx = 1
elif key == "Num1": # Southwest
dx, dy = -1, 1
elif key == "Num2": # South
dy = 1
elif key == "Num3": # Southeast
dx, dy = 1, 1
# Escape to quit
elif key == "Escape":
mcrfpy.setScene(None)
return
# If there's movement, try to move the player
if dx != 0 or dy != 0:
move_player(dx, dy)
# Register the input handler
mcrfpy.keypressScene(handle_input)
# Add UI elements
title = mcrfpy.Caption("McRogueFace Roguelike", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
ui.append(title)
instructions = mcrfpy.Caption("Arrow Keys or Numpad to move, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(instructions)
status = mcrfpy.Caption("@ You", 100, 600)
status.font_size = 18
status.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(status)
print("Part 1: The @ symbol moves!")
```
## Understanding What We've Built
Let's review the key concepts we've implemented:
1. **Grid-Entity Architecture**: The Grid represents our static world (floors and walls), while the Entity (player) moves on top of it.
2. **Collision Detection**: By checking the `walkable` property of grid cells, we prevent the player from walking through walls.
3. **Turn-Based Input**: By only responding to key presses (not releases), we've created true turn-based movement.
4. **Visual Feedback**: The Entity system automatically animates movement between tiles, giving smooth visual feedback.
## Exercises
Try these modifications to deepen your understanding:
1. **Add More Rooms**: Create multiple rooms connected by corridors
2. **Different Tile Types**: Add doors (walkable but different appearance)
3. **Sprint Movement**: Hold Shift to move multiple tiles at once
4. **Mouse Support**: Click a tile to pathfind to it (we'll cover pathfinding properly later)
## ASCII Sprite Reference
Here are some useful ASCII character indices for the default tileset:
- @ (player): 64
- # (wall): 35
- . (floor): 46
- + (door): 43
- ~ (water): 126
- % (item): 37
- ! (potion): 33
## What's Next?
In Part 2, we'll expand our world with:
- A proper Entity system for managing multiple objects
- NPCs that can also move around
- A more interesting map layout
- The beginning of our game architecture
The foundation is set - you have a player character that can move around a world with collision detection. This is the core of any roguelike game!

View File

@ -1,162 +0,0 @@
import mcrfpy
# Window configuration
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 1"
# Get the UI container for our scene
ui = mcrfpy.sceneUI("game")
# Create a dark background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
ui.append(background)
# Load the ASCII tileset
tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game grid
GRID_WIDTH = 50
GRID_HEIGHT = 30
grid = mcrfpy.Grid(grid_x=GRID_WIDTH, grid_y=GRID_HEIGHT, texture=tileset)
grid.position = (100, 100)
grid.size = (800, 480)
ui.append(grid)
def create_room():
"""Create a room with walls around the edges"""
# Fill everything with floor tiles first
for y in range(GRID_HEIGHT):
for x in range(GRID_WIDTH):
cell = grid.at(x, y)
cell.walkable = True
cell.transparent = True
cell.sprite_index = 46 # '.' character
cell.color = mcrfpy.Color(50, 50, 50) # Dark gray floor
# Create walls around the edges
for x in range(GRID_WIDTH):
# Top wall
cell = grid.at(x, 0)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100) # Gray walls
# Bottom wall
cell = grid.at(x, GRID_HEIGHT - 1)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
for y in range(GRID_HEIGHT):
# Left wall
cell = grid.at(0, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Right wall
cell = grid.at(GRID_WIDTH - 1, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Create the room
create_room()
# Create the player entity
player = mcrfpy.Entity(x=GRID_WIDTH // 2, y=GRID_HEIGHT // 2, grid=grid)
player.sprite_index = 64 # '@' character
player.color = mcrfpy.Color(255, 255, 255) # White
def move_player(dx, dy):
"""Move the player if the destination is walkable"""
# Calculate new position
new_x = player.x + dx
new_y = player.y + dy
# Check bounds
if new_x < 0 or new_x >= GRID_WIDTH or new_y < 0 or new_y >= GRID_HEIGHT:
return
# Check if the destination is walkable
destination = grid.at(new_x, new_y)
if destination.walkable:
# Move the player
player.x = new_x
player.y = new_y
def handle_input(key, state):
"""Handle keyboard input for player movement"""
# Only process key presses, not releases
if state != "start":
return
# Movement deltas
dx, dy = 0, 0
# Arrow keys
if key == "Up":
dy = -1
elif key == "Down":
dy = 1
elif key == "Left":
dx = -1
elif key == "Right":
dx = 1
# Numpad movement (for true roguelike feel!)
elif key == "Num7": # Northwest
dx, dy = -1, -1
elif key == "Num8": # North
dy = -1
elif key == "Num9": # Northeast
dx, dy = 1, -1
elif key == "Num4": # West
dx = -1
elif key == "Num6": # East
dx = 1
elif key == "Num1": # Southwest
dx, dy = -1, 1
elif key == "Num2": # South
dy = 1
elif key == "Num3": # Southeast
dx, dy = 1, 1
# Escape to quit
elif key == "Escape":
mcrfpy.setScene(None)
return
# If there's movement, try to move the player
if dx != 0 or dy != 0:
move_player(dx, dy)
# Register the input handler
mcrfpy.keypressScene(handle_input)
# Add UI elements
title = mcrfpy.Caption("McRogueFace Roguelike", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
ui.append(title)
instructions = mcrfpy.Caption("Arrow Keys or Numpad to move, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(instructions)
status = mcrfpy.Caption("@ You", 100, 600)
status.font_size = 18
status.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(status)
print("Part 1: The @ symbol moves!")

View File

@ -1,562 +0,0 @@
# Part 2 - The Generic Entity, the Render Functions, and the Map
In Part 1, we created a player character that could move around a simple room. Now it's time to build a proper architecture for our roguelike. We'll create a flexible entity system, a proper map structure, and organize our code for future expansion.
## Understanding Game Architecture
Before diving into code, let's understand the architecture we're building:
1. **Entities**: Anything that can exist in the game world (player, monsters, items)
2. **Game Map**: The dungeon structure with tiles that can be walls or floors
3. **Game Engine**: Coordinates everything - entities, map, input, and rendering
In McRogueFace, we'll adapt these concepts to work with the engine's scene-based architecture.
## Creating a Flexible Entity System
While McRogueFace provides a built-in `Entity` class, we'll create a wrapper to add game-specific functionality:
```python
class GameObject:
"""Base class for all game objects (player, monsters, items)"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks # Does this entity block movement?
self._entity = None # The McRogueFace entity
self.grid = None # Reference to the grid
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = self.color
def move(self, dx, dy):
"""Move by the given amount if possible"""
if not self.grid:
return
new_x = self.x + dx
new_y = self.y + dy
# Update our position
self.x = new_x
self.y = new_y
# Update the visual entity
if self._entity:
self._entity.x = new_x
self._entity.y = new_y
def destroy(self):
"""Remove this entity from the game"""
if self._entity and self.grid:
# Find and remove from grid's entity list
for i, entity in enumerate(self.grid.entities):
if entity == self._entity:
del self.grid.entities[i]
break
self._entity = None
```
## Building the Game Map
Let's create a proper map class that manages our dungeon:
```python
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = [] # List of GameObjects
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Initialize all tiles as walls
self.fill_with_walls()
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def create_room(self, x1, y1, x2, y2):
"""Carve out a room in the map"""
# Make sure coordinates are in the right order
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
# Carve out floor tiles
for y in range(y1, y2 + 1):
for x in range(x1, x2 + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_h(self, x1, x2, y):
"""Create a horizontal tunnel"""
for x in range(min(x1, x2), max(x1, x2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_v(self, y1, y2, x):
"""Create a vertical tunnel"""
for y in range(min(y1, y2), max(y1, y2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
# Check map boundaries
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
# Check if tile is walkable
if not self.grid.at(x, y).walkable:
return True
# Check if any blocking entity is at this position
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
```
## Creating the Game Engine
Now let's build our game engine to tie everything together:
```python
class Engine:
"""Main game engine that manages game state"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
# Create the game scene
mcrfpy.createScene("game")
mcrfpy.setScene("game")
# Configure window
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 2"
# Get UI container
self.ui = mcrfpy.sceneUI("game")
# Add background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
# Load tileset
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game world
self.setup_game()
# Setup input handling
self.setup_input()
# Add UI elements
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
# Create the map
self.game_map = GameMap(50, 30)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create some rooms
self.game_map.create_room(10, 10, 20, 20)
self.game_map.create_room(30, 15, 40, 25)
self.game_map.create_room(15, 22, 25, 28)
# Connect rooms with tunnels
self.game_map.create_tunnel_h(20, 30, 15)
self.game_map.create_tunnel_v(20, 22, 20)
# Create player
self.player = GameObject(15, 15, 64, (255, 255, 255), "Player", blocks=True)
self.game_map.add_entity(self.player)
# Create an NPC
npc = GameObject(35, 20, 64, (255, 255, 0), "NPC", blocks=True)
self.game_map.add_entity(npc)
self.entities.append(npc)
# Create some items (non-blocking)
potion = GameObject(12, 12, 33, (255, 0, 255), "Potion", blocks=False)
self.game_map.add_entity(potion)
self.entities.append(potion)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
# Check if movement is blocked
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
else:
# Check if we bumped into an entity
target = self.game_map.get_blocking_entity_at(new_x, new_y)
if target:
print(f"You bump into the {target.name}!")
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
# Movement keys
movement = {
"Up": (0, -1),
"Down": (0, 1),
"Left": (-1, 0),
"Right": (1, 0),
"Num7": (-1, -1),
"Num8": (0, -1),
"Num9": (1, -1),
"Num4": (-1, 0),
"Num6": (1, 0),
"Num1": (-1, 1),
"Num2": (0, 1),
"Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
# Title
title = mcrfpy.Caption("McRogueFace Roguelike - Part 2", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
# Instructions
instructions = mcrfpy.Caption("Explore the dungeon! ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
```
## Putting It All Together
Here's the complete `game.py` file:
```python
import mcrfpy
class GameObject:
"""Base class for all game objects (player, monsters, items)"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount if possible"""
if not self.grid:
return
new_x = self.x + dx
new_y = self.y + dy
self.x = new_x
self.y = new_y
if self._entity:
self._entity.x = new_x
self._entity.y = new_y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
self.fill_with_walls()
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def create_room(self, x1, y1, x2, y2):
"""Carve out a room in the map"""
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
for y in range(y1, y2 + 1):
for x in range(x1, x2 + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_h(self, x1, x2, y):
"""Create a horizontal tunnel"""
for x in range(min(x1, x2), max(x1, x2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_v(self, y1, y2, x):
"""Create a vertical tunnel"""
for y in range(min(y1, y2), max(y1, y2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
class Engine:
"""Main game engine that manages game state"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 2"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(50, 30)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
self.game_map.create_room(10, 10, 20, 20)
self.game_map.create_room(30, 15, 40, 25)
self.game_map.create_room(15, 22, 25, 28)
self.game_map.create_tunnel_h(20, 30, 15)
self.game_map.create_tunnel_v(20, 22, 20)
self.player = GameObject(15, 15, 64, (255, 255, 255), "Player", blocks=True)
self.game_map.add_entity(self.player)
npc = GameObject(35, 20, 64, (255, 255, 0), "NPC", blocks=True)
self.game_map.add_entity(npc)
self.entities.append(npc)
potion = GameObject(12, 12, 33, (255, 0, 255), "Potion", blocks=False)
self.game_map.add_entity(potion)
self.entities.append(potion)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
else:
target = self.game_map.get_blocking_entity_at(new_x, new_y)
if target:
print(f"You bump into the {target.name}!")
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("McRogueFace Roguelike - Part 2", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Explore the dungeon! ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 2: Entities and Maps!")
```
## Understanding the Architecture
### GameObject Class
Our `GameObject` class wraps McRogueFace's `Entity` and adds:
- Game logic properties (name, blocking)
- Position tracking independent of the visual entity
- Easy attachment/detachment from grids
### GameMap Class
The `GameMap` manages:
- The McRogueFace `Grid` for visual representation
- A list of all entities in the map
- Collision detection including entity blocking
- Map generation utilities (rooms, tunnels)
### Engine Class
The `Engine` coordinates everything:
- Scene and UI setup
- Game state management
- Input handling
- Entity-map interactions
## Key Improvements from Part 1
1. **Proper Entity Management**: Multiple entities can exist and interact
2. **Blocking Entities**: Some entities block movement, others don't
3. **Map Generation**: Tools for creating rooms and tunnels
4. **Collision System**: Checks both tiles and entities
5. **Organized Code**: Clear separation of concerns
## Exercises
1. **Add More Entity Types**: Create different sprites for monsters, items, and NPCs
2. **Entity Interactions**: Make items disappear when walked over
3. **Random Map Generation**: Place rooms and tunnels randomly
4. **Entity Properties**: Add health, damage, or other attributes to GameObjects
## What's Next?
In Part 3, we'll implement proper dungeon generation with:
- Procedurally generated rooms
- Smart tunnel routing
- Entity spawning
- The beginning of a real roguelike dungeon!
We now have a solid foundation with proper entity management and map structure. This architecture will serve us well as we add more complex features to our roguelike!

View File

@ -1,217 +0,0 @@
import mcrfpy
class GameObject:
"""Base class for all game objects (player, monsters, items)"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount if possible"""
if not self.grid:
return
new_x = self.x + dx
new_y = self.y + dy
self.x = new_x
self.y = new_y
if self._entity:
self._entity.x = new_x
self._entity.y = new_y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
self.fill_with_walls()
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def create_room(self, x1, y1, x2, y2):
"""Carve out a room in the map"""
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
for y in range(y1, y2 + 1):
for x in range(x1, x2 + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_h(self, x1, x2, y):
"""Create a horizontal tunnel"""
for x in range(min(x1, x2), max(x1, x2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_v(self, y1, y2, x):
"""Create a vertical tunnel"""
for y in range(min(y1, y2), max(y1, y2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
class Engine:
"""Main game engine that manages game state"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 2"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(50, 30)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
self.game_map.create_room(10, 10, 20, 20)
self.game_map.create_room(30, 15, 40, 25)
self.game_map.create_room(15, 22, 25, 28)
self.game_map.create_tunnel_h(20, 30, 15)
self.game_map.create_tunnel_v(20, 22, 20)
self.player = GameObject(15, 15, 64, (255, 255, 255), "Player", blocks=True)
self.game_map.add_entity(self.player)
npc = GameObject(35, 20, 64, (255, 255, 0), "NPC", blocks=True)
self.game_map.add_entity(npc)
self.entities.append(npc)
potion = GameObject(12, 12, 33, (255, 0, 255), "Potion", blocks=False)
self.game_map.add_entity(potion)
self.entities.append(potion)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
else:
target = self.game_map.get_blocking_entity_at(new_x, new_y)
if target:
print(f"You bump into the {target.name}!")
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("McRogueFace Roguelike - Part 2", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Explore the dungeon! ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 2: Entities and Maps!")

View File

@ -1,548 +0,0 @@
# Part 3 - Generating a Dungeon
In Parts 1 and 2, we created a player that could move around and interact with a hand-crafted dungeon. Now it's time to generate dungeons procedurally - a core feature of any roguelike game!
## The Plan
We'll create a dungeon generator that:
1. Places rectangular rooms randomly
2. Ensures rooms don't overlap
3. Connects rooms with tunnels
4. Places the player in the first room
This is a classic approach used by many roguelikes, and it creates interesting, playable dungeons.
## Creating a Room Class
First, let's create a class to represent rectangular rooms:
```python
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
"""Return the inner area of the room as a tuple of slices
This property returns the area inside the walls.
We'll add 1 to min coordinates and subtract 1 from max coordinates.
"""
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
"""Return True if this room overlaps with another RectangularRoom"""
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
```
## Implementing Tunnel Generation
Since McRogueFace doesn't include line-drawing algorithms, let's implement simple L-shaped tunnels:
```python
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
# Randomly decide whether to go horizontal first or vertical first
if random.random() < 0.5:
# Horizontal, then vertical
corner_x = x2
corner_y = y1
else:
# Vertical, then horizontal
corner_x = x1
corner_y = y2
# Generate the coordinates
# First line: from start to corner
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
# Second line: from corner to end
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
```
## The Dungeon Generator
Now let's update our GameMap class to generate dungeons:
```python
import random
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = [] # Keep track of rooms for game logic
def generate_dungeon(
self,
max_rooms,
room_min_size,
room_max_size,
player
):
"""Generate a new dungeon map"""
# Start with everything as walls
self.fill_with_walls()
for r in range(max_rooms):
# Random width and height
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
# Random position without going out of bounds
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
# Create the room
new_room = RectangularRoom(x, y, room_width, room_height)
# Check if it intersects with any existing room
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue # This room intersects, so go to the next attempt
# If we get here, it's a valid room
# Carve out this room
self.carve_room(new_room)
# Place the player in the center of the first room
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All rooms after the first:
# Tunnel between this room and the previous one
self.carve_tunnel(self.rooms[-1].center, new_room.center)
# Finally, append the new room to the list
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(30, 30, 40)) # Slightly different color for tunnels
```
## Complete Code
Here's the complete `game.py` with procedural dungeon generation:
```python
import mcrfpy
import random
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
"""Return the inner area of the room"""
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
"""Return True if this room overlaps with another"""
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
# Generate the coordinates
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(30, 30, 40))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 3"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player (before dungeon generation)
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add some monsters in random rooms
for i in range(5):
if i < len(self.game_map.rooms) - 1: # Don't spawn in first room
room = self.game_map.rooms[i + 1]
x, y = room.center
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "Space":
# Regenerate the dungeon
self.regenerate_dungeon()
mcrfpy.keypressScene(handle_keys)
def regenerate_dungeon(self):
"""Generate a new dungeon"""
# Clear existing entities
self.game_map.entities.clear()
self.game_map.rooms.clear()
self.entities.clear()
# Clear the entity list in the grid
if self.game_map.grid:
self.game_map.grid.entities.clear()
# Regenerate
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Re-add player
self.game_map.add_entity(self.player)
# Add new monsters
for i in range(5):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Procedural Dungeon Generation", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move, SPACE to regenerate, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 3: Procedural Dungeon Generation!")
print("Press SPACE to generate a new dungeon")
```
## Understanding the Algorithm
Our dungeon generation algorithm is simple but effective:
1. **Start with solid walls** - The entire map begins filled with wall tiles
2. **Try to place rooms** - Generate random rooms and check for overlaps
3. **Connect with tunnels** - Each new room connects to the previous one
4. **Place entities** - The player starts in the first room, monsters in others
### Room Placement
The algorithm attempts to place `max_rooms` rooms, but may place fewer if many attempts result in overlapping rooms. This is called "rejection sampling" - we generate random rooms and reject ones that don't fit.
### Tunnel Design
Our L-shaped tunnels are simple but effective. They either go:
- Horizontal first, then vertical
- Vertical first, then horizontal
This creates variety while ensuring all rooms are connected.
## Experimenting with Parameters
Try adjusting these parameters to create different dungeon styles:
```python
# Sparse dungeon with large rooms
self.game_map.generate_dungeon(
max_rooms=10,
room_min_size=10,
room_max_size=15,
player=self.player
)
# Dense dungeon with small rooms
self.game_map.generate_dungeon(
max_rooms=50,
room_min_size=4,
room_max_size=6,
player=self.player
)
```
## Visual Enhancements
Notice how we gave tunnels a slightly different color:
- Rooms: `color=(50, 50, 50)` - Medium gray
- Tunnels: `color=(30, 30, 40)` - Darker with blue tint
This subtle difference helps players understand the dungeon layout.
## Exercises
1. **Different Room Shapes**: Create circular or cross-shaped rooms
2. **Better Tunnel Routing**: Implement A* pathfinding for more natural tunnels
3. **Room Types**: Create special rooms (treasure rooms, trap rooms)
4. **Dungeon Themes**: Use different tile sets and colors for different dungeon levels
## What's Next?
In Part 4, we'll implement Field of View (FOV) so the player can only see parts of the dungeon they've explored. This will add mystery and atmosphere to our procedurally generated dungeons!
Our dungeon generator is now creating unique, playable levels every time. The foundation of a true roguelike is taking shape!

View File

@ -1,312 +0,0 @@
import mcrfpy
import random
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
"""Return the inner area of the room"""
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
"""Return True if this room overlaps with another"""
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
# Generate the coordinates
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(30, 30, 40))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 3"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player (before dungeon generation)
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add some monsters in random rooms
for i in range(5):
if i < len(self.game_map.rooms) - 1: # Don't spawn in first room
room = self.game_map.rooms[i + 1]
x, y = room.center
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "Space":
# Regenerate the dungeon
self.regenerate_dungeon()
mcrfpy.keypressScene(handle_keys)
def regenerate_dungeon(self):
"""Generate a new dungeon"""
# Clear existing entities
self.game_map.entities.clear()
self.game_map.rooms.clear()
self.entities.clear()
# Clear the entity list in the grid
if self.game_map.grid:
self.game_map.grid.entities.clear()
# Regenerate
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Re-add player
self.game_map.add_entity(self.player)
# Add new monsters
for i in range(5):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Procedural Dungeon Generation", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move, SPACE to regenerate, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 3: Procedural Dungeon Generation!")
print("Press SPACE to generate a new dungeon")

View File

@ -1,520 +0,0 @@
# Part 4 - Field of View
One of the defining features of roguelikes is exploration and discovery. In Part 3, we could see the entire dungeon at once. Now we'll implement Field of View (FOV) so players can only see what their character can actually see, adding mystery and tactical depth to our game.
## Understanding Field of View
Field of View creates three distinct visibility states for each tile:
1. **Visible**: Currently in the player's line of sight
2. **Explored**: Previously seen but not currently visible
3. **Unexplored**: Never seen (completely hidden)
This creates the classic "fog of war" effect where you remember the layout of areas you've explored, but can't see current enemy positions unless they're in your view.
## McRogueFace's FOV System
Good news! McRogueFace includes built-in FOV support through its C++ engine. We just need to enable and configure it. The engine uses an efficient shadowcasting algorithm that provides smooth, realistic line-of-sight calculations.
Let's update our code to use FOV:
```python
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
```
## Configuring Visibility Rendering
McRogueFace automatically handles the rendering of visible/explored/unexplored tiles. We need to set up our grid to use perspective-based rendering:
```python
class GameMap:
"""Manages the game world"""
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering (0 = first entity = player)
self.grid.perspective = 0
return self.grid
```
## Visual Appearance Configuration
Let's define how our tiles look in different visibility states:
```python
# Color configurations for visibility states
COLORS_VISIBLE = {
'wall': (100, 100, 100), # Light gray
'floor': (50, 50, 50), # Dark gray
'tunnel': (30, 30, 40), # Dark blue-gray
}
COLORS_EXPLORED = {
'wall': (50, 50, 70), # Darker, bluish
'floor': (20, 20, 30), # Very dark
'tunnel': (15, 15, 25), # Almost black
}
# Update the tile-setting methods to store the tile type
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
# Store both visible and explored colors
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
# The engine will automatically darken explored tiles
```
## Complete Implementation
Here's the complete updated `game.py` with FOV:
```python
import mcrfpy
import random
# Color configurations for visibility
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering (0 = first entity = player)
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.fov_radius = 8
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 4"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add monsters in random rooms
for i in range(10):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
# Randomly offset from center
x += random.randint(-2, 2)
y += random.randint(-2, 2)
# Make sure position is walkable
if self.game_map.grid.at(x, y).walkable:
if i % 2 == 0:
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
else:
# Create a troll
troll = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
self.game_map.add_entity(troll)
self.entities.append(troll)
# Initial FOV calculation
self.player.update_fov()
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "v":
# Toggle FOV on/off
if self.game_map.grid.perspective == 0:
self.game_map.grid.perspective = -1 # Omniscient
print("FOV disabled - omniscient view")
else:
self.game_map.grid.perspective = 0 # Player perspective
print("FOV enabled - player perspective")
elif key == "Plus" or key == "Equals":
# Increase FOV radius
self.fov_radius = min(self.fov_radius + 1, 20)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
elif key == "Minus":
# Decrease FOV radius
self.fov_radius = max(self.fov_radius - 1, 3)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Field of View", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | V to toggle FOV | +/- to adjust radius | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# FOV indicator
self.fov_text = mcrfpy.Caption(f"FOV Radius: {self.fov_radius}", 900, 100)
self.fov_text.font_size = 14
self.fov_text.fill_color = mcrfpy.Color(150, 200, 255)
self.ui.append(self.fov_text)
# Create and run the game
engine = Engine()
print("Part 4: Field of View!")
print("Press V to toggle FOV on/off")
print("Press +/- to adjust FOV radius")
```
## How FOV Works
McRogueFace's built-in FOV system uses a shadowcasting algorithm that:
1. **Casts rays** from the player's position to tiles within the radius
2. **Checks transparency** along each ray path
3. **Marks tiles as visible** if the ray reaches them unobstructed
4. **Remembers explored tiles** automatically
The engine handles all the complex calculations in C++ for optimal performance.
## Visibility States in Detail
### Visible Tiles
- Currently in the player's line of sight
- Rendered at full brightness
- Show current entity positions
### Explored Tiles
- Previously seen but not currently visible
- Rendered darker/muted
- Show remembered terrain but not entities
### Unexplored Tiles
- Never been in the player's FOV
- Rendered as black/invisible
- Complete mystery to the player
## FOV Parameters
You can customize FOV behavior:
```python
# Basic FOV update
entity.update_fov(radius=8)
# The grid's perspective property controls rendering:
grid.perspective = 0 # Use first entity's FOV (player)
grid.perspective = 1 # Use second entity's FOV
grid.perspective = -1 # Omniscient (no FOV, see everything)
```
## Performance Considerations
McRogueFace's C++ FOV implementation is highly optimized:
- Uses efficient shadowcasting algorithm
- Only recalculates when needed
- Handles large maps smoothly
- Automatically culls entities outside FOV
## Visual Polish
The engine automatically handles visual transitions:
- Smooth color changes between visibility states
- Entities fade in/out of view
- Explored areas remain visible but dimmed
## Exercises
1. **Variable Vision**: Give different entities different FOV radii
2. **Light Sources**: Create torches that expand local FOV
3. **Blind Spots**: Add pillars that create interesting shadows
4. **X-Ray Vision**: Temporary power-up to see through walls
## What's Next?
In Part 5, we'll place enemies throughout the dungeon and implement basic interactions. With FOV in place, enemies will appear and disappear as you explore, creating tension and surprise!
Field of View transforms our dungeon from a tactical puzzle into a mysterious world to explore. The fog of war adds atmosphere and gameplay depth that's essential to the roguelike experience.

View File

@ -1,334 +0,0 @@
import mcrfpy
import random
# Color configurations for visibility
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering (0 = first entity = player)
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.fov_radius = 8
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 4"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add monsters in random rooms
for i in range(10):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
# Randomly offset from center
x += random.randint(-2, 2)
y += random.randint(-2, 2)
# Make sure position is walkable
if self.game_map.grid.at(x, y).walkable:
if i % 2 == 0:
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
else:
# Create a troll
troll = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
self.game_map.add_entity(troll)
self.entities.append(troll)
# Initial FOV calculation
self.player.update_fov()
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "v":
# Toggle FOV on/off
if self.game_map.grid.perspective == 0:
self.game_map.grid.perspective = -1 # Omniscient
print("FOV disabled - omniscient view")
else:
self.game_map.grid.perspective = 0 # Player perspective
print("FOV enabled - player perspective")
elif key == "Plus" or key == "Equals":
# Increase FOV radius
self.fov_radius = min(self.fov_radius + 1, 20)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
elif key == "Minus":
# Decrease FOV radius
self.fov_radius = max(self.fov_radius - 1, 3)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Field of View", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | V to toggle FOV | +/- to adjust radius | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# FOV indicator
self.fov_text = mcrfpy.Caption(f"FOV Radius: {self.fov_radius}", 900, 100)
self.fov_text.font_size = 14
self.fov_text.fill_color = mcrfpy.Color(150, 200, 255)
self.ui.append(self.fov_text)
# Create and run the game
engine = Engine()
print("Part 4: Field of View!")
print("Press V to toggle FOV on/off")
print("Press +/- to adjust FOV radius")

View File

@ -1,570 +0,0 @@
# Part 5 - Placing Enemies and Kicking Them (Harmlessly)
Now that we have Field of View working, it's time to populate our dungeon with enemies! In this part, we'll:
- Place enemies randomly in rooms
- Implement entity-to-entity collision detection
- Create basic interactions (bumping into enemies)
- Set the stage for combat in Part 6
## Enemy Spawning System
First, let's create a system to spawn enemies in our dungeon rooms. We'll avoid placing them in the first room (where the player starts) to give players a safe starting area.
```python
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
import random
number_of_enemies = random.randint(0, max_enemies)
for i in range(number_of_enemies):
# Try to find a valid position
attempts = 10
while attempts > 0:
# Random position within room bounds
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
# Check if position is valid
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
else:
enemy = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
game_map.add_entity(enemy)
break
attempts -= 1
```
## Enhanced Collision Detection
We need to improve our collision detection to check for entities, not just walls:
```python
class GameMap:
"""Manages the game world"""
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
# Check boundaries
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
# Check walls
if not self.grid.at(x, y).walkable:
return True
# Check entities
if self.get_blocking_entity_at(x, y):
return True
return False
```
## Action System Introduction
Let's create a simple action system to handle different types of interactions:
```python
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class BumpAction(Action):
"""Action for bumping into something"""
def __init__(self, dx, dy, target=None):
self.dx = dx
self.dy = dy
self.target = target
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
```
## Handling Player Actions
Now let's update our movement handling to support bumping into enemies:
```python
def handle_player_turn(self, action):
"""Process the player's action"""
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# We bumped into something!
print(f"You kick the {target.name} in the shins, much to its annoyance!")
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
# Update message
self.status_text.text = "Exploring the dungeon..."
else:
# Bumped into a wall
self.status_text.text = "Ouch! You bump into a wall."
elif isinstance(action, WaitAction):
self.status_text.text = "You wait..."
```
## Complete Updated Code
Here's the complete `game.py` with enemy placement and interactions:
```python
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
# Try to find a valid position
attempts = 10
while attempts > 0:
# Random position within room bounds
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
# Check if position is valid
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
else:
enemy = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 5"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
def handle_player_turn(self, action):
"""Process the player's action"""
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# We bumped into something!
print(f"You kick the {target.name} in the shins, much to its annoyance!")
self.status_text.text = f"You kick the {target.name}!"
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
self.status_text.text = ""
else:
# Bumped into a wall
self.status_text.text = "Blocked!"
elif isinstance(action, WaitAction):
self.status_text.text = "You wait..."
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Placing Enemies", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | . to wait | Bump into enemies! | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Status text
self.status_text = mcrfpy.Caption("", 512, 600)
self.status_text.font_size = 18
self.status_text.fill_color = mcrfpy.Color(255, 200, 200)
self.ui.append(self.status_text)
# Entity count
entity_count = len(self.entities)
count_text = mcrfpy.Caption(f"Enemies: {entity_count}", 900, 100)
count_text.font_size = 14
count_text.fill_color = mcrfpy.Color(150, 150, 255)
self.ui.append(count_text)
# Create and run the game
engine = Engine()
print("Part 5: Placing Enemies!")
print("Try bumping into enemies - combat coming in Part 6!")
```
## Understanding Entity Interactions
### Collision Detection
Our system now checks three things when the player tries to move:
1. **Map boundaries** - Can't move outside the map
2. **Wall tiles** - Can't walk through walls
3. **Blocking entities** - Can't walk through enemies
### The Action System
We've introduced a simple action system that will grow in Part 6:
- `Action` - Base class for all actions
- `MovementAction` - Represents attempted movement
- `WaitAction` - Skip a turn (important for turn-based games)
### Entity Spawning
Enemies are placed randomly in rooms with these rules:
- Never in the first room (player's starting room)
- Random number between 0 and max per room
- 80% orcs, 20% trolls
- Must be placed on walkable, unoccupied tiles
## Visual Feedback
With FOV enabled, enemies will appear and disappear as you explore:
- Enemies in sight are fully visible
- Enemies in explored but dark areas are hidden
- Creates tension and surprise encounters
## Exercises
1. **More Enemy Types**: Add different sprites and names (goblins, skeletons)
2. **Enemy Density**: Adjust spawn rates based on dungeon depth
3. **Special Rooms**: Create rooms with guaranteed enemies or treasures
4. **Better Feedback**: Add sound effects or visual effects for bumping
## What's Next?
In Part 6, we'll transform those harmless kicks into a real combat system! We'll add:
- Health points for all entities
- Damage calculations
- Death and corpses
- Combat messages
- The beginning of a real roguelike!
Right now our enemies are just obstacles. Soon they'll fight back!

View File

@ -1,388 +0,0 @@
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
# Try to find a valid position
attempts = 10
while attempts > 0:
# Random position within room bounds
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
# Check if position is valid
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
else:
enemy = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 5"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
def handle_player_turn(self, action):
"""Process the player's action"""
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# We bumped into something!
print(f"You kick the {target.name} in the shins, much to its annoyance!")
self.status_text.text = f"You kick the {target.name}!"
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
self.status_text.text = ""
else:
# Bumped into a wall
self.status_text.text = "Blocked!"
elif isinstance(action, WaitAction):
self.status_text.text = "You wait..."
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Placing Enemies", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | . to wait | Bump into enemies! | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Status text
self.status_text = mcrfpy.Caption("", 512, 600)
self.status_text.font_size = 18
self.status_text.fill_color = mcrfpy.Color(255, 200, 200)
self.ui.append(self.status_text)
# Entity count
entity_count = len(self.entities)
count_text = mcrfpy.Caption(f"Enemies: {entity_count}", 900, 100)
count_text.font_size = 14
count_text.fill_color = mcrfpy.Color(150, 150, 255)
self.ui.append(count_text)
# Create and run the game
engine = Engine()
print("Part 5: Placing Enemies!")
print("Try bumping into enemies - combat coming in Part 6!")

View File

@ -1,743 +0,0 @@
# Part 6 - Doing (and Taking) Some Damage
It's time to turn our harmless kicks into real combat! In this part, we'll implement:
- Health points for all entities
- A damage calculation system
- Death and corpse mechanics
- Combat feedback messages
- The foundation of tactical roguelike combat
## Adding Combat Stats
First, let's enhance our GameObject class with combat capabilities:
```python
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name,
blocks=False, hp=0, defense=0, power=0):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
# Combat stats
self.max_hp = hp
self.hp = hp
self.defense = defense
self.power = power
@property
def is_alive(self):
"""Returns True if this entity can act"""
return self.hp > 0
def take_damage(self, amount):
"""Apply damage to this entity"""
damage = amount - self.defense
if damage > 0:
self.hp -= damage
# Check for death
if self.hp <= 0 and self.hp + damage > 0:
self.die()
return damage
def die(self):
"""Handle entity death"""
if self.name == "Player":
# Player death is special - we'll handle it differently
self.sprite_index = 64 # Stay as @ but change color
self.color = (127, 0, 0) # Dark red
if self._entity:
self._entity.color = mcrfpy.Color(127, 0, 0)
print("You have died!")
else:
# Enemy death
self.sprite_index = 37 # % character for corpse
self.color = (127, 0, 0) # Dark red
self.blocks = False # Corpses don't block
self.name = f"remains of {self.name}"
if self._entity:
self._entity.sprite_index = 37
self._entity.color = mcrfpy.Color(127, 0, 0)
```
## The Combat System
Now let's implement actual combat when entities bump into each other:
```python
class MeleeAction(Action):
"""Action for melee attacks"""
def __init__(self, attacker, target):
self.attacker = attacker
self.target = target
def perform(self):
"""Execute the attack"""
if not self.target.is_alive:
return # Can't attack the dead
damage = self.attacker.power - self.target.defense
if damage > 0:
attack_desc = f"{self.attacker.name} attacks {self.target.name} for {damage} damage!"
self.target.take_damage(damage)
else:
attack_desc = f"{self.attacker.name} attacks {self.target.name} but does no damage."
return attack_desc
```
## Entity Factories
Let's create factory functions for consistent entity creation:
```python
def create_player(x, y):
"""Create the player entity"""
return GameObject(
x=x, y=y,
sprite_index=64, # @
color=(255, 255, 255),
name="Player",
blocks=True,
hp=30,
defense=2,
power=5
)
def create_orc(x, y):
"""Create an orc enemy"""
return GameObject(
x=x, y=y,
sprite_index=111, # o
color=(63, 127, 63),
name="Orc",
blocks=True,
hp=10,
defense=0,
power=3
)
def create_troll(x, y):
"""Create a troll enemy"""
return GameObject(
x=x, y=y,
sprite_index=84, # T
color=(0, 127, 0),
name="Troll",
blocks=True,
hp=16,
defense=1,
power=4
)
```
## The Message Log
Combat needs feedback! Let's create a simple message log:
```python
class MessageLog:
"""Manages game messages"""
def __init__(self, max_messages=5):
self.messages = []
self.max_messages = max_messages
def add_message(self, text, color=(255, 255, 255)):
"""Add a message to the log"""
self.messages.append((text, color))
# Keep only recent messages
if len(self.messages) > self.max_messages:
self.messages.pop(0)
def render(self, ui, x, y, line_height=20):
"""Render messages to the UI"""
for i, (text, color) in enumerate(self.messages):
caption = mcrfpy.Caption(text, x, y + i * line_height)
caption.font_size = 14
caption.fill_color = mcrfpy.Color(*color)
ui.append(caption)
```
## Complete Implementation
Here's the complete `game.py` with combat:
```python
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Message colors
COLOR_PLAYER_ATK = (230, 230, 230)
COLOR_ENEMY_ATK = (255, 200, 200)
COLOR_PLAYER_DIE = (255, 100, 100)
COLOR_ENEMY_DIE = (255, 165, 0)
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class MeleeAction(Action):
"""Action for melee attacks"""
def __init__(self, attacker, target):
self.attacker = attacker
self.target = target
def perform(self):
"""Execute the attack"""
if not self.target.is_alive:
return None
damage = self.attacker.power - self.target.defense
if damage > 0:
attack_desc = f"{self.attacker.name} attacks {self.target.name} for {damage} damage!"
self.target.take_damage(damage)
# Choose color based on attacker
if self.attacker.name == "Player":
color = COLOR_PLAYER_ATK
else:
color = COLOR_ENEMY_ATK
return attack_desc, color
else:
attack_desc = f"{self.attacker.name} attacks {self.target.name} but does no damage."
return attack_desc, (150, 150, 150)
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name,
blocks=False, hp=0, defense=0, power=0):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
# Combat stats
self.max_hp = hp
self.hp = hp
self.defense = defense
self.power = power
@property
def is_alive(self):
"""Returns True if this entity can act"""
return self.hp > 0
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
def take_damage(self, amount):
"""Apply damage to this entity"""
self.hp -= amount
# Check for death
if self.hp <= 0:
self.die()
def die(self):
"""Handle entity death"""
if self.name == "Player":
# Player death
self.sprite_index = 64 # Stay as @
self.color = (127, 0, 0) # Dark red
if self._entity:
self._entity.color = mcrfpy.Color(127, 0, 0)
else:
# Enemy death
self.sprite_index = 37 # % character for corpse
self.color = (127, 0, 0) # Dark red
self.blocks = False # Corpses don't block
self.name = f"remains of {self.name}"
if self._entity:
self._entity.sprite_index = 37
self._entity.color = mcrfpy.Color(127, 0, 0)
# Entity factories
def create_player(x, y):
"""Create the player entity"""
return GameObject(
x=x, y=y,
sprite_index=64, # @
color=(255, 255, 255),
name="Player",
blocks=True,
hp=30,
defense=2,
power=5
)
def create_orc(x, y):
"""Create an orc enemy"""
return GameObject(
x=x, y=y,
sprite_index=111, # o
color=(63, 127, 63),
name="Orc",
blocks=True,
hp=10,
defense=0,
power=3
)
def create_troll(x, y):
"""Create a troll enemy"""
return GameObject(
x=x, y=y,
sprite_index=84, # T
color=(0, 127, 0),
name="Troll",
blocks=True,
hp=16,
defense=1,
power=4
)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
attempts = 10
while attempts > 0:
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = create_orc(x, y)
else:
enemy = create_troll(x, y)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.messages = [] # Simple message log
self.max_messages = 5
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 6"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def add_message(self, text, color=(255, 255, 255)):
"""Add a message to the log"""
self.messages.append((text, color))
if len(self.messages) > self.max_messages:
self.messages.pop(0)
self.update_message_display()
def update_message_display(self):
"""Update the message display"""
# Clear old messages
for caption in self.message_captions:
# Remove from UI (McRogueFace doesn't have remove, so we hide it)
caption.text = ""
# Display current messages
for i, (text, color) in enumerate(self.messages):
if i < len(self.message_captions):
self.message_captions[i].text = text
self.message_captions[i].fill_color = mcrfpy.Color(*color)
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = create_player(0, 0)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
# Welcome message
self.add_message("Welcome to the dungeon!", (100, 100, 255))
def handle_player_turn(self, action):
"""Process the player's action"""
if not self.player.is_alive:
return
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# Attack!
attack = MeleeAction(self.player, target)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if target died
if not target.is_alive:
death_msg = f"The {target.name.replace('remains of ', '')} is dead!"
self.add_message(death_msg, COLOR_ENEMY_DIE)
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
elif isinstance(action, WaitAction):
pass # Do nothing
# Enemy turns
self.handle_enemy_turns()
def handle_enemy_turns(self):
"""Let all enemies take their turn"""
for entity in self.entities:
if entity.is_alive:
# Simple AI: if player is adjacent, attack. Otherwise, do nothing.
dx = entity.x - self.player.x
dy = entity.y - self.player.y
distance = abs(dx) + abs(dy)
if distance == 1: # Adjacent to player
attack = MeleeAction(entity, self.player)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if player died
if not self.player.is_alive:
self.add_message("You have died!", COLOR_PLAYER_DIE)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Combat System", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Attack enemies by bumping into them!", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Player stats
self.hp_text = mcrfpy.Caption(f"HP: {self.player.hp}/{self.player.max_hp}", 50, 100)
self.hp_text.font_size = 18
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
self.ui.append(self.hp_text)
# Message log
self.message_captions = []
for i in range(self.max_messages):
caption = mcrfpy.Caption("", 50, 620 + i * 20)
caption.font_size = 14
caption.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(caption)
self.message_captions.append(caption)
# Timer to update HP display
def update_stats(dt):
self.hp_text.text = f"HP: {self.player.hp}/{self.player.max_hp}"
if self.player.hp <= 0:
self.hp_text.fill_color = mcrfpy.Color(127, 0, 0)
elif self.player.hp < self.player.max_hp // 3:
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
else:
self.hp_text.fill_color = mcrfpy.Color(0, 255, 0)
mcrfpy.setTimer("update_stats", update_stats, 100)
# Create and run the game
engine = Engine()
print("Part 6: Combat System!")
print("Attack enemies to defeat them, but watch your HP!")

View File

@ -1,568 +0,0 @@
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Message colors
COLOR_PLAYER_ATK = (230, 230, 230)
COLOR_ENEMY_ATK = (255, 200, 200)
COLOR_PLAYER_DIE = (255, 100, 100)
COLOR_ENEMY_DIE = (255, 165, 0)
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class MeleeAction(Action):
"""Action for melee attacks"""
def __init__(self, attacker, target):
self.attacker = attacker
self.target = target
def perform(self):
"""Execute the attack"""
if not self.target.is_alive:
return None
damage = self.attacker.power - self.target.defense
if damage > 0:
attack_desc = f"{self.attacker.name} attacks {self.target.name} for {damage} damage!"
self.target.take_damage(damage)
# Choose color based on attacker
if self.attacker.name == "Player":
color = COLOR_PLAYER_ATK
else:
color = COLOR_ENEMY_ATK
return attack_desc, color
else:
attack_desc = f"{self.attacker.name} attacks {self.target.name} but does no damage."
return attack_desc, (150, 150, 150)
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name,
blocks=False, hp=0, defense=0, power=0):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
# Combat stats
self.max_hp = hp
self.hp = hp
self.defense = defense
self.power = power
@property
def is_alive(self):
"""Returns True if this entity can act"""
return self.hp > 0
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
def take_damage(self, amount):
"""Apply damage to this entity"""
self.hp -= amount
# Check for death
if self.hp <= 0:
self.die()
def die(self):
"""Handle entity death"""
if self.name == "Player":
# Player death
self.sprite_index = 64 # Stay as @
self.color = (127, 0, 0) # Dark red
if self._entity:
self._entity.color = mcrfpy.Color(127, 0, 0)
else:
# Enemy death
self.sprite_index = 37 # % character for corpse
self.color = (127, 0, 0) # Dark red
self.blocks = False # Corpses don't block
self.name = f"remains of {self.name}"
if self._entity:
self._entity.sprite_index = 37
self._entity.color = mcrfpy.Color(127, 0, 0)
# Entity factories
def create_player(x, y):
"""Create the player entity"""
return GameObject(
x=x, y=y,
sprite_index=64, # @
color=(255, 255, 255),
name="Player",
blocks=True,
hp=30,
defense=2,
power=5
)
def create_orc(x, y):
"""Create an orc enemy"""
return GameObject(
x=x, y=y,
sprite_index=111, # o
color=(63, 127, 63),
name="Orc",
blocks=True,
hp=10,
defense=0,
power=3
)
def create_troll(x, y):
"""Create a troll enemy"""
return GameObject(
x=x, y=y,
sprite_index=84, # T
color=(0, 127, 0),
name="Troll",
blocks=True,
hp=16,
defense=1,
power=4
)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
attempts = 10
while attempts > 0:
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = create_orc(x, y)
else:
enemy = create_troll(x, y)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.messages = [] # Simple message log
self.max_messages = 5
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 6"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def add_message(self, text, color=(255, 255, 255)):
"""Add a message to the log"""
self.messages.append((text, color))
if len(self.messages) > self.max_messages:
self.messages.pop(0)
self.update_message_display()
def update_message_display(self):
"""Update the message display"""
# Clear old messages
for caption in self.message_captions:
# Remove from UI (McRogueFace doesn't have remove, so we hide it)
caption.text = ""
# Display current messages
for i, (text, color) in enumerate(self.messages):
if i < len(self.message_captions):
self.message_captions[i].text = text
self.message_captions[i].fill_color = mcrfpy.Color(*color)
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = create_player(0, 0)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
# Welcome message
self.add_message("Welcome to the dungeon!", (100, 100, 255))
def handle_player_turn(self, action):
"""Process the player's action"""
if not self.player.is_alive:
return
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# Attack!
attack = MeleeAction(self.player, target)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if target died
if not target.is_alive:
death_msg = f"The {target.name.replace('remains of ', '')} is dead!"
self.add_message(death_msg, COLOR_ENEMY_DIE)
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
elif isinstance(action, WaitAction):
pass # Do nothing
# Enemy turns
self.handle_enemy_turns()
def handle_enemy_turns(self):
"""Let all enemies take their turn"""
for entity in self.entities:
if entity.is_alive:
# Simple AI: if player is adjacent, attack. Otherwise, do nothing.
dx = entity.x - self.player.x
dy = entity.y - self.player.y
distance = abs(dx) + abs(dy)
if distance == 1: # Adjacent to player
attack = MeleeAction(entity, self.player)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if player died
if not self.player.is_alive:
self.add_message("You have died!", COLOR_PLAYER_DIE)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Combat System", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Attack enemies by bumping into them!", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Player stats
self.hp_text = mcrfpy.Caption(f"HP: {self.player.hp}/{self.player.max_hp}", 50, 100)
self.hp_text.font_size = 18
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
self.ui.append(self.hp_text)
# Message log
self.message_captions = []
for i in range(self.max_messages):
caption = mcrfpy.Caption("", 50, 620 + i * 20)
caption.font_size = 14
caption.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(caption)
self.message_captions.append(caption)
# Timer to update HP display
def update_stats(dt):
self.hp_text.text = f"HP: {self.player.hp}/{self.player.max_hp}"
if self.player.hp <= 0:
self.hp_text.fill_color = mcrfpy.Color(127, 0, 0)
elif self.player.hp < self.player.max_hp // 3:
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
else:
self.hp_text.fill_color = mcrfpy.Color(0, 255, 0)
mcrfpy.setTimer("update_stats", update_stats, 100)
# Create and run the game
engine = Engine()
print("Part 6: Combat System!")
print("Attack enemies to defeat them, but watch your HP!")

View File

@ -1,80 +0,0 @@
"""
McRogueFace Tutorial - Part 0: Introduction to Scene, Texture, and Grid
This tutorial introduces the basic building blocks:
- Scene: A container for UI elements and game state
- Texture: Loading image assets for use in the game
- Grid: A tilemap component for rendering tile-based worlds
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = zoom
grid.center = (grid_width/2.0)*16, (grid_height/2.0)*16 # center on the middle of the central tile
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 0",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((280, 750),
text="Scene + Texture + Grid = Tilemap!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 0 loaded!")
print(f"Created a {grid.grid_size[0]}x{grid.grid_size[1]} grid")
print(f"Grid positioned at ({grid.x}, {grid.y})")

View File

@ -1,116 +0,0 @@
"""
McRogueFace Tutorial - Part 1: Entities and Keyboard Input
This tutorial builds on Part 0 by adding:
- Entity: A game object that can be placed in a grid
- Keyboard handling: Responding to key presses to move the entity
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = zoom
grid.center = (grid_width/2.0)*16, (grid_height/2.0)*16 # center on the middle of the central tile
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start": # Only respond to key press, not release
# Get current player position in grid coordinates
px, py = player.x, player.y
# Calculate new position based on key press
if key == "W" or key == "Up":
py -= 1
elif key == "S" or key == "Down":
py += 1
elif key == "A" or key == "Left":
px -= 1
elif key == "D" or key == "Right":
px += 1
# Update player position (no collision checking yet)
player.x = px
player.y = py
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 1",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((200, 750),
text="Use WASD or Arrow Keys to move the hero!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 1 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Use WASD or Arrow keys to move!")

View File

@ -1,117 +0,0 @@
"""
McRogueFace Tutorial - Part 1: Entities and Keyboard Input
This tutorial builds on Part 0 by adding:
- Entity: A game object that can be placed in a grid
- Keyboard handling: Responding to key presses to move the entity
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start": # Only respond to key press, not release
# Get current player position in grid coordinates
px, py = player.x, player.y
# Calculate new position based on key press
if key == "W" or key == "Up":
py -= 1
elif key == "S" or key == "Down":
py += 1
elif key == "A" or key == "Left":
px -= 1
elif key == "D" or key == "Right":
px += 1
# Update player position (no collision checking yet)
player.x = px
player.y = py
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 1",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((200, 750),
text="Use WASD or Arrow Keys to move the hero!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 1 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Use WASD or Arrow keys to move!")

View File

@ -1,149 +0,0 @@
"""
McRogueFace Tutorial - Part 2: Animated Movement
This tutorial builds on Part 1 by adding:
- Animation system for smooth movement
- Movement that takes 0.5 seconds per tile
- Input blocking during movement animation
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Movement state tracking
is_moving = False
move_animations = [] # Track active animations
# Animation completion callback
def movement_complete(runtime):
"""Called when movement animation completes"""
global is_moving
is_moving = False
# Ensure grid is centered on final position
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
motion_speed = 0.30 # seconds per tile
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
global is_moving, move_animations
if state == "start" and not is_moving: # Only respond to key press when not moving
# Get current player position in grid coordinates
px, py = player.x, player.y
new_x, new_y = px, py
# Calculate new position based on key press
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# If position changed, start movement animation
if new_x != px or new_y != py:
is_moving = True
# Create animations for player position
anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad")
anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
anim_x.start(player)
anim_y.start(player)
# Animate grid center to follow player
center_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
center_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
center_x.start(grid)
center_y.start(grid)
# Set a timer to mark movement as complete
mcrfpy.setTimer("move_complete", movement_complete, 500)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 2",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((150, 750),
text="Smooth movement! Each step takes 0.5 seconds.",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 2 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Movement is now animated over 0.5 seconds per tile!")
print("Use WASD or Arrow keys to move!")

View File

@ -1,241 +0,0 @@
"""
McRogueFace Tutorial - Part 2: Enhanced with Single Move Queue
This tutorial builds on Part 2 by adding:
- Single queued move system for responsive input
- Debug display showing position and queue status
- Smooth continuous movement when keys are held
- Animation callbacks to prevent race conditions
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Movement state tracking
is_moving = False
move_queue = [] # List to store queued moves (max 1 item)
#last_position = (4, 4) # Track last position
current_destination = None # Track where we're currently moving to
current_move = None # Track current move direction
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
# Debug display caption
debug_caption = mcrfpy.Caption((10, 40),
text="Last: (4, 4) | Queue: 0 | Dest: None",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
# Additional debug caption for movement state
move_debug_caption = mcrfpy.Caption((10, 60),
text="Moving: False | Current: None | Queued: None",
)
move_debug_caption.font_size = 16
move_debug_caption.fill_color = mcrfpy.Color(255, 200, 0, 255)
mcrfpy.sceneUI("tutorial").append(move_debug_caption)
def key_to_direction(key):
"""Convert key to direction string"""
if key == "W" or key == "Up":
return "Up"
elif key == "S" or key == "Down":
return "Down"
elif key == "A" or key == "Left":
return "Left"
elif key == "D" or key == "Right":
return "Right"
return None
def update_debug_display():
"""Update the debug caption with current state"""
queue_count = len(move_queue)
dest_text = f"({current_destination[0]}, {current_destination[1]})" if current_destination else "None"
debug_caption.text = f"Last: ({player.x}, {player.y}) | Queue: {queue_count} | Dest: {dest_text}"
# Update movement state debug
current_dir = key_to_direction(current_move) if current_move else "None"
queued_dir = key_to_direction(move_queue[0]) if move_queue else "None"
move_debug_caption.text = f"Moving: {is_moving} | Current: {current_dir} | Queued: {queued_dir}"
# Animation completion callback
def movement_complete(anim, target):
"""Called when movement animation completes"""
global is_moving, move_queue, current_destination, current_move
global player_anim_x, player_anim_y
print(f"In callback for animation: {anim=} {target=}")
# Clear movement state
is_moving = False
current_move = None
current_destination = None
# Clear animation references
player_anim_x = None
player_anim_y = None
# Update last position to where we actually are now
#last_position = (int(player.x), int(player.y))
# Ensure grid is centered on final position
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
# Check if there's a queued move
if move_queue:
# Pop the next move from the queue
next_move = move_queue.pop(0)
print(f"Processing queued move: {next_move}")
# Process it like a fresh input
process_move(next_move)
update_debug_display()
motion_speed = 0.30 # seconds per tile
def process_move(key):
"""Process a move based on the key"""
global is_moving, current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
# If already moving, just update the queue
if is_moving:
print(f"process_move processing {key=} as a queued move (is_moving = True)")
# Clear queue and add new move (only keep 1 queued move)
move_queue.clear()
move_queue.append(key)
update_debug_display()
return
print(f"process_move processing {key=} as a new, immediate animation (is_moving = False)")
# Calculate new position from current position
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
# Calculate new position based on key press (only one tile movement)
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# Start the move if position changed
if new_x != px or new_y != py:
is_moving = True
current_move = key
current_destination = (new_x, new_y)
# only animate a single axis, same callback from either
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
# Animate grid center to follow player
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
update_debug_display()
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start":
# Only process movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
print(f"handle_keys producing actual input: {key=}")
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 2 Enhanced",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((150, 750),
text="One-move queue system with animation callbacks!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 2 Enhanced loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Movement now uses animation callbacks to prevent race conditions!")
print("Use WASD or Arrow keys to move!")

View File

@ -1,149 +0,0 @@
"""
McRogueFace Tutorial - Part 2: Animated Movement
This tutorial builds on Part 1 by adding:
- Animation system for smooth movement
- Movement that takes 0.5 seconds per tile
- Input blocking during movement animation
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Movement state tracking
is_moving = False
move_animations = [] # Track active animations
# Animation completion callback
def movement_complete(runtime):
"""Called when movement animation completes"""
global is_moving
is_moving = False
# Ensure grid is centered on final position
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
motion_speed = 0.30 # seconds per tile
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
global is_moving, move_animations
if state == "start" and not is_moving: # Only respond to key press when not moving
# Get current player position in grid coordinates
px, py = player.x, player.y
new_x, new_y = px, py
# Calculate new position based on key press
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# If position changed, start movement animation
if new_x != px or new_y != py:
is_moving = True
# Create animations for player position
anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad")
anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
anim_x.start(player)
anim_y.start(player)
# Animate grid center to follow player
center_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
center_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
center_x.start(grid)
center_y.start(grid)
# Set a timer to mark movement as complete
mcrfpy.setTimer("move_complete", movement_complete, 500)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 2",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((150, 750),
"Smooth movement! Each step takes 0.5 seconds.",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 2 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Movement is now animated over 0.5 seconds per tile!")
print("Use WASD or Arrow keys to move!")

View File

@ -1,313 +0,0 @@
"""
McRogueFace Tutorial - Part 3: Procedural Dungeon Generation
This tutorial builds on Part 2 by adding:
- Binary Space Partition (BSP) dungeon generation
- Rooms connected by hallways using libtcod.line()
- Walkable/non-walkable terrain
- Player spawning in a valid location
- Wall tiles that block movement
Key code references:
- src/scripts/cos_level.py (lines 7-15, 184-217, 218-224) - BSP algorithm
- mcrfpy.libtcod.line() for smooth hallway generation
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30 # Larger grid for dungeon
# Calculate the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# Calculate the position to center the grid on the screen
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid with a TCODMap for pathfinding/FOV
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Room class for BSP
class Room:
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.w = w
self.h = h
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return (center_x, center_y)
def intersects(self, other):
"""Return True if this room overlaps with another"""
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
# Dungeon generation functions
def carve_room(room):
"""Carve out a room in the grid - referenced from cos_level.py lines 117-120"""
# Using individual updates for now (batch updates would be more efficient)
for x in range(room.x1, room.x2):
for y in range(room.y1, room.y2):
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def carve_hallway(x1, y1, x2, y2):
"""Carve a hallway between two points using libtcod.line()
Referenced from cos_level.py lines 184-217, improved with libtcod.line()
"""
# Get all points along the line
# Simple solution: works if your characters have diagonal movement
#points = mcrfpy.libtcod.line(x1, y1, x2, y2)
# We don't, so we're going to carve a path with an elbow in it
points = []
if random.choice([True, False]):
# x1,y1 -> x2,y1 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x2, y1))
points.extend(mcrfpy.libtcod.line(x2, y1, x2, y2))
else:
# x1,y1 -> x1,y2 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x1, y2))
points.extend(mcrfpy.libtcod.line(x1, y2, x2, y2))
# Carve out each point
for x, y in points:
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
"""Generate a dungeon using simplified BSP approach
Referenced from cos_level.py lines 218-224
"""
rooms = []
# First, fill everything with walls
for y in range(grid_height):
for x in range(grid_width):
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(WALL_TILES)
point.walkable = False
point.transparent = False
# Generate rooms
for _ in range(max_rooms):
# Random room size
w = random.randint(room_min_size, room_max_size)
h = random.randint(room_min_size, room_max_size)
# Random position (with margin from edges)
x = random.randint(1, grid_width - w - 1)
y = random.randint(1, grid_height - h - 1)
new_room = Room(x, y, w, h)
# Check if it overlaps with existing rooms
failed = False
for other_room in rooms:
if new_room.intersects(other_room):
failed = True
break
if not failed:
# Carve out the room
carve_room(new_room)
# If not the first room, connect to previous room
if rooms:
# Get centers
prev_x, prev_y = rooms[-1].center()
new_x, new_y = new_room.center()
# Carve hallway using libtcod.line()
carve_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
return rooms
# Generate the dungeon
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Spawn player in the first room
if rooms:
spawn_x, spawn_y = rooms[0].center()
else:
# Fallback spawn position
spawn_x, spawn_y = 4, 4
# Create a player entity at the spawn position
player = mcrfpy.Entity(
(spawn_x, spawn_y),
texture=hero_texture,
sprite_index=0
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
# Movement state tracking (from Part 2)
is_moving = False
move_queue = []
current_destination = None
current_move = None
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
def movement_complete(anim, target):
"""Called when movement animation completes"""
global is_moving, move_queue, current_destination, current_move
global player_anim_x, player_anim_y
is_moving = False
current_move = None
current_destination = None
player_anim_x = None
player_anim_y = None
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
if move_queue:
next_move = move_queue.pop(0)
process_move(next_move)
motion_speed = 0.20 # Slightly faster for dungeon exploration
def can_move_to(x, y):
"""Check if a position is valid for movement"""
# Boundary check
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
# Walkability check
point = grid.at(x, y)
if point and point.walkable:
return True
return False
def process_move(key):
"""Process a move based on the key"""
global is_moving, current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
if is_moving:
move_queue.clear()
move_queue.append(key)
return
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# Check if we can move to the new position
if new_x != px or new_y != py:
if can_move_to(new_x, new_y):
is_moving = True
current_move = key
current_destination = (new_x, new_y)
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
else:
# Play a "bump" sound or visual feedback here
print(f"Can't move to ({new_x}, {new_y}) - blocked!")
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start":
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add UI elements
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 3: Dungeon Generation",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
instructions = mcrfpy.Caption((150, 750),
text=f"Procedural dungeon with {len(rooms)} rooms connected by hallways!",
)
instructions.font_size = 18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
# Debug info
debug_caption = mcrfpy.Caption((10, 40),
text=f"Grid: {grid_width}x{grid_height} | Player spawned at ({spawn_x}, {spawn_y})",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
print("Tutorial Part 3 loaded!")
print(f"Generated dungeon with {len(rooms)} rooms")
print(f"Player spawned at ({spawn_x}, {spawn_y})")
print("Walls now block movement!")
print("Use WASD or Arrow keys to explore the dungeon!")

View File

@ -1,366 +0,0 @@
"""
McRogueFace Tutorial - Part 4: Field of View
This tutorial builds on Part 3 by adding:
- Field of view calculation using grid.compute_fov()
- Entity perspective rendering with grid.perspective
- Three visibility states: unexplored (black), explored (dark), visible (lit)
- Memory of previously seen areas
- Enemy entity to demonstrate perspective switching
Key code references:
- tests/unit/test_tcod_fov_entities.py (lines 89-118) - FOV with multiple entities
- ROADMAP.md (lines 216-229) - FOV system implementation details
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30
# Calculate the size in pixels
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# Calculate the position to center the grid on the screen
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid with a TCODMap for pathfinding/FOV
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Room class for BSP
class Room:
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.w = w
self.h = h
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return (center_x, center_y)
def intersects(self, other):
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
# Dungeon generation functions (from Part 3)
def carve_room(room):
for x in range(room.x1, room.x2):
for y in range(room.y1, room.y2):
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def carve_hallway(x1, y1, x2, y2):
#points = mcrfpy.libtcod.line(x1, y1, x2, y2)
points = []
if random.choice([True, False]):
# x1,y1 -> x2,y1 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x2, y1))
points.extend(mcrfpy.libtcod.line(x2, y1, x2, y2))
else:
# x1,y1 -> x1,y2 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x1, y2))
points.extend(mcrfpy.libtcod.line(x1, y2, x2, y2))
for x, y in points:
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
rooms = []
# Fill with walls
for y in range(grid_height):
for x in range(grid_width):
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(WALL_TILES)
point.walkable = False
point.transparent = False
# Generate rooms
for _ in range(max_rooms):
w = random.randint(room_min_size, room_max_size)
h = random.randint(room_min_size, room_max_size)
x = random.randint(1, grid_width - w - 1)
y = random.randint(1, grid_height - h - 1)
new_room = Room(x, y, w, h)
failed = False
for other_room in rooms:
if new_room.intersects(other_room):
failed = True
break
if not failed:
carve_room(new_room)
if rooms:
prev_x, prev_y = rooms[-1].center()
new_x, new_y = new_room.center()
carve_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
return rooms
# Generate the dungeon
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Spawn player in the first room
if rooms:
spawn_x, spawn_y = rooms[0].center()
else:
spawn_x, spawn_y = 4, 4
# Create a player entity
player = mcrfpy.Entity(
(spawn_x, spawn_y),
texture=hero_texture,
sprite_index=0
)
# Add the player entity to the grid
grid.entities.append(player)
# Create an enemy entity in another room (to demonstrate perspective switching)
enemy = None
if len(rooms) > 1:
enemy_x, enemy_y = rooms[1].center()
enemy = mcrfpy.Entity(
(enemy_x, enemy_y),
texture=hero_texture,
sprite_index=0 # Enemy sprite
)
grid.entities.append(enemy)
# Set the grid perspective to the player by default
# Note: The new perspective system uses entity references directly
grid.perspective = player
# Initial FOV computation
def update_fov():
"""Update field of view from current perspective
Referenced from test_tcod_fov_entities.py lines 89-118
"""
if grid.perspective == player:
grid.compute_fov(int(player.x), int(player.y), radius=8, algorithm=0)
player.update_visibility()
elif enemy and grid.perspective == enemy:
grid.compute_fov(int(enemy.x), int(enemy.y), radius=6, algorithm=0)
enemy.update_visibility()
# Perform initial FOV calculation
update_fov()
# Center grid on current perspective
def center_on_perspective():
if grid.perspective == player:
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
elif enemy and grid.perspective == enemy:
grid.center = (enemy.x + 0.5) * 16, (enemy.y + 0.5) * 16
center_on_perspective()
# Movement state tracking (from Part 3)
is_moving = False
move_queue = []
current_destination = None
current_move = None
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
def movement_complete(anim, target):
"""Called when movement animation completes"""
global is_moving, move_queue, current_destination, current_move
global player_anim_x, player_anim_y
is_moving = False
current_move = None
current_destination = None
player_anim_x = None
player_anim_y = None
# Update FOV after movement
update_fov()
center_on_perspective()
if move_queue:
next_move = move_queue.pop(0)
process_move(next_move)
motion_speed = 0.20
def can_move_to(x, y):
"""Check if a position is valid for movement"""
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
point = grid.at(x, y)
if point and point.walkable:
return True
return False
def process_move(key):
"""Process a move based on the key"""
global is_moving, current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
# Only allow player movement when in player perspective
if grid.perspective != player:
return
if is_moving:
move_queue.clear()
move_queue.append(key)
return
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
if new_x != px or new_y != py:
if can_move_to(new_x, new_y):
is_moving = True
current_move = key
current_destination = (new_x, new_y)
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
def handle_keys(key, state):
"""Handle keyboard input"""
if state == "start":
# Movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_move(key)
# Perspective switching
elif key == "Tab":
# Switch perspective between player and enemy
if enemy:
if grid.perspective == player:
grid.perspective = enemy
print("Switched to enemy perspective")
else:
grid.perspective = player
print("Switched to player perspective")
# Update FOV and camera for new perspective
update_fov()
center_on_perspective()
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add UI elements
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 4: Field of View",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
instructions = mcrfpy.Caption((150, 720),
text="Use WASD/Arrows to move. Press Tab to switch perspective!",
)
instructions.font_size = 18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
# FOV info
fov_caption = mcrfpy.Caption((150, 745),
text="FOV: Player (radius 8) | Enemy visible in other room",
)
fov_caption.font_size = 16
fov_caption.fill_color = mcrfpy.Color(100, 200, 255, 255)
mcrfpy.sceneUI("tutorial").append(fov_caption)
# Debug info
debug_caption = mcrfpy.Caption((10, 40),
text=f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Perspective: Player",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
# Update function for perspective display
def update_perspective_display():
current_perspective = "Player" if grid.perspective == player else "Enemy"
debug_caption.text = f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Perspective: {current_perspective}"
if grid.perspective == player:
fov_caption.text = "FOV: Player (radius 8) | Tab to switch perspective"
else:
fov_caption.text = "FOV: Enemy (radius 6) | Tab to switch perspective"
# Timer to update display
def update_display(runtime):
update_perspective_display()
mcrfpy.setTimer("display_update", update_display, 100)
print("Tutorial Part 4 loaded!")
print("Field of View system active!")
print("- Unexplored areas are black")
print("- Previously seen areas are dark")
print("- Currently visible areas are lit")
print("Press Tab to switch between player and enemy perspective!")
print("Use WASD or Arrow keys to move!")

View File

@ -1,363 +0,0 @@
"""
McRogueFace Tutorial - Part 5: Interacting with other entities
This tutorial builds on Part 4 by adding:
- Subclassing mcrfpy.Entity
- Non-blocking movement animations with destination tracking
- Bump interactions (combat, pushing)
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30
# Calculate the size in pixels
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# Calculate the position to center the grid on the screen
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid with a TCODMap for pathfinding/FOV
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Room class for BSP
class Room:
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.w = w
self.h = h
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return (center_x, center_y)
def intersects(self, other):
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
# Dungeon generation functions (from Part 3)
def carve_room(room):
for x in range(room.x1, room.x2):
for y in range(room.y1, room.y2):
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def carve_hallway(x1, y1, x2, y2):
#points = mcrfpy.libtcod.line(x1, y1, x2, y2)
points = []
if random.choice([True, False]):
# x1,y1 -> x2,y1 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x2, y1))
points.extend(mcrfpy.libtcod.line(x2, y1, x2, y2))
else:
# x1,y1 -> x1,y2 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x1, y2))
points.extend(mcrfpy.libtcod.line(x1, y2, x2, y2))
for x, y in points:
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
rooms = []
# Fill with walls
for y in range(grid_height):
for x in range(grid_width):
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(WALL_TILES)
point.walkable = False
point.transparent = False
# Generate rooms
for _ in range(max_rooms):
w = random.randint(room_min_size, room_max_size)
h = random.randint(room_min_size, room_max_size)
x = random.randint(1, grid_width - w - 1)
y = random.randint(1, grid_height - h - 1)
new_room = Room(x, y, w, h)
failed = False
for other_room in rooms:
if new_room.intersects(other_room):
failed = True
break
if not failed:
carve_room(new_room)
if rooms:
prev_x, prev_y = rooms[-1].center()
new_x, new_y = new_room.center()
carve_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
return rooms
# Generate the dungeon
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Spawn player in the first room
if rooms:
spawn_x, spawn_y = rooms[0].center()
else:
spawn_x, spawn_y = 4, 4
class GameEntity(mcrfpy.Entity):
"""An entity whose default behavior is to prevent others from moving into its tile."""
def __init__(self, x, y, walkable=False, **kwargs):
super().__init__(x=x, y=y, **kwargs)
self.walkable = walkable
self.dest_x = x
self.dest_y = y
self.is_moving = False
def get_position(self):
"""Get logical position (destination if moving, otherwise current)"""
if self.is_moving:
return (self.dest_x, self.dest_y)
return (int(self.x), int(self.y))
def on_bump(self, other):
return self.walkable # allow other's motion to proceed if entity is walkable
def __repr__(self):
return f"<{self.__class__.__name__} x={self.x}, y={self.y}, sprite_index={self.sprite_index}>"
class BumpableEntity(GameEntity):
def __init__(self, x, y, **kwargs):
super().__init__(x, y, **kwargs)
def on_bump(self, other):
print(f"Watch it, {other}! You bumped into {self}!")
return False
# Create a player entity
player = GameEntity(
spawn_x, spawn_y,
texture=hero_texture,
sprite_index=0
)
# Add the player entity to the grid
grid.entities.append(player)
for r in rooms:
enemy_x, enemy_y = r.center()
enemy = BumpableEntity(
enemy_x, enemy_y,
grid=grid,
texture=hero_texture,
sprite_index=0 # Enemy sprite
)
# Set the grid perspective to the player by default
# Note: The new perspective system uses entity references directly
grid.perspective = player
# Initial FOV computation
def update_fov():
"""Update field of view from current perspective
Referenced from test_tcod_fov_entities.py lines 89-118
"""
if grid.perspective == player:
grid.compute_fov(int(player.x), int(player.y), radius=8, algorithm=0)
player.update_visibility()
elif enemy and grid.perspective == enemy:
grid.compute_fov(int(enemy.x), int(enemy.y), radius=6, algorithm=0)
enemy.update_visibility()
# Perform initial FOV calculation
update_fov()
# Center grid on current perspective
def center_on_perspective():
if grid.perspective == player:
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
elif enemy and grid.perspective == enemy:
grid.center = (enemy.x + 0.5) * 16, (enemy.y + 0.5) * 16
center_on_perspective()
# Movement state tracking (from Part 3)
#is_moving = False # make it an entity property
move_queue = []
current_destination = None
current_move = None
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
def movement_complete(anim, target):
"""Called when movement animation completes"""
global move_queue, current_destination, current_move
global player_anim_x, player_anim_y
player.is_moving = False
current_move = None
current_destination = None
player_anim_x = None
player_anim_y = None
# Update FOV after movement
update_fov()
center_on_perspective()
if move_queue:
next_move = move_queue.pop(0)
process_move(next_move)
motion_speed = 0.20
def can_move_to(x, y):
"""Check if a position is valid for movement"""
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
point = grid.at(x, y)
if point and point.walkable:
for e in grid.entities:
if not e.walkable and (x, y) == e.get_position(): # blocking the way
e.on_bump(player)
return False
return True # all checks passed, no collision
return False
def process_move(key):
"""Process a move based on the key"""
global current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
# Only allow player movement when in player perspective
if grid.perspective != player:
return
if player.is_moving:
move_queue.clear()
move_queue.append(key)
return
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
if new_x != px or new_y != py:
if can_move_to(new_x, new_y):
player.is_moving = True
current_move = key
current_destination = (new_x, new_y)
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
def handle_keys(key, state):
"""Handle keyboard input"""
if state == "start":
# Movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add UI elements
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 5: Entity Collision",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
instructions = mcrfpy.Caption((150, 720),
text="Use WASD/Arrows to move. Try to bump into the other entity!",
)
instructions.font_size = 18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
# Debug info
debug_caption = mcrfpy.Caption((10, 40),
text=f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Perspective: Player",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
# Update function for perspective display
def update_perspective_display():
current_perspective = "Player" if grid.perspective == player else "Enemy"
debug_caption.text = f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Perspective: {current_perspective}"
# Timer to update display
def update_display(runtime):
update_perspective_display()
mcrfpy.setTimer("display_update", update_display, 100)
print("Tutorial Part 4 loaded!")
print("Field of View system active!")
print("- Unexplored areas are black")
print("- Previously seen areas are dark")
print("- Currently visible areas are lit")
print("Press Tab to switch between player and enemy perspective!")
print("Use WASD or Arrow keys to move!")

View File

@ -1,645 +0,0 @@
"""
McRogueFace Tutorial - Part 6: Turn-based enemy movement
This tutorial builds on Part 5 by adding:
- Turn cycles where enemies move after the player
- Enemy AI that pursues or wanders
- Shared collision detection for all entities
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30
# Calculate the size in pixels
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# Calculate the position to center the grid on the screen
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid with a TCODMap for pathfinding/FOV
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Room class for BSP
class Room:
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.w = w
self.h = h
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return (center_x, center_y)
def intersects(self, other):
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
# Dungeon generation functions (from Part 3)
def carve_room(room):
for x in range(room.x1, room.x2):
for y in range(room.y1, room.y2):
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def carve_hallway(x1, y1, x2, y2):
#points = mcrfpy.libtcod.line(x1, y1, x2, y2)
points = []
if random.choice([True, False]):
# x1,y1 -> x2,y1 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x2, y1))
points.extend(mcrfpy.libtcod.line(x2, y1, x2, y2))
else:
# x1,y1 -> x1,y2 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x1, y2))
points.extend(mcrfpy.libtcod.line(x1, y2, x2, y2))
for x, y in points:
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
rooms = []
# Fill with walls
for y in range(grid_height):
for x in range(grid_width):
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(WALL_TILES)
point.walkable = False
point.transparent = False
# Generate rooms
for _ in range(max_rooms):
w = random.randint(room_min_size, room_max_size)
h = random.randint(room_min_size, room_max_size)
x = random.randint(1, grid_width - w - 1)
y = random.randint(1, grid_height - h - 1)
new_room = Room(x, y, w, h)
failed = False
for other_room in rooms:
if new_room.intersects(other_room):
failed = True
break
if not failed:
carve_room(new_room)
if rooms:
prev_x, prev_y = rooms[-1].center()
new_x, new_y = new_room.center()
carve_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
return rooms
# Generate the dungeon
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Spawn player in the first room
if rooms:
spawn_x, spawn_y = rooms[0].center()
else:
spawn_x, spawn_y = 4, 4
class GameEntity(mcrfpy.Entity):
"""An entity whose default behavior is to prevent others from moving into its tile."""
def __init__(self, x, y, walkable=False, **kwargs):
super().__init__(x=x, y=y, **kwargs)
self.walkable = walkable
self.dest_x = x
self.dest_y = y
self.is_moving = False
def get_position(self):
"""Get logical position (destination if moving, otherwise current)"""
if self.is_moving:
return (self.dest_x, self.dest_y)
return (int(self.x), int(self.y))
def on_bump(self, other):
return self.walkable # allow other's motion to proceed if entity is walkable
def __repr__(self):
return f"<{self.__class__.__name__} x={self.x}, y={self.y}, sprite_index={self.sprite_index}>"
class CombatEntity(GameEntity):
def __init__(self, x, y, hp=10, damage=(1,3), **kwargs):
super().__init__(x=x, y=y, **kwargs)
self.hp = hp
self.damage = damage
def is_dead(self):
return self.hp <= 0
def start_move(self, new_x, new_y, duration=0.2, callback=None):
"""Start animating movement to new position"""
self.dest_x = new_x
self.dest_y = new_y
self.is_moving = True
# Define completion callback that resets is_moving
def movement_done(anim, entity):
self.is_moving = False
if callback:
callback(anim, entity)
# Create animations for smooth movement
anim_x = mcrfpy.Animation("x", float(new_x), duration, "easeInOutQuad", callback=movement_done)
anim_y = mcrfpy.Animation("y", float(new_y), duration, "easeInOutQuad")
anim_x.start(self)
anim_y.start(self)
def can_see(self, target_x, target_y):
"""Check if this entity can see the target position"""
mx, my = self.get_position()
# Simple distance check first
dist = abs(target_x - mx) + abs(target_y - my)
if dist > 6:
return False
# Line of sight check
line = list(mcrfpy.libtcod.line(mx, my, target_x, target_y))
for x, y in line[1:-1]: # Skip start and end
cell = grid.at(x, y)
if cell and not cell.transparent:
return False
return True
def ai_turn(self, player_pos):
"""Decide next move"""
mx, my = self.get_position()
px, py = player_pos
# Simple AI: move toward player if visible
if self.can_see(px, py):
# Calculate direction toward player
dx = 0
dy = 0
if px > mx:
dx = 1
elif px < mx:
dx = -1
if py > my:
dy = 1
elif py < my:
dy = -1
# Prefer cardinal movement
if dx != 0 and dy != 0:
# Pick horizontal or vertical based on greater distance
if abs(px - mx) > abs(py - my):
dy = 0
else:
dx = 0
return (mx + dx, my + dy)
else:
# Random wander
dx, dy = random.choice([(0,1), (0,-1), (1,0), (-1,0)])
return (mx + dx, my + dy)
def ai_turn_dijkstra(self):
"""Decide next move using precomputed Dijkstra map"""
mx, my = self.get_position()
# Get current distance to player
current_dist = grid.get_dijkstra_distance(mx, my)
if current_dist is None or current_dist > 20:
# Too far or unreachable - random wander
dx, dy = random.choice([(0,1), (0,-1), (1,0), (-1,0)])
return (mx + dx, my + dy)
# Check all adjacent cells for best move
best_moves = []
for dx, dy in [(0,1), (0,-1), (1,0), (-1,0)]:
nx, ny = mx + dx, my + dy
# Skip if out of bounds
if nx < 0 or nx >= grid_width or ny < 0 or ny >= grid_height:
continue
# Skip if not walkable
cell = grid.at(nx, ny)
if not cell or not cell.walkable:
continue
# Get distance from this cell
dist = grid.get_dijkstra_distance(nx, ny)
if dist is not None:
best_moves.append((dist, nx, ny))
if best_moves:
# Sort by distance
best_moves.sort()
# If multiple moves have the same best distance, pick randomly
best_dist = best_moves[0][0]
equal_moves = [(nx, ny) for dist, nx, ny in best_moves if dist == best_dist]
if len(equal_moves) > 1:
# Random choice among equally good moves
nx, ny = random.choice(equal_moves)
else:
_, nx, ny = best_moves[0]
return (nx, ny)
else:
# No valid moves
return (mx, my)
# Create a player entity
player = CombatEntity(
spawn_x, spawn_y,
texture=hero_texture,
sprite_index=0
)
# Add the player entity to the grid
grid.entities.append(player)
# Track all enemies
enemies = []
# Spawn enemies in other rooms
for i, room in enumerate(rooms[1:], 1): # Skip first room (player spawn)
if i <= 3: # Limit to 3 enemies for now
enemy_x, enemy_y = room.center()
enemy = CombatEntity(
enemy_x, enemy_y,
texture=hero_texture,
sprite_index=0 # Enemy sprite (borrow player's)
)
grid.entities.append(enemy)
enemies.append(enemy)
# Set the grid perspective to the player by default
# Note: The new perspective system uses entity references directly
grid.perspective = player
# Initial FOV computation
def update_fov():
"""Update field of view from current perspective"""
if grid.perspective == player:
grid.compute_fov(int(player.x), int(player.y), radius=8, algorithm=0)
player.update_visibility()
# Perform initial FOV calculation
update_fov()
# Center grid on current perspective
def center_on_perspective():
if grid.perspective == player:
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
center_on_perspective()
# Movement state tracking (from Part 3)
#is_moving = False # make it an entity property
move_queue = []
current_destination = None
current_move = None
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
def movement_complete(anim, target):
"""Called when movement animation completes"""
global move_queue, current_destination, current_move
global player_anim_x, player_anim_y, is_player_turn
player.is_moving = False
current_move = None
current_destination = None
player_anim_x = None
player_anim_y = None
# Update FOV after movement
update_fov()
center_on_perspective()
# Player turn complete, start enemy turns and queued player move simultaneously
is_player_turn = False
process_enemy_turns_and_player_queue()
motion_speed = 0.20
is_player_turn = True # Track whose turn it is
def get_blocking_entity_at(x, y):
"""Get blocking entity at position"""
for e in grid.entities:
if not e.walkable and (x, y) == e.get_position():
return e
return None
def can_move_to(x, y, mover=None):
"""Check if a position is valid for movement"""
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
point = grid.at(x, y)
if not point or not point.walkable:
return False
# Check for blocking entities
blocker = get_blocking_entity_at(x, y)
if blocker and blocker != mover:
return False
return True
def process_enemy_turns_and_player_queue():
"""Process all enemy AI decisions and player's queued move simultaneously"""
global is_player_turn, move_queue
# Compute Dijkstra map once for all enemies (if using Dijkstra)
if USE_DIJKSTRA:
px, py = player.get_position()
grid.compute_dijkstra(px, py, diagonal_cost=1.41)
enemies_to_move = []
claimed_positions = set() # Track where enemies plan to move
# Collect all enemy moves
for i, enemy in enumerate(enemies):
if enemy.is_dead():
continue
# AI decides next move
if USE_DIJKSTRA:
target_x, target_y = enemy.ai_turn_dijkstra()
else:
target_x, target_y = enemy.ai_turn(player.get_position())
# Check if move is valid and not claimed by another enemy
if can_move_to(target_x, target_y, enemy) and (target_x, target_y) not in claimed_positions:
enemies_to_move.append((enemy, target_x, target_y))
claimed_positions.add((target_x, target_y))
# Start all enemy animations simultaneously
any_enemy_moved = False
if enemies_to_move:
for enemy, tx, ty in enemies_to_move:
enemy.start_move(tx, ty, duration=motion_speed)
any_enemy_moved = True
# Process player's queued move at the same time
if move_queue:
next_move = move_queue.pop(0)
process_player_queued_move(next_move)
else:
# No queued move, set up callback to return control when animations finish
if any_enemy_moved:
# Wait for animations to complete
mcrfpy.setTimer("turn_complete", check_turn_complete, int(motion_speed * 1000) + 50)
else:
# No animations, return control immediately
is_player_turn = True
def process_player_queued_move(key):
"""Process player's queued move during enemy turn"""
global current_move, current_destination
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
if new_x != px or new_y != py:
# Check destination at animation end time (considering enemy destinations)
future_blocker = get_future_blocking_entity_at(new_x, new_y)
if future_blocker:
# Will bump at destination
# Schedule bump for when animations complete
mcrfpy.setTimer("delayed_bump", lambda t: handle_delayed_bump(future_blocker), int(motion_speed * 1000))
elif can_move_to(new_x, new_y, player):
# Valid move, start animation
player.is_moving = True
current_move = key
current_destination = (new_x, new_y)
player.dest_x = new_x
player.dest_y = new_y
# Player animation with callback
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=player_queued_move_complete)
player_anim_x.start(player)
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
player_anim_y.start(player)
# Move camera with player
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
else:
# Blocked by wall, wait for turn to complete
mcrfpy.setTimer("turn_complete", check_turn_complete, int(motion_speed * 1000) + 50)
def get_future_blocking_entity_at(x, y):
"""Get entity that will be blocking at position after current animations"""
for e in grid.entities:
if not e.walkable and (x, y) == (e.dest_x, e.dest_y):
return e
return None
def handle_delayed_bump(entity):
"""Handle bump after animations complete"""
global is_player_turn
entity.on_bump(player)
is_player_turn = True
def player_queued_move_complete(anim, target):
"""Called when player's queued movement completes"""
global is_player_turn
player.is_moving = False
update_fov()
center_on_perspective()
is_player_turn = True
def check_turn_complete(timer_name):
"""Check if all animations are complete"""
global is_player_turn
# Check if any entity is still moving
if player.is_moving:
mcrfpy.setTimer("turn_complete", check_turn_complete, 50)
return
for enemy in enemies:
if enemy.is_moving:
mcrfpy.setTimer("turn_complete", check_turn_complete, 50)
return
# All done
is_player_turn = True
def process_move(key):
"""Process a move based on the key"""
global current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y, is_player_turn
# Only allow player movement on player's turn
if not is_player_turn:
return
# Only allow player movement when in player perspective
if grid.perspective != player:
return
if player.is_moving:
move_queue.clear()
move_queue.append(key)
return
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
if new_x != px or new_y != py:
# Check what's at destination
blocker = get_blocking_entity_at(new_x, new_y)
if blocker:
# Bump interaction (combat will go here later)
blocker.on_bump(player)
# Still counts as a turn
is_player_turn = False
process_enemy_turns_and_player_queue()
elif can_move_to(new_x, new_y, player):
player.is_moving = True
current_move = key
current_destination = (new_x, new_y)
player.dest_x = new_x
player.dest_y = new_y
# Start player move animation
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
player_anim_y.start(player)
# Move camera with player
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
def handle_keys(key, state):
"""Handle keyboard input"""
if state == "start":
# Movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add UI elements
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 6: Turn-based Movement",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
instructions = mcrfpy.Caption((150, 720),
text="Use WASD/Arrows to move. Enemies move after you!",
)
instructions.font_size = 18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
# Debug info
debug_caption = mcrfpy.Caption((10, 40),
text=f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Enemies: {len(enemies)}",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
# Update function for turn display
def update_turn_display():
turn_text = "Player" if is_player_turn else "Enemy"
alive_enemies = sum(1 for e in enemies if not e.is_dead())
debug_caption.text = f"Grid: {grid_width}x{grid_height} | Turn: {turn_text} | Enemies: {alive_enemies}/{len(enemies)}"
# Configuration toggle
USE_DIJKSTRA = True # Set to False to use old line-of-sight AI
# Timer to update display
def update_display(runtime):
update_turn_display()
mcrfpy.setTimer("display_update", update_display, 100)
print("Tutorial Part 6 loaded!")
print("Turn-based movement system active!")
print(f"Using {'Dijkstra' if USE_DIJKSTRA else 'Line-of-sight'} AI pathfinding")
print("- Enemies move after the player")
print("- Enemies pursue when they can see you" if not USE_DIJKSTRA else "- Enemies use optimal pathfinding")
print("- Enemies wander when they can't" if not USE_DIJKSTRA else "- All enemies share one pathfinding map")
print("Use WASD or Arrow keys to move!")

View File

@ -1,582 +0,0 @@
"""
McRogueFace Tutorial - Part 6: Turn-based enemy movement
This tutorial builds on Part 5 by adding:
- Turn cycles where enemies move after the player
- Enemy AI that pursues or wanders
- Shared collision detection for all entities
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
grid_width, grid_height = 40, 30
# Calculate the size in pixels
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# Calculate the position to center the grid on the screen
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
# Create the grid with a TCODMap for pathfinding/FOV
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size,
)
grid.zoom = zoom
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Room class for BSP
class Room:
def __init__(self, x, y, w, h):
self.x1 = x
self.y1 = y
self.x2 = x + w
self.y2 = y + h
self.w = w
self.h = h
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return (center_x, center_y)
def intersects(self, other):
return (self.x1 <= other.x2 and self.x2 >= other.x1 and
self.y1 <= other.y2 and self.y2 >= other.y1)
# Dungeon generation functions (from Part 3)
def carve_room(room):
for x in range(room.x1, room.x2):
for y in range(room.y1, room.y2):
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def carve_hallway(x1, y1, x2, y2):
#points = mcrfpy.libtcod.line(x1, y1, x2, y2)
points = []
if random.choice([True, False]):
# x1,y1 -> x2,y1 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x2, y1))
points.extend(mcrfpy.libtcod.line(x2, y1, x2, y2))
else:
# x1,y1 -> x1,y2 -> x2,y2
points.extend(mcrfpy.libtcod.line(x1, y1, x1, y2))
points.extend(mcrfpy.libtcod.line(x1, y2, x2, y2))
for x, y in points:
if 0 <= x < grid_width and 0 <= y < grid_height:
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(FLOOR_TILES)
point.walkable = True
point.transparent = True
def generate_dungeon(max_rooms=10, room_min_size=4, room_max_size=10):
rooms = []
# Fill with walls
for y in range(grid_height):
for x in range(grid_width):
point = grid.at(x, y)
if point:
point.tilesprite = random.choice(WALL_TILES)
point.walkable = False
point.transparent = False
# Generate rooms
for _ in range(max_rooms):
w = random.randint(room_min_size, room_max_size)
h = random.randint(room_min_size, room_max_size)
x = random.randint(1, grid_width - w - 1)
y = random.randint(1, grid_height - h - 1)
new_room = Room(x, y, w, h)
failed = False
for other_room in rooms:
if new_room.intersects(other_room):
failed = True
break
if not failed:
carve_room(new_room)
if rooms:
prev_x, prev_y = rooms[-1].center()
new_x, new_y = new_room.center()
carve_hallway(prev_x, prev_y, new_x, new_y)
rooms.append(new_room)
return rooms
# Generate the dungeon
rooms = generate_dungeon(max_rooms=8, room_min_size=4, room_max_size=8)
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Spawn player in the first room
if rooms:
spawn_x, spawn_y = rooms[0].center()
else:
spawn_x, spawn_y = 4, 4
class GameEntity(mcrfpy.Entity):
"""An entity whose default behavior is to prevent others from moving into its tile."""
def __init__(self, x, y, walkable=False, **kwargs):
super().__init__(x=x, y=y, **kwargs)
self.walkable = walkable
self.dest_x = x
self.dest_y = y
self.is_moving = False
def get_position(self):
"""Get logical position (destination if moving, otherwise current)"""
if self.is_moving:
return (self.dest_x, self.dest_y)
return (int(self.x), int(self.y))
def on_bump(self, other):
return self.walkable # allow other's motion to proceed if entity is walkable
def __repr__(self):
return f"<{self.__class__.__name__} x={self.x}, y={self.y}, sprite_index={self.sprite_index}>"
class CombatEntity(GameEntity):
def __init__(self, x, y, hp=10, damage=(1,3), **kwargs):
super().__init__(x=x, y=y, **kwargs)
self.hp = hp
self.damage = damage
def is_dead(self):
return self.hp <= 0
def start_move(self, new_x, new_y, duration=0.2, callback=None):
"""Start animating movement to new position"""
self.dest_x = new_x
self.dest_y = new_y
self.is_moving = True
# Define completion callback that resets is_moving
def movement_done(anim, entity):
self.is_moving = False
if callback:
callback(anim, entity)
# Create animations for smooth movement
anim_x = mcrfpy.Animation("x", float(new_x), duration, "easeInOutQuad", callback=movement_done)
anim_y = mcrfpy.Animation("y", float(new_y), duration, "easeInOutQuad")
anim_x.start(self)
anim_y.start(self)
def can_see(self, target_x, target_y):
"""Check if this entity can see the target position"""
mx, my = self.get_position()
# Simple distance check first
dist = abs(target_x - mx) + abs(target_y - my)
if dist > 6:
return False
# Line of sight check
line = list(mcrfpy.libtcod.line(mx, my, target_x, target_y))
for x, y in line[1:-1]: # Skip start and end
cell = grid.at(x, y)
if cell and not cell.transparent:
return False
return True
def ai_turn(self, player_pos):
"""Decide next move"""
mx, my = self.get_position()
px, py = player_pos
# Simple AI: move toward player if visible
if self.can_see(px, py):
# Calculate direction toward player
dx = 0
dy = 0
if px > mx:
dx = 1
elif px < mx:
dx = -1
if py > my:
dy = 1
elif py < my:
dy = -1
# Prefer cardinal movement
if dx != 0 and dy != 0:
# Pick horizontal or vertical based on greater distance
if abs(px - mx) > abs(py - my):
dy = 0
else:
dx = 0
return (mx + dx, my + dy)
else:
# Random wander
dx, dy = random.choice([(0,1), (0,-1), (1,0), (-1,0)])
return (mx + dx, my + dy)
# Create a player entity
player = CombatEntity(
spawn_x, spawn_y,
texture=hero_texture,
sprite_index=0
)
# Add the player entity to the grid
grid.entities.append(player)
# Track all enemies
enemies = []
# Spawn enemies in other rooms
for i, room in enumerate(rooms[1:], 1): # Skip first room (player spawn)
if i <= 3: # Limit to 3 enemies for now
enemy_x, enemy_y = room.center()
enemy = CombatEntity(
enemy_x, enemy_y,
texture=hero_texture,
sprite_index=0 # Enemy sprite (borrow player's)
)
grid.entities.append(enemy)
enemies.append(enemy)
# Set the grid perspective to the player by default
# Note: The new perspective system uses entity references directly
grid.perspective = player
# Initial FOV computation
def update_fov():
"""Update field of view from current perspective"""
if grid.perspective == player:
grid.compute_fov(int(player.x), int(player.y), radius=8, algorithm=0)
player.update_visibility()
# Perform initial FOV calculation
update_fov()
# Center grid on current perspective
def center_on_perspective():
if grid.perspective == player:
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
center_on_perspective()
# Movement state tracking (from Part 3)
#is_moving = False # make it an entity property
move_queue = []
current_destination = None
current_move = None
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
def movement_complete(anim, target):
"""Called when movement animation completes"""
global move_queue, current_destination, current_move
global player_anim_x, player_anim_y, is_player_turn
player.is_moving = False
current_move = None
current_destination = None
player_anim_x = None
player_anim_y = None
# Update FOV after movement
update_fov()
center_on_perspective()
# Player turn complete, start enemy turns and queued player move simultaneously
is_player_turn = False
process_enemy_turns_and_player_queue()
motion_speed = 0.20
is_player_turn = True # Track whose turn it is
def get_blocking_entity_at(x, y):
"""Get blocking entity at position"""
for e in grid.entities:
if not e.walkable and (x, y) == e.get_position():
return e
return None
def can_move_to(x, y, mover=None):
"""Check if a position is valid for movement"""
if x < 0 or x >= grid_width or y < 0 or y >= grid_height:
return False
point = grid.at(x, y)
if not point or not point.walkable:
return False
# Check for blocking entities
blocker = get_blocking_entity_at(x, y)
if blocker and blocker != mover:
return False
return True
def process_enemy_turns_and_player_queue():
"""Process all enemy AI decisions and player's queued move simultaneously"""
global is_player_turn, move_queue
enemies_to_move = []
# Collect all enemy moves
for i, enemy in enumerate(enemies):
if enemy.is_dead():
continue
# AI decides next move based on player's position
target_x, target_y = enemy.ai_turn(player.get_position())
# Check if move is valid
if can_move_to(target_x, target_y, enemy):
enemies_to_move.append((enemy, target_x, target_y))
# Start all enemy animations simultaneously
any_enemy_moved = False
if enemies_to_move:
for enemy, tx, ty in enemies_to_move:
enemy.start_move(tx, ty, duration=motion_speed)
any_enemy_moved = True
# Process player's queued move at the same time
if move_queue:
next_move = move_queue.pop(0)
process_player_queued_move(next_move)
else:
# No queued move, set up callback to return control when animations finish
if any_enemy_moved:
# Wait for animations to complete
mcrfpy.setTimer("turn_complete", check_turn_complete, int(motion_speed * 1000) + 50)
else:
# No animations, return control immediately
is_player_turn = True
def process_player_queued_move(key):
"""Process player's queued move during enemy turn"""
global current_move, current_destination
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
if new_x != px or new_y != py:
# Check destination at animation end time (considering enemy destinations)
future_blocker = get_future_blocking_entity_at(new_x, new_y)
if future_blocker:
# Will bump at destination
# Schedule bump for when animations complete
mcrfpy.setTimer("delayed_bump", lambda t: handle_delayed_bump(future_blocker), int(motion_speed * 1000))
elif can_move_to(new_x, new_y, player):
# Valid move, start animation
player.is_moving = True
current_move = key
current_destination = (new_x, new_y)
player.dest_x = new_x
player.dest_y = new_y
# Player animation with callback
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=player_queued_move_complete)
player_anim_x.start(player)
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
player_anim_y.start(player)
# Move camera with player
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
else:
# Blocked by wall, wait for turn to complete
mcrfpy.setTimer("turn_complete", check_turn_complete, int(motion_speed * 1000) + 50)
def get_future_blocking_entity_at(x, y):
"""Get entity that will be blocking at position after current animations"""
for e in grid.entities:
if not e.walkable and (x, y) == (e.dest_x, e.dest_y):
return e
return None
def handle_delayed_bump(entity):
"""Handle bump after animations complete"""
global is_player_turn
entity.on_bump(player)
is_player_turn = True
def player_queued_move_complete(anim, target):
"""Called when player's queued movement completes"""
global is_player_turn
player.is_moving = False
update_fov()
center_on_perspective()
is_player_turn = True
def check_turn_complete(timer_name):
"""Check if all animations are complete"""
global is_player_turn
# Check if any entity is still moving
if player.is_moving:
mcrfpy.setTimer("turn_complete", check_turn_complete, 50)
return
for enemy in enemies:
if enemy.is_moving:
mcrfpy.setTimer("turn_complete", check_turn_complete, 50)
return
# All done
is_player_turn = True
def process_move(key):
"""Process a move based on the key"""
global current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y, is_player_turn
# Only allow player movement on player's turn
if not is_player_turn:
return
# Only allow player movement when in player perspective
if grid.perspective != player:
return
if player.is_moving:
move_queue.clear()
move_queue.append(key)
return
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
if new_x != px or new_y != py:
# Check what's at destination
blocker = get_blocking_entity_at(new_x, new_y)
if blocker:
# Bump interaction (combat will go here later)
blocker.on_bump(player)
# Still counts as a turn
is_player_turn = False
process_enemy_turns_and_player_queue()
elif can_move_to(new_x, new_y, player):
player.is_moving = True
current_move = key
current_destination = (new_x, new_y)
player.dest_x = new_x
player.dest_y = new_y
# Start player move animation
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
player_anim_y.start(player)
# Move camera with player
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
def handle_keys(key, state):
"""Handle keyboard input"""
if state == "start":
# Movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add UI elements
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 6: Turn-based Movement",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
instructions = mcrfpy.Caption((150, 720),
text="Use WASD/Arrows to move. Enemies move after you!",
)
instructions.font_size = 18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
# Debug info
debug_caption = mcrfpy.Caption((10, 40),
text=f"Grid: {grid_width}x{grid_height} | Rooms: {len(rooms)} | Enemies: {len(enemies)}",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
# Update function for turn display
def update_turn_display():
turn_text = "Player" if is_player_turn else "Enemy"
alive_enemies = sum(1 for e in enemies if not e.is_dead())
debug_caption.text = f"Grid: {grid_width}x{grid_height} | Turn: {turn_text} | Enemies: {alive_enemies}/{len(enemies)}"
# Timer to update display
def update_display(runtime):
update_turn_display()
mcrfpy.setTimer("display_update", update_display, 100)
print("Tutorial Part 6 loaded!")
print("Turn-based movement system active!")
print("- Enemies move after the player")
print("- Enemies pursue when they can see you")
print("- Enemies wander when they can't")
print("Use WASD or Arrow keys to move!")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@ -11,10 +11,10 @@ public:
const static int WHEEL_NUM = 4;
const static int WHEEL_NEG = 2;
const static int WHEEL_DEL = 1;
static int keycode(const sf::Keyboard::Key& k) { return KEY + (int)k; }
static int keycode(const sf::Mouse::Button& b) { return MOUSEBUTTON + (int)b; }
static int keycode(sf::Keyboard::Key& k) { return KEY + (int)k; }
static int keycode(sf::Mouse::Button& b) { return MOUSEBUTTON + (int)b; }
//static int keycode(sf::Mouse::Wheel& w, float d) { return MOUSEWHEEL + (((int)w)<<12) + int(d*16) + 512; }
static int keycode(const sf::Mouse::Wheel& w, float d) {
static int keycode(sf::Mouse::Wheel& w, float d) {
int neg = 0;
if (d < 0) { neg = 1; }
return MOUSEWHEEL + (w * WHEEL_NUM) + (neg * WHEEL_NEG) + 1;
@ -32,7 +32,7 @@ public:
return (a & WHEEL_DEL) * factor;
}
static std::string key_str(const sf::Keyboard::Key& keycode)
static std::string key_str(sf::Keyboard::Key& keycode)
{
switch(keycode)
{

View File

@ -1,675 +0,0 @@
#include "Animation.h"
#include "UIDrawable.h"
#include "UIEntity.h"
#include "PyAnimation.h"
#include "McRFPy_API.h"
#include "PythonObjectCache.h"
#include <cmath>
#include <algorithm>
#include <unordered_map>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// Forward declaration of PyAnimation type
namespace mcrfpydef {
extern PyTypeObject PyAnimationType;
}
// Animation implementation
Animation::Animation(const std::string& targetProperty,
const AnimationValue& targetValue,
float duration,
EasingFunction easingFunc,
bool delta,
PyObject* callback)
: targetProperty(targetProperty)
, targetValue(targetValue)
, duration(duration)
, easingFunc(easingFunc)
, delta(delta)
, pythonCallback(callback)
{
// Increase reference count for Python callback
if (pythonCallback) {
Py_INCREF(pythonCallback);
}
}
Animation::~Animation() {
// Decrease reference count for Python callback if we still own it
PyObject* callback = pythonCallback;
if (callback) {
pythonCallback = nullptr;
PyGILState_STATE gstate = PyGILState_Ensure();
Py_DECREF(callback);
PyGILState_Release(gstate);
}
// Clean up cache entry
if (serial_number != 0) {
PythonObjectCache::getInstance().remove(serial_number);
}
}
void Animation::start(std::shared_ptr<UIDrawable> target) {
if (!target) return;
targetWeak = target;
elapsed = 0.0f;
callbackTriggered = false; // Reset callback state
// Capture start value from target
std::visit([this, &target](const auto& targetVal) {
using T = std::decay_t<decltype(targetVal)>;
if constexpr (std::is_same_v<T, float>) {
float value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, int>) {
int value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// For sprite animation, get current sprite index
int value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, sf::Color>) {
sf::Color value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
sf::Vector2f value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, std::string>) {
std::string value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
}, targetValue);
}
void Animation::startEntity(std::shared_ptr<UIEntity> target) {
if (!target) return;
entityTargetWeak = target;
elapsed = 0.0f;
callbackTriggered = false; // Reset callback state
// Capture the starting value from the entity
std::visit([this, target](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
float value = 0.0f;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, int>) {
// For entities, we might need to handle sprite_index differently
if (targetProperty == "sprite_index" || targetProperty == "sprite_number") {
startValue = target->sprite.getSpriteIndex();
}
}
// Entities don't support other types yet
}, targetValue);
}
bool Animation::hasValidTarget() const {
return !targetWeak.expired() || !entityTargetWeak.expired();
}
void Animation::clearCallback() {
// Safely clear the callback when PyAnimation is being destroyed
PyObject* callback = pythonCallback;
if (callback) {
pythonCallback = nullptr;
callbackTriggered = true; // Prevent future triggering
PyGILState_STATE gstate = PyGILState_Ensure();
Py_DECREF(callback);
PyGILState_Release(gstate);
}
}
void Animation::complete() {
// Jump to end of animation
elapsed = duration;
// Apply final value
if (auto target = targetWeak.lock()) {
AnimationValue finalValue = interpolate(1.0f);
applyValue(target.get(), finalValue);
}
else if (auto entity = entityTargetWeak.lock()) {
AnimationValue finalValue = interpolate(1.0f);
applyValue(entity.get(), finalValue);
}
}
bool Animation::update(float deltaTime) {
// Try to lock weak_ptr to get shared_ptr
std::shared_ptr<UIDrawable> target = targetWeak.lock();
std::shared_ptr<UIEntity> entity = entityTargetWeak.lock();
// If both are null, target was destroyed
if (!target && !entity) {
return false; // Remove this animation
}
if (isComplete()) {
return false;
}
elapsed += deltaTime;
elapsed = std::min(elapsed, duration);
// Calculate easing value (0.0 to 1.0)
float t = duration > 0 ? elapsed / duration : 1.0f;
float easedT = easingFunc(t);
// Get interpolated value
AnimationValue currentValue = interpolate(easedT);
// Apply to whichever target is valid
if (target) {
applyValue(target.get(), currentValue);
} else if (entity) {
applyValue(entity.get(), currentValue);
}
// Trigger callback when animation completes
// Check pythonCallback again in case it was cleared during update
if (isComplete() && !callbackTriggered && pythonCallback) {
triggerCallback();
}
return !isComplete();
}
AnimationValue Animation::getCurrentValue() const {
float t = duration > 0 ? elapsed / duration : 1.0f;
float easedT = easingFunc(t);
return interpolate(easedT);
}
AnimationValue Animation::interpolate(float t) const {
// Visit the variant to perform type-specific interpolation
return std::visit([this, t](const auto& target) -> AnimationValue {
using T = std::decay_t<decltype(target)>;
if constexpr (std::is_same_v<T, float>) {
// Interpolate float
const float* start = std::get_if<float>(&startValue);
if (!start) return target; // Type mismatch
if (delta) {
return *start + target * t;
} else {
return *start + (target - *start) * t;
}
}
else if constexpr (std::is_same_v<T, int>) {
// Interpolate integer
const int* start = std::get_if<int>(&startValue);
if (!start) return target;
float result;
if (delta) {
result = *start + target * t;
} else {
result = *start + (target - *start) * t;
}
return static_cast<int>(std::round(result));
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// For sprite animation, interpolate through the list
if (target.empty()) return target;
// Map t to an index in the vector
size_t index = static_cast<size_t>(t * (target.size() - 1));
index = std::min(index, target.size() - 1);
return static_cast<int>(target[index]);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
// Interpolate color
const sf::Color* start = std::get_if<sf::Color>(&startValue);
if (!start) return target;
sf::Color result;
if (delta) {
result.r = std::clamp(start->r + target.r * t, 0.0f, 255.0f);
result.g = std::clamp(start->g + target.g * t, 0.0f, 255.0f);
result.b = std::clamp(start->b + target.b * t, 0.0f, 255.0f);
result.a = std::clamp(start->a + target.a * t, 0.0f, 255.0f);
} else {
result.r = start->r + (target.r - start->r) * t;
result.g = start->g + (target.g - start->g) * t;
result.b = start->b + (target.b - start->b) * t;
result.a = start->a + (target.a - start->a) * t;
}
return result;
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
// Interpolate vector
const sf::Vector2f* start = std::get_if<sf::Vector2f>(&startValue);
if (!start) return target;
if (delta) {
return sf::Vector2f(start->x + target.x * t,
start->y + target.y * t);
} else {
return sf::Vector2f(start->x + (target.x - start->x) * t,
start->y + (target.y - start->y) * t);
}
}
else if constexpr (std::is_same_v<T, std::string>) {
// For text, show characters based on t
const std::string* start = std::get_if<std::string>(&startValue);
if (!start) return target;
// If delta mode, append characters from target
if (delta) {
size_t chars = static_cast<size_t>(target.length() * t);
return *start + target.substr(0, chars);
} else {
// Transition from start text to target text
if (t < 0.5f) {
// First half: remove characters from start
size_t chars = static_cast<size_t>(start->length() * (1.0f - t * 2.0f));
return start->substr(0, chars);
} else {
// Second half: add characters to target
size_t chars = static_cast<size_t>(target.length() * ((t - 0.5f) * 2.0f));
return target.substr(0, chars);
}
}
}
return target; // Fallback
}, targetValue);
}
void Animation::applyValue(UIDrawable* target, const AnimationValue& value) {
if (!target) return;
std::visit([this, target](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, int>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, std::string>) {
target->setProperty(targetProperty, val);
}
}, value);
}
void Animation::applyValue(UIEntity* entity, const AnimationValue& value) {
if (!entity) return;
std::visit([this, entity](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
entity->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, int>) {
entity->setProperty(targetProperty, val);
}
// Entities don't support other types yet
}, value);
}
void Animation::triggerCallback() {
if (!pythonCallback) return;
// Ensure we only trigger once
if (callbackTriggered) return;
callbackTriggered = true;
PyGILState_STATE gstate = PyGILState_Ensure();
// TODO: In future, create PyAnimation wrapper for this animation
// For now, pass None for both parameters
PyObject* args = PyTuple_New(2);
Py_INCREF(Py_None);
Py_INCREF(Py_None);
PyTuple_SetItem(args, 0, Py_None); // animation parameter
PyTuple_SetItem(args, 1, Py_None); // target parameter
PyObject* result = PyObject_CallObject(pythonCallback, args);
Py_DECREF(args);
if (!result) {
// Print error but don't crash
PyErr_Print();
PyErr_Clear(); // Clear the error state
} else {
Py_DECREF(result);
}
PyGILState_Release(gstate);
}
// Easing functions implementation
namespace EasingFunctions {
float linear(float t) {
return t;
}
float easeIn(float t) {
return t * t;
}
float easeOut(float t) {
return t * (2.0f - t);
}
float easeInOut(float t) {
return t < 0.5f ? 2.0f * t * t : -1.0f + (4.0f - 2.0f * t) * t;
}
// Quadratic
float easeInQuad(float t) {
return t * t;
}
float easeOutQuad(float t) {
return t * (2.0f - t);
}
float easeInOutQuad(float t) {
return t < 0.5f ? 2.0f * t * t : -1.0f + (4.0f - 2.0f * t) * t;
}
// Cubic
float easeInCubic(float t) {
return t * t * t;
}
float easeOutCubic(float t) {
float t1 = t - 1.0f;
return t1 * t1 * t1 + 1.0f;
}
float easeInOutCubic(float t) {
return t < 0.5f ? 4.0f * t * t * t : (t - 1.0f) * (2.0f * t - 2.0f) * (2.0f * t - 2.0f) + 1.0f;
}
// Quartic
float easeInQuart(float t) {
return t * t * t * t;
}
float easeOutQuart(float t) {
float t1 = t - 1.0f;
return 1.0f - t1 * t1 * t1 * t1;
}
float easeInOutQuart(float t) {
return t < 0.5f ? 8.0f * t * t * t * t : 1.0f - 8.0f * (t - 1.0f) * (t - 1.0f) * (t - 1.0f) * (t - 1.0f);
}
// Sine
float easeInSine(float t) {
return 1.0f - std::cos(t * M_PI / 2.0f);
}
float easeOutSine(float t) {
return std::sin(t * M_PI / 2.0f);
}
float easeInOutSine(float t) {
return 0.5f * (1.0f - std::cos(M_PI * t));
}
// Exponential
float easeInExpo(float t) {
return t == 0.0f ? 0.0f : std::pow(2.0f, 10.0f * (t - 1.0f));
}
float easeOutExpo(float t) {
return t == 1.0f ? 1.0f : 1.0f - std::pow(2.0f, -10.0f * t);
}
float easeInOutExpo(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
if (t < 0.5f) {
return 0.5f * std::pow(2.0f, 20.0f * t - 10.0f);
} else {
return 1.0f - 0.5f * std::pow(2.0f, -20.0f * t + 10.0f);
}
}
// Circular
float easeInCirc(float t) {
return 1.0f - std::sqrt(1.0f - t * t);
}
float easeOutCirc(float t) {
float t1 = t - 1.0f;
return std::sqrt(1.0f - t1 * t1);
}
float easeInOutCirc(float t) {
if (t < 0.5f) {
return 0.5f * (1.0f - std::sqrt(1.0f - 4.0f * t * t));
} else {
return 0.5f * (std::sqrt(1.0f - (2.0f * t - 2.0f) * (2.0f * t - 2.0f)) + 1.0f);
}
}
// Elastic
float easeInElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.3f;
float a = 1.0f;
float s = p / 4.0f;
float t1 = t - 1.0f;
return -(a * std::pow(2.0f, 10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p));
}
float easeOutElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.3f;
float a = 1.0f;
float s = p / 4.0f;
return a * std::pow(2.0f, -10.0f * t) * std::sin((t - s) * (2.0f * M_PI) / p) + 1.0f;
}
float easeInOutElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.45f;
float a = 1.0f;
float s = p / 4.0f;
if (t < 0.5f) {
float t1 = 2.0f * t - 1.0f;
return -0.5f * (a * std::pow(2.0f, 10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p));
} else {
float t1 = 2.0f * t - 1.0f;
return a * std::pow(2.0f, -10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p) * 0.5f + 1.0f;
}
}
// Back (overshooting)
float easeInBack(float t) {
const float s = 1.70158f;
return t * t * ((s + 1.0f) * t - s);
}
float easeOutBack(float t) {
const float s = 1.70158f;
float t1 = t - 1.0f;
return t1 * t1 * ((s + 1.0f) * t1 + s) + 1.0f;
}
float easeInOutBack(float t) {
const float s = 1.70158f * 1.525f;
if (t < 0.5f) {
return 0.5f * (4.0f * t * t * ((s + 1.0f) * 2.0f * t - s));
} else {
float t1 = 2.0f * t - 2.0f;
return 0.5f * (t1 * t1 * ((s + 1.0f) * t1 + s) + 2.0f);
}
}
// Bounce
float easeOutBounce(float t) {
if (t < 1.0f / 2.75f) {
return 7.5625f * t * t;
} else if (t < 2.0f / 2.75f) {
float t1 = t - 1.5f / 2.75f;
return 7.5625f * t1 * t1 + 0.75f;
} else if (t < 2.5f / 2.75f) {
float t1 = t - 2.25f / 2.75f;
return 7.5625f * t1 * t1 + 0.9375f;
} else {
float t1 = t - 2.625f / 2.75f;
return 7.5625f * t1 * t1 + 0.984375f;
}
}
float easeInBounce(float t) {
return 1.0f - easeOutBounce(1.0f - t);
}
float easeInOutBounce(float t) {
if (t < 0.5f) {
return 0.5f * easeInBounce(2.0f * t);
} else {
return 0.5f * easeOutBounce(2.0f * t - 1.0f) + 0.5f;
}
}
// Get easing function by name
EasingFunction getByName(const std::string& name) {
static std::unordered_map<std::string, EasingFunction> easingMap = {
{"linear", linear},
{"easeIn", easeIn},
{"easeOut", easeOut},
{"easeInOut", easeInOut},
{"easeInQuad", easeInQuad},
{"easeOutQuad", easeOutQuad},
{"easeInOutQuad", easeInOutQuad},
{"easeInCubic", easeInCubic},
{"easeOutCubic", easeOutCubic},
{"easeInOutCubic", easeInOutCubic},
{"easeInQuart", easeInQuart},
{"easeOutQuart", easeOutQuart},
{"easeInOutQuart", easeInOutQuart},
{"easeInSine", easeInSine},
{"easeOutSine", easeOutSine},
{"easeInOutSine", easeInOutSine},
{"easeInExpo", easeInExpo},
{"easeOutExpo", easeOutExpo},
{"easeInOutExpo", easeInOutExpo},
{"easeInCirc", easeInCirc},
{"easeOutCirc", easeOutCirc},
{"easeInOutCirc", easeInOutCirc},
{"easeInElastic", easeInElastic},
{"easeOutElastic", easeOutElastic},
{"easeInOutElastic", easeInOutElastic},
{"easeInBack", easeInBack},
{"easeOutBack", easeOutBack},
{"easeInOutBack", easeInOutBack},
{"easeInBounce", easeInBounce},
{"easeOutBounce", easeOutBounce},
{"easeInOutBounce", easeInOutBounce}
};
auto it = easingMap.find(name);
if (it != easingMap.end()) {
return it->second;
}
return linear; // Default to linear
}
} // namespace EasingFunctions
// AnimationManager implementation
AnimationManager& AnimationManager::getInstance() {
static AnimationManager instance;
return instance;
}
void AnimationManager::addAnimation(std::shared_ptr<Animation> animation) {
if (animation && animation->hasValidTarget()) {
if (isUpdating) {
// Defer adding during update to avoid iterator invalidation
pendingAnimations.push_back(animation);
} else {
activeAnimations.push_back(animation);
}
}
}
void AnimationManager::update(float deltaTime) {
// Set flag to defer new animations
isUpdating = true;
// Remove completed or invalid animations
activeAnimations.erase(
std::remove_if(activeAnimations.begin(), activeAnimations.end(),
[deltaTime](std::shared_ptr<Animation>& anim) {
return !anim || !anim->update(deltaTime);
}),
activeAnimations.end()
);
// Clear update flag
isUpdating = false;
// Add any animations that were created during update
if (!pendingAnimations.empty()) {
activeAnimations.insert(activeAnimations.end(),
pendingAnimations.begin(),
pendingAnimations.end());
pendingAnimations.clear();
}
}
void AnimationManager::clear(bool completeAnimations) {
if (completeAnimations) {
// Complete all animations before clearing
for (auto& anim : activeAnimations) {
if (anim) {
anim->complete();
}
}
}
activeAnimations.clear();
}

View File

@ -1,175 +0,0 @@
#pragma once
#include <string>
#include <functional>
#include <memory>
#include <variant>
#include <vector>
#include <SFML/Graphics.hpp>
#include "Python.h"
// Forward declarations
class UIDrawable;
class UIEntity;
// Forward declare namespace
namespace EasingFunctions {
float linear(float t);
}
// Easing function type
typedef std::function<float(float)> EasingFunction;
// Animation target value can be various types
typedef std::variant<
float, // Single float value
int, // Single integer value
std::vector<int>, // List of integers (for sprite animation)
sf::Color, // Color animation
sf::Vector2f, // Vector animation
std::string // String animation (for text)
> AnimationValue;
class Animation {
public:
// Constructor
Animation(const std::string& targetProperty,
const AnimationValue& targetValue,
float duration,
EasingFunction easingFunc = EasingFunctions::linear,
bool delta = false,
PyObject* callback = nullptr);
// Destructor - cleanup Python callback reference
~Animation();
// Apply this animation to a drawable
void start(std::shared_ptr<UIDrawable> target);
// Apply this animation to an entity (special case since Entity doesn't inherit from UIDrawable)
void startEntity(std::shared_ptr<UIEntity> target);
// Complete the animation immediately (jump to final value)
void complete();
// Update animation (called each frame)
// Returns true if animation is still running, false if complete
bool update(float deltaTime);
// Get current interpolated value
AnimationValue getCurrentValue() const;
// Check if animation has valid target
bool hasValidTarget() const;
// Clear the callback (called when PyAnimation is deallocated)
void clearCallback();
// Animation properties
std::string getTargetProperty() const { return targetProperty; }
float getDuration() const { return duration; }
float getElapsed() const { return elapsed; }
bool isComplete() const { return elapsed >= duration; }
bool isDelta() const { return delta; }
private:
std::string targetProperty; // Property name to animate (e.g., "x", "color.r", "sprite_number")
AnimationValue startValue; // Starting value (captured when animation starts)
AnimationValue targetValue; // Target value to animate to
float duration; // Animation duration in seconds
float elapsed = 0.0f; // Elapsed time
EasingFunction easingFunc; // Easing function to use
bool delta; // If true, targetValue is relative to start
// RAII: Use weak_ptr for safe target tracking
std::weak_ptr<UIDrawable> targetWeak;
std::weak_ptr<UIEntity> entityTargetWeak;
// Callback support
PyObject* pythonCallback = nullptr; // Python callback function (we own a reference)
bool callbackTriggered = false; // Ensure callback only fires once
PyObject* pyAnimationWrapper = nullptr; // Weak reference to PyAnimation if created from Python
// Python object cache support
uint64_t serial_number = 0;
// Helper to interpolate between values
AnimationValue interpolate(float t) const;
// Helper to apply value to target
void applyValue(UIDrawable* target, const AnimationValue& value);
void applyValue(UIEntity* entity, const AnimationValue& value);
// Trigger callback when animation completes
void triggerCallback();
};
// Easing functions library
namespace EasingFunctions {
// Basic easing functions
float linear(float t);
float easeIn(float t);
float easeOut(float t);
float easeInOut(float t);
// Advanced easing functions
float easeInQuad(float t);
float easeOutQuad(float t);
float easeInOutQuad(float t);
float easeInCubic(float t);
float easeOutCubic(float t);
float easeInOutCubic(float t);
float easeInQuart(float t);
float easeOutQuart(float t);
float easeInOutQuart(float t);
float easeInSine(float t);
float easeOutSine(float t);
float easeInOutSine(float t);
float easeInExpo(float t);
float easeOutExpo(float t);
float easeInOutExpo(float t);
float easeInCirc(float t);
float easeOutCirc(float t);
float easeInOutCirc(float t);
float easeInElastic(float t);
float easeOutElastic(float t);
float easeInOutElastic(float t);
float easeInBack(float t);
float easeOutBack(float t);
float easeInOutBack(float t);
float easeInBounce(float t);
float easeOutBounce(float t);
float easeInOutBounce(float t);
// Get easing function by name
EasingFunction getByName(const std::string& name);
}
// Animation manager to handle active animations
class AnimationManager {
public:
static AnimationManager& getInstance();
// Add an animation to be managed
void addAnimation(std::shared_ptr<Animation> animation);
// Update all animations
void update(float deltaTime);
// Clear all animations (optionally completing them first)
void clear(bool completeAnimations = false);
private:
AnimationManager() = default;
std::vector<std::shared_ptr<Animation>> activeAnimations;
std::vector<std::shared_ptr<Animation>> pendingAnimations; // Animations to add after update
bool isUpdating = false; // Flag to track if we're in update loop
};

View File

@ -1,172 +0,0 @@
#include "CommandLineParser.h"
#include <iostream>
#include <filesystem>
#include <algorithm>
CommandLineParser::CommandLineParser(int argc, char* argv[])
: argc(argc), argv(argv) {}
CommandLineParser::ParseResult CommandLineParser::parse(McRogueFaceConfig& config) {
ParseResult result;
current_arg = 1; // Reset for each parse
// Detect if running as Python interpreter
std::filesystem::path exec_name = std::filesystem::path(argv[0]).filename();
if (exec_name.string().find("python") == 0) {
config.headless = true;
config.python_mode = true;
}
while (current_arg < argc) {
std::string arg = argv[current_arg];
// Handle Python-style single-letter flags
if (arg == "-h" || arg == "--help") {
print_help();
result.should_exit = true;
result.exit_code = 0;
return result;
}
if (arg == "-V" || arg == "--version") {
print_version();
result.should_exit = true;
result.exit_code = 0;
return result;
}
// Python execution modes
if (arg == "-c") {
config.python_mode = true;
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the -c option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.python_command = argv[current_arg];
current_arg++;
continue;
}
if (arg == "-m") {
config.python_mode = true;
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the -m option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.python_module = argv[current_arg];
current_arg++;
// Collect remaining args as module args
while (current_arg < argc) {
config.script_args.push_back(argv[current_arg]);
current_arg++;
}
continue;
}
if (arg == "-i") {
config.interactive_mode = true;
config.python_mode = true;
current_arg++;
continue;
}
// McRogueFace specific flags
if (arg == "--headless") {
config.headless = true;
config.audio_enabled = false;
current_arg++;
continue;
}
if (arg == "--audio-off") {
config.audio_enabled = false;
current_arg++;
continue;
}
if (arg == "--audio-on") {
config.audio_enabled = true;
current_arg++;
continue;
}
if (arg == "--screenshot") {
config.take_screenshot = true;
current_arg++;
if (current_arg < argc && argv[current_arg][0] != '-') {
config.screenshot_path = argv[current_arg];
current_arg++;
} else {
config.screenshot_path = "screenshot.png";
}
continue;
}
if (arg == "--exec") {
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the --exec option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.exec_scripts.push_back(argv[current_arg]);
config.python_mode = true;
current_arg++;
continue;
}
// If no flags matched, treat as positional argument (script name)
if (arg[0] != '-') {
config.script_path = arg;
config.python_mode = true;
current_arg++;
// Remaining args are script args
while (current_arg < argc) {
config.script_args.push_back(argv[current_arg]);
current_arg++;
}
break;
}
// Unknown flag
std::cerr << "Unknown option: " << arg << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
return result;
}
void CommandLineParser::print_help() {
std::cout << "usage: mcrogueface [option] ... [-c cmd | -m mod | file | -] [arg] ...\n"
<< "Options:\n"
<< " -c cmd : program passed in as string (terminates option list)\n"
<< " -h : print this help message and exit (also --help)\n"
<< " -i : inspect interactively after running script\n"
<< " -m mod : run library module as a script (terminates option list)\n"
<< " -V : print the Python version number and exit (also --version)\n"
<< "\n"
<< "McRogueFace specific options:\n"
<< " --exec file : execute script before main program (can be used multiple times)\n"
<< " --headless : run without creating a window (implies --audio-off)\n"
<< " --audio-off : disable audio\n"
<< " --audio-on : enable audio (even in headless mode)\n"
<< " --screenshot [path] : take a screenshot in headless mode\n"
<< "\n"
<< "Arguments:\n"
<< " file : program read from script file\n"
<< " - : program read from stdin\n"
<< " arg ...: arguments passed to program in sys.argv[1:]\n";
}
void CommandLineParser::print_version() {
std::cout << "Python 3.12.0 (McRogueFace embedded)\n";
}

View File

@ -1,30 +0,0 @@
#ifndef COMMAND_LINE_PARSER_H
#define COMMAND_LINE_PARSER_H
#include <string>
#include <vector>
#include "McRogueFaceConfig.h"
class CommandLineParser {
public:
struct ParseResult {
bool should_exit = false;
int exit_code = 0;
};
CommandLineParser(int argc, char* argv[]);
ParseResult parse(McRogueFaceConfig& config);
private:
int argc;
char** argv;
int current_arg = 1; // Skip program name
bool has_flag(const std::string& short_flag, const std::string& long_flag = "");
std::string get_next_arg(const std::string& flag_name);
void parse_positional_args(McRogueFaceConfig& config);
void print_help();
void print_version();
};
#endif // COMMAND_LINE_PARSER_H

View File

@ -4,299 +4,67 @@
#include "PyScene.h"
#include "UITestScene.h"
#include "Resources.h"
#include "Animation.h"
#include "Timer.h"
#include <cmath>
GameEngine::GameEngine() : GameEngine(McRogueFaceConfig{})
{
}
GameEngine::GameEngine(const McRogueFaceConfig& cfg)
: config(cfg), headless(cfg.headless)
GameEngine::GameEngine()
{
Resources::font.loadFromFile("./assets/JetbrainsMono.ttf");
Resources::game = this;
window_title = "McRogueFace Engine";
// Initialize rendering based on headless mode
if (headless) {
headless_renderer = std::make_unique<HeadlessRenderer>();
if (!headless_renderer->init(1024, 768)) {
throw std::runtime_error("Failed to initialize headless renderer");
}
render_target = &headless_renderer->getRenderTarget();
} else {
window = std::make_unique<sf::RenderWindow>();
window->create(sf::VideoMode(1024, 768), window_title, sf::Style::Titlebar | sf::Style::Close | sf::Style::Resize);
window->setFramerateLimit(60);
render_target = window.get();
}
visible = render_target->getDefaultView();
// Initialize the game view
gameView.setSize(static_cast<float>(gameResolution.x), static_cast<float>(gameResolution.y));
// Use integer center coordinates for pixel-perfect rendering
gameView.setCenter(std::floor(gameResolution.x / 2.0f), std::floor(gameResolution.y / 2.0f));
updateViewport();
window_title = "McRogueFace - 7DRL 2024 Engine Demo";
window.create(sf::VideoMode(1024, 768), window_title, sf::Style::Titlebar | sf::Style::Close);
visible = window.getDefaultView();
window.setFramerateLimit(30);
scene = "uitest";
scenes["uitest"] = new UITestScene(this);
McRFPy_API::game = this;
// Initialize profiler overlay
profilerOverlay = new ProfilerOverlay(Resources::font);
// Only load game.py if no custom script/command/module/exec is specified
bool should_load_game = config.script_path.empty() &&
config.python_command.empty() &&
config.python_module.empty() &&
config.exec_scripts.empty() &&
!config.interactive_mode &&
!config.python_mode;
if (should_load_game) {
if (!Py_IsInitialized()) {
McRFPy_API::api_init();
}
McRFPy_API::executePyString("import mcrfpy");
McRFPy_API::executeScript("scripts/game.py");
}
// Execute any --exec scripts in order
if (!config.exec_scripts.empty()) {
if (!Py_IsInitialized()) {
McRFPy_API::api_init();
}
McRFPy_API::executePyString("import mcrfpy");
for (const auto& exec_script : config.exec_scripts) {
std::cout << "Executing script: " << exec_script << std::endl;
McRFPy_API::executeScript(exec_script.string());
}
std::cout << "All --exec scripts completed" << std::endl;
}
McRFPy_API::api_init();
McRFPy_API::executePyString("import mcrfpy");
McRFPy_API::executeScript("scripts/game.py");
clock.restart();
runtime.restart();
}
GameEngine::~GameEngine()
{
cleanup();
for (auto& [name, scene] : scenes) {
delete scene;
}
delete profilerOverlay;
}
void GameEngine::cleanup()
{
if (cleaned_up) return;
cleaned_up = true;
// Clear all animations first (RAII handles invalidation)
AnimationManager::getInstance().clear();
// Clear Python references before destroying C++ objects
// Clear all timers (they hold Python callables)
timers.clear();
// Clear McRFPy_API's reference to this game engine
if (McRFPy_API::game == this) {
McRFPy_API::game = nullptr;
}
// Force close the window if it's still open
if (window && window->isOpen()) {
window->close();
}
}
Scene* GameEngine::currentScene() { return scenes[scene]; }
void GameEngine::changeScene(std::string s)
{
changeScene(s, TransitionType::None, 0.0f);
}
void GameEngine::changeScene(std::string sceneName, TransitionType transitionType, float duration)
{
if (scenes.find(sceneName) == scenes.end())
{
std::cout << "Attempted to change to a scene that doesn't exist (`" << sceneName << "`)" << std::endl;
return;
}
if (transitionType == TransitionType::None || duration <= 0.0f)
{
// Immediate scene change
std::string old_scene = scene;
scene = sceneName;
// Trigger Python scene lifecycle events
McRFPy_API::triggerSceneChange(old_scene, sceneName);
}
/*std::cout << "Current scene is now '" << s << "'\n";*/
if (scenes.find(s) != scenes.end())
scene = s;
else
{
// Start transition
transition.start(transitionType, scene, sceneName, duration);
// Render current scene to texture
sf::RenderTarget* original_target = render_target;
render_target = transition.oldSceneTexture.get();
transition.oldSceneTexture->clear();
currentScene()->render();
transition.oldSceneTexture->display();
// Change to new scene
std::string old_scene = scene;
scene = sceneName;
// Render new scene to texture
render_target = transition.newSceneTexture.get();
transition.newSceneTexture->clear();
currentScene()->render();
transition.newSceneTexture->display();
// Restore original render target and scene
render_target = original_target;
scene = old_scene;
}
std::cout << "Attempted to change to a scene that doesn't exist (`" << s << "`)" << std::endl;
}
void GameEngine::quit() { running = false; }
void GameEngine::setPause(bool p) { paused = p; }
sf::Font & GameEngine::getFont() { /*return font; */ return Resources::font; }
sf::RenderWindow & GameEngine::getWindow() {
if (!window) {
throw std::runtime_error("Window not available in headless mode");
}
return *window;
}
sf::RenderTarget & GameEngine::getRenderTarget() {
return *render_target;
}
sf::RenderWindow & GameEngine::getWindow() { return window; }
void GameEngine::createScene(std::string s) { scenes[s] = new PyScene(this); }
void GameEngine::setWindowScale(float multiplier)
{
if (!headless && window) {
window->setSize(sf::Vector2u(gameResolution.x * multiplier, gameResolution.y * multiplier));
updateViewport();
}
window.setSize(sf::Vector2u(1024 * multiplier, 768 * multiplier)); // 7DRL 2024: window scaling
//window.create(sf::VideoMode(1024 * multiplier, 768 * multiplier), window_title, sf::Style::Titlebar | sf::Style::Close);
}
void GameEngine::run()
{
//std::cout << "GameEngine::run() starting main loop..." << std::endl;
float fps = 0.0;
frameTime = 0.016f; // Initialize to ~60 FPS
clock.restart();
while (running)
{
// Reset per-frame metrics
metrics.resetPerFrame();
currentScene()->update();
testTimers();
// Update Python scenes
{
ScopedTimer pyTimer(metrics.pythonScriptTime);
McRFPy_API::updatePythonScenes(frameTime);
}
// Update animations (only if frameTime is valid)
if (frameTime > 0.0f && frameTime < 1.0f) {
ScopedTimer animTimer(metrics.animationTime);
AnimationManager::getInstance().update(frameTime);
}
if (!headless) {
sUserInput();
}
sUserInput();
if (!paused)
{
}
// Handle scene transitions
if (transition.type != TransitionType::None)
{
transition.update(frameTime);
if (transition.isComplete())
{
// Transition complete - finalize scene change
scene = transition.toScene;
transition.type = TransitionType::None;
// Trigger Python scene lifecycle events
McRFPy_API::triggerSceneChange(transition.fromScene, transition.toScene);
}
else
{
// Render transition
render_target->clear();
transition.render(*render_target);
}
}
else
{
// Normal scene rendering
currentScene()->render();
}
// Update and render profiler overlay (if enabled)
if (profilerOverlay && !headless) {
profilerOverlay->update(metrics);
profilerOverlay->render(*render_target);
}
// Display the frame
if (headless) {
headless_renderer->display();
// Take screenshot if requested
if (config.take_screenshot) {
headless_renderer->saveScreenshot(config.screenshot_path.empty() ? "screenshot.png" : config.screenshot_path);
config.take_screenshot = false; // Only take one screenshot
}
} else {
window->display();
}
currentScene()->sRender();
currentFrame++;
frameTime = clock.restart().asSeconds();
fps = 1 / frameTime;
// Update profiling metrics
metrics.updateFrameTime(frameTime * 1000.0f); // Convert to milliseconds
int whole_fps = metrics.fps;
int tenth_fps = (metrics.fps * 10) % 10;
if (!headless && window) {
window->setTitle(window_title);
}
// In windowed mode, check if window was closed
if (!headless && window && !window->isOpen()) {
running = false;
}
window.setTitle(window_title + " " + std::to_string(fps) + " FPS");
}
// Clean up before exiting the run loop
cleanup();
}
std::shared_ptr<Timer> GameEngine::getTimer(const std::string& name)
{
auto it = timers.find(name);
if (it != timers.end()) {
return it->second;
}
return nullptr;
}
void GameEngine::manageTimer(std::string name, PyObject* target, int interval)
@ -308,7 +76,7 @@ void GameEngine::manageTimer(std::string name, PyObject* target, int interval)
{
// Delete: Overwrite existing timer with one that calls None. This will be deleted in the next timer check
// see gitea issue #4: this allows for a timer to be deleted during its own call to itself
timers[name] = std::make_shared<Timer>(Py_None, 1000, runtime.getElapsedTime().asMilliseconds());
timers[name] = std::make_shared<PyTimerCallable>(Py_None, 1000, runtime.getElapsedTime().asMilliseconds());
return;
}
}
@ -317,7 +85,7 @@ void GameEngine::manageTimer(std::string name, PyObject* target, int interval)
std::cout << "Refusing to initialize timer to None. It's not an error, it's just pointless." << std::endl;
return;
}
timers[name] = std::make_shared<Timer>(target, interval, runtime.getElapsedTime().asMilliseconds());
timers[name] = std::make_shared<PyTimerCallable>(target, interval, runtime.getElapsedTime().asMilliseconds());
}
void GameEngine::testTimers()
@ -328,8 +96,7 @@ void GameEngine::testTimers()
{
it->second->test(now);
// Remove timers that have been cancelled or are one-shot and fired
if (!it->second->getCallback() || it->second->getCallback() == Py_None)
if (it->second->isNone())
{
it = timers.erase(it);
}
@ -338,66 +105,86 @@ void GameEngine::testTimers()
}
}
void GameEngine::processEvent(const sf::Event& event)
{
std::string actionType;
int actionCode = 0;
if (event.type == sf::Event::Closed) { running = false; return; }
// Handle F3 for profiler overlay toggle
if (event.type == sf::Event::KeyPressed && event.key.code == sf::Keyboard::F3) {
if (profilerOverlay) {
profilerOverlay->toggle();
}
return;
}
// Handle window resize events
else if (event.type == sf::Event::Resized) {
// Update the viewport to handle the new window size
updateViewport();
// Notify Python scenes about the resize
McRFPy_API::triggerResize(event.size.width, event.size.height);
}
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseWheelScrolled) actionType = "start";
else if (event.type == sf::Event::KeyReleased || event.type == sf::Event::MouseButtonReleased) actionType = "end";
if (event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseButtonReleased)
actionCode = ActionCode::keycode(event.mouseButton.button);
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::KeyReleased)
actionCode = ActionCode::keycode(event.key.code);
else if (event.type == sf::Event::MouseWheelScrolled)
{
if (event.mouseWheelScroll.wheel == sf::Mouse::VerticalWheel)
{
int delta = 1;
if (event.mouseWheelScroll.delta < 0) delta = -1;
actionCode = ActionCode::keycode(event.mouseWheelScroll.wheel, delta );
}
}
else
return;
if (currentScene()->hasAction(actionCode))
{
std::string name = currentScene()->action(actionCode);
currentScene()->doAction(name, actionType);
}
else if (currentScene()->key_callable &&
(event.type == sf::Event::KeyPressed || event.type == sf::Event::KeyReleased))
{
currentScene()->key_callable->call(ActionCode::key_str(event.key.code), actionType);
}
}
void GameEngine::sUserInput()
{
sf::Event event;
while (window && window->pollEvent(event))
while (window.pollEvent(event))
{
processEvent(event);
std::string actionType;
int actionCode = 0;
if (event.type == sf::Event::Closed) { running = false; continue; }
// TODO: add resize event to Scene to react; call it after constructor too, maybe
else if (event.type == sf::Event::Resized) {
continue; // 7DRL short circuit. Resizing manually disabled
/*
sf::FloatRect area(0.f, 0.f, event.size.width, event.size.height);
//sf::FloatRect area(0.f, 0.f, 1024.f, 768.f); // 7DRL 2024: attempt to set scale appropriately
//sf::FloatRect area(0.f, 0.f, event.size.width, event.size.width * 0.75);
visible = sf::View(area);
window.setView(visible);
//window.setSize(sf::Vector2u(event.size.width, event.size.width * 0.75)); // 7DRL 2024: window scaling
std::cout << "Visible area set to (0, 0, " << event.size.width << ", " << event.size.height <<")"<<std::endl;
actionType = "resize";
//window.setSize(sf::Vector2u(event.size.width, event.size.width * 0.75)); // 7DRL 2024: window scaling
*/
}
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseWheelScrolled) actionType = "start";
else if (event.type == sf::Event::KeyReleased || event.type == sf::Event::MouseButtonReleased) actionType = "end";
if (event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseButtonReleased)
actionCode = ActionCode::keycode(event.mouseButton.button);
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::KeyReleased)
actionCode = ActionCode::keycode(event.key.code);
else if (event.type == sf::Event::MouseWheelScrolled)
{
// //sf::Mouse::Wheel w = event.MouseWheelScrollEvent.wheel;
if (event.mouseWheelScroll.wheel == sf::Mouse::VerticalWheel)
{
int delta = 1;
if (event.mouseWheelScroll.delta < 0) delta = -1;
actionCode = ActionCode::keycode(event.mouseWheelScroll.wheel, delta );
/*
std::cout << "[GameEngine] Generated MouseWheel code w(" << (int)event.mouseWheelScroll.wheel << ") d(" << event.mouseWheelScroll.delta << ") D(" << delta << ") = " << actionCode << std::endl;
std::cout << " test decode: isMouseWheel=" << ActionCode::isMouseWheel(actionCode) << ", wheel=" << ActionCode::wheel(actionCode) << ", delta=" << ActionCode::delta(actionCode) << std::endl;
std::cout << " math test: actionCode && WHEEL_NEG -> " << (actionCode && ActionCode::WHEEL_NEG) << "; actionCode && WHEEL_DEL -> " << (actionCode && ActionCode::WHEEL_DEL) << ";" << std::endl;
*/
}
// float d = event.MouseWheelScrollEvent.delta;
// actionCode = ActionCode::keycode(0, d);
}
else
continue;
//std::cout << "Event produced action code " << actionCode << ": " << actionType << std::endl;
if (currentScene()->hasAction(actionCode))
{
std::string name = currentScene()->action(actionCode);
currentScene()->doAction(name, actionType);
}
else if (currentScene()->key_callable)
{
currentScene()->key_callable->call(ActionCode::key_str(event.key.code), actionType);
/*
PyObject* args = Py_BuildValue("(ss)", ActionCode::key_str(event.key.code).c_str(), actionType.c_str());
PyObject* retval = PyObject_Call(currentScene()->key_callable, args, NULL);
if (!retval)
{
std::cout << "key_callable has raised an exception. It's going to STDERR and being dropped:" << std::endl;
PyErr_Print();
PyErr_Clear();
} else if (retval != Py_None)
{
std::cout << "key_callable returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
}
*/
}
else
{
//std::cout << "[GameEngine] Action not registered for input: " << actionCode << ": " << actionType << std::endl;
}
}
}
@ -418,123 +205,3 @@ std::shared_ptr<std::vector<std::shared_ptr<UIDrawable>>> GameEngine::scene_ui(s
if (scenes.count(target) == 0) return NULL;
return scenes[target]->ui_elements;
}
void GameEngine::setWindowTitle(const std::string& title)
{
window_title = title;
if (!headless && window) {
window->setTitle(title);
}
}
void GameEngine::setVSync(bool enabled)
{
vsync_enabled = enabled;
if (!headless && window) {
window->setVerticalSyncEnabled(enabled);
}
}
void GameEngine::setFramerateLimit(unsigned int limit)
{
framerate_limit = limit;
if (!headless && window) {
window->setFramerateLimit(limit);
}
}
void GameEngine::setGameResolution(unsigned int width, unsigned int height) {
gameResolution = sf::Vector2u(width, height);
gameView.setSize(static_cast<float>(width), static_cast<float>(height));
// Use integer center coordinates for pixel-perfect rendering
gameView.setCenter(std::floor(width / 2.0f), std::floor(height / 2.0f));
updateViewport();
}
void GameEngine::setViewportMode(ViewportMode mode) {
viewportMode = mode;
updateViewport();
}
std::string GameEngine::getViewportModeString() const {
switch (viewportMode) {
case ViewportMode::Center: return "center";
case ViewportMode::Stretch: return "stretch";
case ViewportMode::Fit: return "fit";
}
return "unknown";
}
void GameEngine::updateViewport() {
if (!render_target) return;
auto windowSize = render_target->getSize();
switch (viewportMode) {
case ViewportMode::Center: {
// 1:1 pixels, centered in window
float viewportWidth = std::min(static_cast<float>(gameResolution.x), static_cast<float>(windowSize.x));
float viewportHeight = std::min(static_cast<float>(gameResolution.y), static_cast<float>(windowSize.y));
// Floor offsets to ensure integer pixel alignment
float offsetX = std::floor((windowSize.x - viewportWidth) / 2.0f);
float offsetY = std::floor((windowSize.y - viewportHeight) / 2.0f);
gameView.setViewport(sf::FloatRect(
offsetX / windowSize.x,
offsetY / windowSize.y,
viewportWidth / windowSize.x,
viewportHeight / windowSize.y
));
break;
}
case ViewportMode::Stretch: {
// Fill entire window, ignore aspect ratio
gameView.setViewport(sf::FloatRect(0, 0, 1, 1));
break;
}
case ViewportMode::Fit: {
// Maintain aspect ratio with black bars
float windowAspect = static_cast<float>(windowSize.x) / windowSize.y;
float gameAspect = static_cast<float>(gameResolution.x) / gameResolution.y;
float viewportWidth, viewportHeight;
float offsetX = 0, offsetY = 0;
if (windowAspect > gameAspect) {
// Window is wider - black bars on sides
// Calculate viewport size in pixels and floor for pixel-perfect scaling
float pixelHeight = static_cast<float>(windowSize.y);
float pixelWidth = std::floor(pixelHeight * gameAspect);
viewportHeight = 1.0f;
viewportWidth = pixelWidth / windowSize.x;
offsetX = (1.0f - viewportWidth) / 2.0f;
} else {
// Window is taller - black bars on top/bottom
// Calculate viewport size in pixels and floor for pixel-perfect scaling
float pixelWidth = static_cast<float>(windowSize.x);
float pixelHeight = std::floor(pixelWidth / gameAspect);
viewportWidth = 1.0f;
viewportHeight = pixelHeight / windowSize.y;
offsetY = (1.0f - viewportHeight) / 2.0f;
}
gameView.setViewport(sf::FloatRect(offsetX, offsetY, viewportWidth, viewportHeight));
break;
}
}
// Apply the view
render_target->setView(gameView);
}
sf::Vector2f GameEngine::windowToGameCoords(const sf::Vector2f& windowPos) const {
if (!render_target) return windowPos;
// Convert window coordinates to game coordinates using the view
return render_target->mapPixelToCoords(sf::Vector2i(windowPos), gameView);
}

View File

@ -6,31 +6,10 @@
#include "IndexTexture.h"
#include "Timer.h"
#include "PyCallable.h"
#include "McRogueFaceConfig.h"
#include "HeadlessRenderer.h"
#include "SceneTransition.h"
#include "Profiler.h"
#include <memory>
#include <sstream>
class GameEngine
{
public:
// Forward declare nested class so private section can use it
class ProfilerOverlay;
// Viewport modes (moved here so private section can use it)
enum class ViewportMode {
Center, // 1:1 pixels, viewport centered in window
Stretch, // viewport size = window size, doesn't respect aspect ratio
Fit // maintains original aspect ratio, leaves black bars
};
private:
std::unique_ptr<sf::RenderWindow> window;
std::unique_ptr<HeadlessRenderer> headless_renderer;
sf::RenderTarget* render_target;
sf::RenderWindow window;
sf::Font font;
std::map<std::string, Scene*> scenes;
bool running = true;
@ -41,135 +20,28 @@ private:
float frameTime;
std::string window_title;
bool headless = false;
McRogueFaceConfig config;
bool cleaned_up = false;
// Window state tracking
bool vsync_enabled = false;
unsigned int framerate_limit = 60;
// Scene transition state
SceneTransition transition;
// Viewport system
sf::Vector2u gameResolution{1024, 768}; // Fixed game resolution
sf::View gameView; // View for the game content
ViewportMode viewportMode = ViewportMode::Fit;
// Profiling overlay
bool showProfilerOverlay = false; // F3 key toggles this
int overlayUpdateCounter = 0; // Only update overlay every N frames
ProfilerOverlay* profilerOverlay = nullptr; // The actual overlay renderer
void updateViewport();
sf::Clock runtime;
//std::map<std::string, Timer> timers;
std::map<std::string, std::shared_ptr<PyTimerCallable>> timers;
void testTimers();
public:
sf::Clock runtime;
std::map<std::string, std::shared_ptr<Timer>> timers;
std::string scene;
// Profiling metrics
struct ProfilingMetrics {
float frameTime = 0.0f; // Current frame time in milliseconds
float avgFrameTime = 0.0f; // Average frame time over last N frames
int fps = 0; // Frames per second
int drawCalls = 0; // Draw calls per frame
int uiElements = 0; // Number of UI elements rendered
int visibleElements = 0; // Number of visible elements
// Detailed timing breakdowns (added for profiling system)
float gridRenderTime = 0.0f; // Time spent rendering grids (ms)
float entityRenderTime = 0.0f; // Time spent rendering entities (ms)
float fovOverlayTime = 0.0f; // Time spent rendering FOV overlays (ms)
float pythonScriptTime = 0.0f; // Time spent in Python callbacks (ms)
float animationTime = 0.0f; // Time spent updating animations (ms)
// Grid-specific metrics
int gridCellsRendered = 0; // Number of grid cells drawn this frame
int entitiesRendered = 0; // Number of entities drawn this frame
int totalEntities = 0; // Total entities in scene
// Frame time history for averaging
static constexpr int HISTORY_SIZE = 60;
float frameTimeHistory[HISTORY_SIZE] = {0};
int historyIndex = 0;
void updateFrameTime(float deltaMs) {
frameTime = deltaMs;
frameTimeHistory[historyIndex] = deltaMs;
historyIndex = (historyIndex + 1) % HISTORY_SIZE;
// Calculate average
float sum = 0.0f;
for (int i = 0; i < HISTORY_SIZE; ++i) {
sum += frameTimeHistory[i];
}
avgFrameTime = sum / HISTORY_SIZE;
fps = avgFrameTime > 0 ? static_cast<int>(1000.0f / avgFrameTime) : 0;
}
void resetPerFrame() {
drawCalls = 0;
uiElements = 0;
visibleElements = 0;
// Reset per-frame timing metrics
gridRenderTime = 0.0f;
entityRenderTime = 0.0f;
fovOverlayTime = 0.0f;
pythonScriptTime = 0.0f;
animationTime = 0.0f;
// Reset per-frame counters
gridCellsRendered = 0;
entitiesRendered = 0;
totalEntities = 0;
}
} metrics;
GameEngine();
GameEngine(const McRogueFaceConfig& cfg);
~GameEngine();
Scene* currentScene();
void changeScene(std::string);
void changeScene(std::string sceneName, TransitionType transitionType, float duration);
void createScene(std::string);
void quit();
void setPause(bool);
sf::Font & getFont();
sf::RenderWindow & getWindow();
sf::RenderTarget & getRenderTarget();
sf::RenderTarget* getRenderTargetPtr() { return render_target; }
void run();
void sUserInput();
void cleanup(); // Clean up Python references before destruction
int getFrame() { return currentFrame; }
float getFrameTime() { return frameTime; }
sf::View getView() { return visible; }
void manageTimer(std::string, PyObject*, int);
std::shared_ptr<Timer> getTimer(const std::string& name);
void setWindowScale(float);
bool isHeadless() const { return headless; }
void processEvent(const sf::Event& event);
// Window property accessors
const std::string& getWindowTitle() const { return window_title; }
void setWindowTitle(const std::string& title);
bool getVSync() const { return vsync_enabled; }
void setVSync(bool enabled);
unsigned int getFramerateLimit() const { return framerate_limit; }
void setFramerateLimit(unsigned int limit);
// Viewport system
void setGameResolution(unsigned int width, unsigned int height);
sf::Vector2u getGameResolution() const { return gameResolution; }
void setViewportMode(ViewportMode mode);
ViewportMode getViewportMode() const { return viewportMode; }
std::string getViewportModeString() const;
sf::Vector2f windowToGameCoords(const sf::Vector2f& windowPos) const;
// global textures for scripts to access
std::vector<IndexTexture> textures;
@ -181,28 +53,3 @@ public:
std::shared_ptr<std::vector<std::shared_ptr<UIDrawable>>> scene_ui(std::string scene);
};
/**
* @brief Visual overlay that displays real-time profiling metrics
*/
class GameEngine::ProfilerOverlay {
private:
sf::Font& font;
sf::Text text;
sf::RectangleShape background;
bool visible;
int updateInterval;
int frameCounter;
sf::Color getPerformanceColor(float frameTimeMs);
std::string formatFloat(float value, int precision = 1);
std::string formatPercentage(float part, float total);
public:
ProfilerOverlay(sf::Font& fontRef);
void toggle();
void setVisible(bool vis);
bool isVisible() const;
void update(const ProfilingMetrics& metrics);
void render(sf::RenderTarget& target);
};

View File

@ -1,27 +0,0 @@
#include "HeadlessRenderer.h"
#include <iostream>
bool HeadlessRenderer::init(int width, int height) {
if (!render_texture.create(width, height)) {
std::cerr << "Failed to create headless render texture" << std::endl;
return false;
}
return true;
}
sf::RenderTarget& HeadlessRenderer::getRenderTarget() {
return render_texture;
}
void HeadlessRenderer::saveScreenshot(const std::string& path) {
sf::Image screenshot = render_texture.getTexture().copyToImage();
if (!screenshot.saveToFile(path)) {
std::cerr << "Failed to save screenshot to: " << path << std::endl;
} else {
std::cout << "Screenshot saved to: " << path << std::endl;
}
}
void HeadlessRenderer::display() {
render_texture.display();
}

View File

@ -1,20 +0,0 @@
#ifndef HEADLESS_RENDERER_H
#define HEADLESS_RENDERER_H
#include <SFML/Graphics.hpp>
#include <memory>
#include <string>
class HeadlessRenderer {
private:
sf::RenderTexture render_texture;
public:
bool init(int width = 1024, int height = 768);
sf::RenderTarget& getRenderTarget();
void saveScreenshot(const std::string& path);
void display(); // Finalize the current frame
bool isOpen() const { return true; } // Always "open" in headless mode
};
#endif // HEADLESS_RENDERER_H

File diff suppressed because it is too large Load Diff

View File

@ -5,7 +5,6 @@
#include "PyFont.h"
#include "PyTexture.h"
#include "McRogueFaceConfig.h"
class GameEngine; // forward declared (circular members)
@ -28,18 +27,19 @@ public:
//static void setSpriteTexture(int);
inline static GameEngine* game;
static void api_init();
static void api_init(const McRogueFaceConfig& config, int argc, char** argv);
static PyStatus init_python_with_config(const McRogueFaceConfig& config, int argc, char** argv);
static void api_shutdown();
// Python API functionality - use mcrfpy.* in scripts
//static PyObject* _drawSprite(PyObject*, PyObject*);
static void REPL_device(FILE * fp, const char *filename);
static void REPL();
static std::vector<sf::SoundBuffer>* soundbuffers;
static sf::Music* music;
static sf::Sound* sfx;
static std::vector<sf::SoundBuffer> soundbuffers;
static sf::Music music;
static sf::Sound sfx;
static std::map<std::string, PyObject*> callbacks;
static PyObject* _registerPyAction(PyObject*, PyObject*);
static PyObject* _registerInputAction(PyObject*, PyObject*);
static PyObject* _createSoundBuffer(PyObject*, PyObject*);
static PyObject* _loadMusic(PyObject*, PyObject*);
@ -66,23 +66,12 @@ public:
// accept keyboard input from scene
static sf::Vector2i cursor_position;
static void player_input(int, int);
static void computerTurn();
static void playerTurn();
static void doAction(std::string);
static void executeScript(std::string);
static void executePyString(std::string);
// Helper to mark scenes as needing z_index resort
static void markSceneNeedsSort();
// Name-based finding methods
static PyObject* _find(PyObject*, PyObject*);
static PyObject* _findAll(PyObject*, PyObject*);
// Profiling/metrics
static PyObject* _getMetrics(PyObject*, PyObject*);
// Scene lifecycle management for Python Scene objects
static void triggerSceneChange(const std::string& from_scene, const std::string& to_scene);
static void updatePythonScenes(float dt);
static void triggerResize(int width, int height);
};

View File

@ -1,817 +0,0 @@
#include "McRFPy_Automation.h"
#include "McRFPy_API.h"
#include "GameEngine.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <unordered_map>
// Helper function to get game engine
GameEngine* McRFPy_Automation::getGameEngine() {
return McRFPy_API::game;
}
// Sleep helper
void McRFPy_Automation::sleep_ms(int milliseconds) {
std::this_thread::sleep_for(std::chrono::milliseconds(milliseconds));
}
// Convert string to SFML key code
sf::Keyboard::Key McRFPy_Automation::stringToKey(const std::string& keyName) {
static const std::unordered_map<std::string, sf::Keyboard::Key> keyMap = {
// Letters
{"a", sf::Keyboard::A}, {"b", sf::Keyboard::B}, {"c", sf::Keyboard::C},
{"d", sf::Keyboard::D}, {"e", sf::Keyboard::E}, {"f", sf::Keyboard::F},
{"g", sf::Keyboard::G}, {"h", sf::Keyboard::H}, {"i", sf::Keyboard::I},
{"j", sf::Keyboard::J}, {"k", sf::Keyboard::K}, {"l", sf::Keyboard::L},
{"m", sf::Keyboard::M}, {"n", sf::Keyboard::N}, {"o", sf::Keyboard::O},
{"p", sf::Keyboard::P}, {"q", sf::Keyboard::Q}, {"r", sf::Keyboard::R},
{"s", sf::Keyboard::S}, {"t", sf::Keyboard::T}, {"u", sf::Keyboard::U},
{"v", sf::Keyboard::V}, {"w", sf::Keyboard::W}, {"x", sf::Keyboard::X},
{"y", sf::Keyboard::Y}, {"z", sf::Keyboard::Z},
// Numbers
{"0", sf::Keyboard::Num0}, {"1", sf::Keyboard::Num1}, {"2", sf::Keyboard::Num2},
{"3", sf::Keyboard::Num3}, {"4", sf::Keyboard::Num4}, {"5", sf::Keyboard::Num5},
{"6", sf::Keyboard::Num6}, {"7", sf::Keyboard::Num7}, {"8", sf::Keyboard::Num8},
{"9", sf::Keyboard::Num9},
// Function keys
{"f1", sf::Keyboard::F1}, {"f2", sf::Keyboard::F2}, {"f3", sf::Keyboard::F3},
{"f4", sf::Keyboard::F4}, {"f5", sf::Keyboard::F5}, {"f6", sf::Keyboard::F6},
{"f7", sf::Keyboard::F7}, {"f8", sf::Keyboard::F8}, {"f9", sf::Keyboard::F9},
{"f10", sf::Keyboard::F10}, {"f11", sf::Keyboard::F11}, {"f12", sf::Keyboard::F12},
{"f13", sf::Keyboard::F13}, {"f14", sf::Keyboard::F14}, {"f15", sf::Keyboard::F15},
// Special keys
{"escape", sf::Keyboard::Escape}, {"esc", sf::Keyboard::Escape},
{"enter", sf::Keyboard::Enter}, {"return", sf::Keyboard::Enter},
{"space", sf::Keyboard::Space}, {" ", sf::Keyboard::Space},
{"tab", sf::Keyboard::Tab}, {"\t", sf::Keyboard::Tab},
{"backspace", sf::Keyboard::BackSpace},
{"delete", sf::Keyboard::Delete}, {"del", sf::Keyboard::Delete},
{"insert", sf::Keyboard::Insert},
{"home", sf::Keyboard::Home},
{"end", sf::Keyboard::End},
{"pageup", sf::Keyboard::PageUp}, {"pgup", sf::Keyboard::PageUp},
{"pagedown", sf::Keyboard::PageDown}, {"pgdn", sf::Keyboard::PageDown},
// Arrow keys
{"left", sf::Keyboard::Left},
{"right", sf::Keyboard::Right},
{"up", sf::Keyboard::Up},
{"down", sf::Keyboard::Down},
// Modifiers
{"ctrl", sf::Keyboard::LControl}, {"ctrlleft", sf::Keyboard::LControl},
{"ctrlright", sf::Keyboard::RControl},
{"alt", sf::Keyboard::LAlt}, {"altleft", sf::Keyboard::LAlt},
{"altright", sf::Keyboard::RAlt},
{"shift", sf::Keyboard::LShift}, {"shiftleft", sf::Keyboard::LShift},
{"shiftright", sf::Keyboard::RShift},
{"win", sf::Keyboard::LSystem}, {"winleft", sf::Keyboard::LSystem},
{"winright", sf::Keyboard::RSystem}, {"command", sf::Keyboard::LSystem},
// Punctuation
{",", sf::Keyboard::Comma}, {".", sf::Keyboard::Period},
{"/", sf::Keyboard::Slash}, {"\\", sf::Keyboard::BackSlash},
{";", sf::Keyboard::SemiColon}, {"'", sf::Keyboard::Quote},
{"[", sf::Keyboard::LBracket}, {"]", sf::Keyboard::RBracket},
{"-", sf::Keyboard::Dash}, {"=", sf::Keyboard::Equal},
// Numpad
{"num0", sf::Keyboard::Numpad0}, {"num1", sf::Keyboard::Numpad1},
{"num2", sf::Keyboard::Numpad2}, {"num3", sf::Keyboard::Numpad3},
{"num4", sf::Keyboard::Numpad4}, {"num5", sf::Keyboard::Numpad5},
{"num6", sf::Keyboard::Numpad6}, {"num7", sf::Keyboard::Numpad7},
{"num8", sf::Keyboard::Numpad8}, {"num9", sf::Keyboard::Numpad9},
{"add", sf::Keyboard::Add}, {"subtract", sf::Keyboard::Subtract},
{"multiply", sf::Keyboard::Multiply}, {"divide", sf::Keyboard::Divide},
// Other
{"pause", sf::Keyboard::Pause},
{"capslock", sf::Keyboard::LControl}, // Note: SFML doesn't have CapsLock
{"numlock", sf::Keyboard::LControl}, // Note: SFML doesn't have NumLock
{"scrolllock", sf::Keyboard::LControl}, // Note: SFML doesn't have ScrollLock
};
auto it = keyMap.find(keyName);
if (it != keyMap.end()) {
return it->second;
}
return sf::Keyboard::Unknown;
}
// Inject mouse event into the game engine
void McRFPy_Automation::injectMouseEvent(sf::Event::EventType type, int x, int y, sf::Mouse::Button button) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = type;
switch (type) {
case sf::Event::MouseMoved:
event.mouseMove.x = x;
event.mouseMove.y = y;
break;
case sf::Event::MouseButtonPressed:
case sf::Event::MouseButtonReleased:
event.mouseButton.button = button;
event.mouseButton.x = x;
event.mouseButton.y = y;
break;
case sf::Event::MouseWheelScrolled:
event.mouseWheelScroll.wheel = sf::Mouse::VerticalWheel;
event.mouseWheelScroll.delta = static_cast<float>(x); // x is used for scroll amount
event.mouseWheelScroll.x = x;
event.mouseWheelScroll.y = y;
break;
default:
break;
}
engine->processEvent(event);
}
// Inject keyboard event into the game engine
void McRFPy_Automation::injectKeyEvent(sf::Event::EventType type, sf::Keyboard::Key key) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = type;
if (type == sf::Event::KeyPressed || type == sf::Event::KeyReleased) {
event.key.code = key;
event.key.alt = sf::Keyboard::isKeyPressed(sf::Keyboard::LAlt) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RAlt);
event.key.control = sf::Keyboard::isKeyPressed(sf::Keyboard::LControl) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RControl);
event.key.shift = sf::Keyboard::isKeyPressed(sf::Keyboard::LShift) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RShift);
event.key.system = sf::Keyboard::isKeyPressed(sf::Keyboard::LSystem) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RSystem);
}
engine->processEvent(event);
}
// Inject text event for typing
void McRFPy_Automation::injectTextEvent(sf::Uint32 unicode) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = sf::Event::TextEntered;
event.text.unicode = unicode;
engine->processEvent(event);
}
// Screenshot implementation
PyObject* McRFPy_Automation::_screenshot(PyObject* self, PyObject* args) {
const char* filename;
if (!PyArg_ParseTuple(args, "s", &filename)) {
return NULL;
}
auto engine = getGameEngine();
if (!engine) {
PyErr_SetString(PyExc_RuntimeError, "Game engine not initialized");
return NULL;
}
// Get the render target
sf::RenderTarget* target = engine->getRenderTargetPtr();
if (!target) {
PyErr_SetString(PyExc_RuntimeError, "No render target available");
return NULL;
}
// For RenderWindow, we can get a screenshot directly
if (auto* window = dynamic_cast<sf::RenderWindow*>(target)) {
sf::Vector2u windowSize = window->getSize();
sf::Texture texture;
texture.create(windowSize.x, windowSize.y);
texture.update(*window);
if (texture.copyToImage().saveToFile(filename)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
// For RenderTexture (headless mode)
else if (auto* renderTexture = dynamic_cast<sf::RenderTexture*>(target)) {
if (renderTexture->getTexture().copyToImage().saveToFile(filename)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
PyErr_SetString(PyExc_RuntimeError, "Unknown render target type");
return NULL;
}
// Get current mouse position
PyObject* McRFPy_Automation::_position(PyObject* self, PyObject* args) {
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
return Py_BuildValue("(ii)", 0, 0);
}
// In headless mode, we'd need to track the simulated mouse position
// For now, return the actual mouse position relative to window if available
if (auto* window = dynamic_cast<sf::RenderWindow*>(engine->getRenderTargetPtr())) {
sf::Vector2i pos = sf::Mouse::getPosition(*window);
return Py_BuildValue("(ii)", pos.x, pos.y);
}
// In headless mode, return simulated position (TODO: track this)
return Py_BuildValue("(ii)", 0, 0);
}
// Get screen size
PyObject* McRFPy_Automation::_size(PyObject* self, PyObject* args) {
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
return Py_BuildValue("(ii)", 1024, 768); // Default size
}
sf::Vector2u size = engine->getRenderTarget().getSize();
return Py_BuildValue("(ii)", size.x, size.y);
}
// Check if coordinates are on screen
PyObject* McRFPy_Automation::_onScreen(PyObject* self, PyObject* args) {
int x, y;
if (!PyArg_ParseTuple(args, "ii", &x, &y)) {
return NULL;
}
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
Py_RETURN_FALSE;
}
sf::Vector2u size = engine->getRenderTarget().getSize();
if (x >= 0 && x < (int)size.x && y >= 0 && y < (int)size.y) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
// Move mouse to position
PyObject* McRFPy_Automation::_moveTo(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "duration", NULL};
int x, y;
float duration = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|f", const_cast<char**>(kwlist),
&x, &y, &duration)) {
return NULL;
}
// TODO: Implement smooth movement with duration
injectMouseEvent(sf::Event::MouseMoved, x, y);
if (duration > 0) {
sleep_ms(static_cast<int>(duration * 1000));
}
Py_RETURN_NONE;
}
// Move mouse relative
PyObject* McRFPy_Automation::_moveRel(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"xOffset", "yOffset", "duration", NULL};
int xOffset, yOffset;
float duration = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|f", const_cast<char**>(kwlist),
&xOffset, &yOffset, &duration)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int currentX, currentY;
if (!PyArg_ParseTuple(pos, "ii", &currentX, &currentY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Move to new position
injectMouseEvent(sf::Event::MouseMoved, currentX + xOffset, currentY + yOffset);
if (duration > 0) {
sleep_ms(static_cast<int>(duration * 1000));
}
Py_RETURN_NONE;
}
// Click implementation
PyObject* McRFPy_Automation::_click(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "clicks", "interval", "button", NULL};
int x = -1, y = -1;
int clicks = 1;
float interval = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iiifs", const_cast<char**>(kwlist),
&x, &y, &clicks, &interval, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
// Determine button
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
// Move to position first
injectMouseEvent(sf::Event::MouseMoved, x, y);
// Perform clicks
for (int i = 0; i < clicks; i++) {
if (i > 0 && interval > 0) {
sleep_ms(static_cast<int>(interval * 1000));
}
injectMouseEvent(sf::Event::MouseButtonPressed, x, y, sfButton);
sleep_ms(10); // Small delay between press and release
injectMouseEvent(sf::Event::MouseButtonReleased, x, y, sfButton);
}
Py_RETURN_NONE;
}
// Right click
PyObject* McRFPy_Automation::_rightClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
// Build new args with button="right"
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "button", PyUnicode_FromString("right"));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Double click
PyObject* McRFPy_Automation::_doubleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "clicks", PyLong_FromLong(2));
PyDict_SetItemString(newKwargs, "interval", PyFloat_FromDouble(0.1));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Type text
PyObject* McRFPy_Automation::_typewrite(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"message", "interval", NULL};
const char* message;
float interval = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "s|f", const_cast<char**>(kwlist),
&message, &interval)) {
return NULL;
}
// Type each character
for (size_t i = 0; message[i] != '\0'; i++) {
if (i > 0 && interval > 0) {
sleep_ms(static_cast<int>(interval * 1000));
}
char c = message[i];
// Handle special characters
if (c == '\n') {
injectKeyEvent(sf::Event::KeyPressed, sf::Keyboard::Enter);
injectKeyEvent(sf::Event::KeyReleased, sf::Keyboard::Enter);
} else if (c == '\t') {
injectKeyEvent(sf::Event::KeyPressed, sf::Keyboard::Tab);
injectKeyEvent(sf::Event::KeyReleased, sf::Keyboard::Tab);
} else {
// For regular characters, send text event
injectTextEvent(static_cast<sf::Uint32>(c));
}
}
Py_RETURN_NONE;
}
// Press and hold key
PyObject* McRFPy_Automation::_keyDown(PyObject* self, PyObject* args) {
const char* keyName;
if (!PyArg_ParseTuple(args, "s", &keyName)) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyPressed, key);
Py_RETURN_NONE;
}
// Release key
PyObject* McRFPy_Automation::_keyUp(PyObject* self, PyObject* args) {
const char* keyName;
if (!PyArg_ParseTuple(args, "s", &keyName)) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyReleased, key);
Py_RETURN_NONE;
}
// Hotkey combination
PyObject* McRFPy_Automation::_hotkey(PyObject* self, PyObject* args) {
// Get all keys as separate arguments
Py_ssize_t numKeys = PyTuple_Size(args);
if (numKeys == 0) {
PyErr_SetString(PyExc_ValueError, "hotkey() requires at least one key");
return NULL;
}
// Press all keys
for (Py_ssize_t i = 0; i < numKeys; i++) {
PyObject* keyObj = PyTuple_GetItem(args, i);
const char* keyName = PyUnicode_AsUTF8(keyObj);
if (!keyName) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyPressed, key);
sleep_ms(10); // Small delay between key presses
}
// Release all keys in reverse order
for (Py_ssize_t i = numKeys - 1; i >= 0; i--) {
PyObject* keyObj = PyTuple_GetItem(args, i);
const char* keyName = PyUnicode_AsUTF8(keyObj);
sf::Keyboard::Key key = stringToKey(keyName);
injectKeyEvent(sf::Event::KeyReleased, key);
sleep_ms(10);
}
Py_RETURN_NONE;
}
// Scroll wheel
PyObject* McRFPy_Automation::_scroll(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"clicks", "x", "y", NULL};
int clicks;
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "i|ii", const_cast<char**>(kwlist),
&clicks, &x, &y)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
// Inject scroll event
injectMouseEvent(sf::Event::MouseWheelScrolled, clicks, y);
Py_RETURN_NONE;
}
// Other click types using the main click function
PyObject* McRFPy_Automation::_middleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "button", PyUnicode_FromString("middle"));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
PyObject* McRFPy_Automation::_tripleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "clicks", PyLong_FromLong(3));
PyDict_SetItemString(newKwargs, "interval", PyFloat_FromDouble(0.1));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Mouse button press/release
PyObject* McRFPy_Automation::_mouseDown(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "button", NULL};
int x = -1, y = -1;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iis", const_cast<char**>(kwlist),
&x, &y, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
injectMouseEvent(sf::Event::MouseButtonPressed, x, y, sfButton);
Py_RETURN_NONE;
}
PyObject* McRFPy_Automation::_mouseUp(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "button", NULL};
int x = -1, y = -1;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iis", const_cast<char**>(kwlist),
&x, &y, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
injectMouseEvent(sf::Event::MouseButtonReleased, x, y, sfButton);
Py_RETURN_NONE;
}
// Drag operations
PyObject* McRFPy_Automation::_dragTo(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "duration", "button", NULL};
int x, y;
float duration = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|fs", const_cast<char**>(kwlist),
&x, &y, &duration, &button)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int startX, startY;
if (!PyArg_ParseTuple(pos, "ii", &startX, &startY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Mouse down at current position
PyObject* downArgs = Py_BuildValue("(ii)", startX, startY);
PyObject* downKwargs = PyDict_New();
PyDict_SetItemString(downKwargs, "button", PyUnicode_FromString(button));
PyObject* downResult = _mouseDown(self, downArgs, downKwargs);
Py_DECREF(downArgs);
Py_DECREF(downKwargs);
if (!downResult) return NULL;
Py_DECREF(downResult);
// Move to target position
if (duration > 0) {
// Smooth movement
int steps = static_cast<int>(duration * 60); // 60 FPS
for (int i = 1; i <= steps; i++) {
int currentX = startX + (x - startX) * i / steps;
int currentY = startY + (y - startY) * i / steps;
injectMouseEvent(sf::Event::MouseMoved, currentX, currentY);
sleep_ms(1000 / 60); // 60 FPS
}
} else {
injectMouseEvent(sf::Event::MouseMoved, x, y);
}
// Mouse up at target position
PyObject* upArgs = Py_BuildValue("(ii)", x, y);
PyObject* upKwargs = PyDict_New();
PyDict_SetItemString(upKwargs, "button", PyUnicode_FromString(button));
PyObject* upResult = _mouseUp(self, upArgs, upKwargs);
Py_DECREF(upArgs);
Py_DECREF(upKwargs);
if (!upResult) return NULL;
Py_DECREF(upResult);
Py_RETURN_NONE;
}
PyObject* McRFPy_Automation::_dragRel(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"xOffset", "yOffset", "duration", "button", NULL};
int xOffset, yOffset;
float duration = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|fs", const_cast<char**>(kwlist),
&xOffset, &yOffset, &duration, &button)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int currentX, currentY;
if (!PyArg_ParseTuple(pos, "ii", &currentX, &currentY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Call dragTo with absolute position
PyObject* dragArgs = Py_BuildValue("(ii)", currentX + xOffset, currentY + yOffset);
PyObject* dragKwargs = PyDict_New();
PyDict_SetItemString(dragKwargs, "duration", PyFloat_FromDouble(duration));
PyDict_SetItemString(dragKwargs, "button", PyUnicode_FromString(button));
PyObject* result = _dragTo(self, dragArgs, dragKwargs);
Py_DECREF(dragArgs);
Py_DECREF(dragKwargs);
return result;
}
// Method definitions for the automation module
static PyMethodDef automationMethods[] = {
{"screenshot", McRFPy_Automation::_screenshot, METH_VARARGS,
"screenshot(filename) - Save a screenshot to the specified file"},
{"position", McRFPy_Automation::_position, METH_NOARGS,
"position() - Get current mouse position as (x, y) tuple"},
{"size", McRFPy_Automation::_size, METH_NOARGS,
"size() - Get screen size as (width, height) tuple"},
{"onScreen", McRFPy_Automation::_onScreen, METH_VARARGS,
"onScreen(x, y) - Check if coordinates are within screen bounds"},
{"moveTo", (PyCFunction)McRFPy_Automation::_moveTo, METH_VARARGS | METH_KEYWORDS,
"moveTo(x, y, duration=0.0) - Move mouse to absolute position"},
{"moveRel", (PyCFunction)McRFPy_Automation::_moveRel, METH_VARARGS | METH_KEYWORDS,
"moveRel(xOffset, yOffset, duration=0.0) - Move mouse relative to current position"},
{"dragTo", (PyCFunction)McRFPy_Automation::_dragTo, METH_VARARGS | METH_KEYWORDS,
"dragTo(x, y, duration=0.0, button='left') - Drag mouse to position"},
{"dragRel", (PyCFunction)McRFPy_Automation::_dragRel, METH_VARARGS | METH_KEYWORDS,
"dragRel(xOffset, yOffset, duration=0.0, button='left') - Drag mouse relative to current position"},
{"click", (PyCFunction)McRFPy_Automation::_click, METH_VARARGS | METH_KEYWORDS,
"click(x=None, y=None, clicks=1, interval=0.0, button='left') - Click at position"},
{"rightClick", (PyCFunction)McRFPy_Automation::_rightClick, METH_VARARGS | METH_KEYWORDS,
"rightClick(x=None, y=None) - Right click at position"},
{"middleClick", (PyCFunction)McRFPy_Automation::_middleClick, METH_VARARGS | METH_KEYWORDS,
"middleClick(x=None, y=None) - Middle click at position"},
{"doubleClick", (PyCFunction)McRFPy_Automation::_doubleClick, METH_VARARGS | METH_KEYWORDS,
"doubleClick(x=None, y=None) - Double click at position"},
{"tripleClick", (PyCFunction)McRFPy_Automation::_tripleClick, METH_VARARGS | METH_KEYWORDS,
"tripleClick(x=None, y=None) - Triple click at position"},
{"scroll", (PyCFunction)McRFPy_Automation::_scroll, METH_VARARGS | METH_KEYWORDS,
"scroll(clicks, x=None, y=None) - Scroll wheel at position"},
{"mouseDown", (PyCFunction)McRFPy_Automation::_mouseDown, METH_VARARGS | METH_KEYWORDS,
"mouseDown(x=None, y=None, button='left') - Press mouse button"},
{"mouseUp", (PyCFunction)McRFPy_Automation::_mouseUp, METH_VARARGS | METH_KEYWORDS,
"mouseUp(x=None, y=None, button='left') - Release mouse button"},
{"typewrite", (PyCFunction)McRFPy_Automation::_typewrite, METH_VARARGS | METH_KEYWORDS,
"typewrite(message, interval=0.0) - Type text with optional interval between keystrokes"},
{"hotkey", McRFPy_Automation::_hotkey, METH_VARARGS,
"hotkey(*keys) - Press a hotkey combination (e.g., hotkey('ctrl', 'c'))"},
{"keyDown", McRFPy_Automation::_keyDown, METH_VARARGS,
"keyDown(key) - Press and hold a key"},
{"keyUp", McRFPy_Automation::_keyUp, METH_VARARGS,
"keyUp(key) - Release a key"},
{NULL, NULL, 0, NULL}
};
// Module definition for mcrfpy.automation
static PyModuleDef automationModule = {
PyModuleDef_HEAD_INIT,
"mcrfpy.automation",
"Automation API for McRogueFace - PyAutoGUI-compatible interface",
-1,
automationMethods
};
// Initialize automation submodule
PyObject* McRFPy_Automation::init_automation_module() {
PyObject* module = PyModule_Create(&automationModule);
if (module == NULL) {
return NULL;
}
return module;
}

View File

@ -1,56 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <SFML/Graphics.hpp>
#include <SFML/Window.hpp>
#include <string>
#include <chrono>
#include <thread>
class GameEngine;
class McRFPy_Automation {
public:
// Initialize the automation submodule
static PyObject* init_automation_module();
// Screenshot functionality
static PyObject* _screenshot(PyObject* self, PyObject* args);
// Mouse position and screen info
static PyObject* _position(PyObject* self, PyObject* args);
static PyObject* _size(PyObject* self, PyObject* args);
static PyObject* _onScreen(PyObject* self, PyObject* args);
// Mouse movement
static PyObject* _moveTo(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _moveRel(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _dragTo(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _dragRel(PyObject* self, PyObject* args, PyObject* kwargs);
// Mouse clicks
static PyObject* _click(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _rightClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _middleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _doubleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _tripleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _scroll(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _mouseDown(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _mouseUp(PyObject* self, PyObject* args, PyObject* kwargs);
// Keyboard
static PyObject* _typewrite(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _hotkey(PyObject* self, PyObject* args);
static PyObject* _keyDown(PyObject* self, PyObject* args);
static PyObject* _keyUp(PyObject* self, PyObject* args);
// Helper functions
static void injectMouseEvent(sf::Event::EventType type, int x, int y, sf::Mouse::Button button = sf::Mouse::Left);
static void injectKeyEvent(sf::Event::EventType type, sf::Keyboard::Key key);
static void injectTextEvent(sf::Uint32 unicode);
static sf::Keyboard::Key stringToKey(const std::string& keyName);
static void sleep_ms(int milliseconds);
private:
static GameEngine* getGameEngine();
};

View File

@ -1,324 +0,0 @@
#include "McRFPy_Libtcod.h"
#include "McRFPy_API.h"
#include "UIGrid.h"
#include <vector>
// Helper function to get UIGrid from Python object
static UIGrid* get_grid_from_pyobject(PyObject* obj) {
auto grid_type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid");
if (!grid_type) {
PyErr_SetString(PyExc_RuntimeError, "Could not find Grid type");
return nullptr;
}
if (!PyObject_IsInstance(obj, (PyObject*)grid_type)) {
Py_DECREF(grid_type);
PyErr_SetString(PyExc_TypeError, "First argument must be a Grid object");
return nullptr;
}
Py_DECREF(grid_type);
PyUIGridObject* pygrid = (PyUIGridObject*)obj;
return pygrid->data.get();
}
// Field of View computation
static PyObject* McRFPy_Libtcod::compute_fov(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x, y, radius;
int light_walls = 1;
int algorithm = FOV_BASIC;
if (!PyArg_ParseTuple(args, "Oiii|ii", &grid_obj, &x, &y, &radius,
&light_walls, &algorithm)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
// Compute FOV using grid's method
grid->computeFOV(x, y, radius, light_walls, (TCOD_fov_algorithm_t)algorithm);
// Return list of visible cells
PyObject* visible_list = PyList_New(0);
for (int gy = 0; gy < grid->grid_y; gy++) {
for (int gx = 0; gx < grid->grid_x; gx++) {
if (grid->isInFOV(gx, gy)) {
PyObject* pos = Py_BuildValue("(ii)", gx, gy);
PyList_Append(visible_list, pos);
Py_DECREF(pos);
}
}
}
return visible_list;
}
// A* Pathfinding
static PyObject* McRFPy_Libtcod::find_path(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x1, y1, x2, y2;
float diagonal_cost = 1.41f;
if (!PyArg_ParseTuple(args, "Oiiii|f", &grid_obj, &x1, &y1, &x2, &y2, &diagonal_cost)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
// Get path from grid
std::vector<std::pair<int, int>> path = grid->findPath(x1, y1, x2, y2, diagonal_cost);
// Convert to Python list
PyObject* path_list = PyList_New(path.size());
for (size_t i = 0; i < path.size(); i++) {
PyObject* pos = Py_BuildValue("(ii)", path[i].first, path[i].second);
PyList_SetItem(path_list, i, pos); // steals reference
}
return path_list;
}
// Line drawing algorithm
static PyObject* McRFPy_Libtcod::line(PyObject* self, PyObject* args) {
int x1, y1, x2, y2;
if (!PyArg_ParseTuple(args, "iiii", &x1, &y1, &x2, &y2)) {
return NULL;
}
// Use TCOD's line algorithm
TCODLine::init(x1, y1, x2, y2);
PyObject* line_list = PyList_New(0);
int x, y;
// Step through line
while (!TCODLine::step(&x, &y)) {
PyObject* pos = Py_BuildValue("(ii)", x, y);
PyList_Append(line_list, pos);
Py_DECREF(pos);
}
return line_list;
}
// Line iterator (generator-like function)
static PyObject* McRFPy_Libtcod::line_iter(PyObject* self, PyObject* args) {
// For simplicity, just call line() for now
// A proper implementation would create an iterator object
return line(self, args);
}
// Dijkstra pathfinding
static PyObject* McRFPy_Libtcod::dijkstra_new(PyObject* self, PyObject* args) {
PyObject* grid_obj;
float diagonal_cost = 1.41f;
if (!PyArg_ParseTuple(args, "O|f", &grid_obj, &diagonal_cost)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
// For now, just return the grid object since Dijkstra is part of the grid
Py_INCREF(grid_obj);
return grid_obj;
}
static PyObject* McRFPy_Libtcod::dijkstra_compute(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int root_x, root_y;
if (!PyArg_ParseTuple(args, "Oii", &grid_obj, &root_x, &root_y)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
grid->computeDijkstra(root_x, root_y);
Py_RETURN_NONE;
}
static PyObject* McRFPy_Libtcod::dijkstra_get_distance(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x, y;
if (!PyArg_ParseTuple(args, "Oii", &grid_obj, &x, &y)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
float distance = grid->getDijkstraDistance(x, y);
if (distance < 0) {
Py_RETURN_NONE;
}
return PyFloat_FromDouble(distance);
}
static PyObject* McRFPy_Libtcod::dijkstra_path_to(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x, y;
if (!PyArg_ParseTuple(args, "Oii", &grid_obj, &x, &y)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
std::vector<std::pair<int, int>> path = grid->getDijkstraPath(x, y);
PyObject* path_list = PyList_New(path.size());
for (size_t i = 0; i < path.size(); i++) {
PyObject* pos = Py_BuildValue("(ii)", path[i].first, path[i].second);
PyList_SetItem(path_list, i, pos); // steals reference
}
return path_list;
}
// Add FOV algorithm constants to module
static PyObject* McRFPy_Libtcod::add_fov_constants(PyObject* module) {
// FOV algorithms
PyModule_AddIntConstant(module, "FOV_BASIC", FOV_BASIC);
PyModule_AddIntConstant(module, "FOV_DIAMOND", FOV_DIAMOND);
PyModule_AddIntConstant(module, "FOV_SHADOW", FOV_SHADOW);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_0", FOV_PERMISSIVE_0);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_1", FOV_PERMISSIVE_1);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_2", FOV_PERMISSIVE_2);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_3", FOV_PERMISSIVE_3);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_4", FOV_PERMISSIVE_4);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_5", FOV_PERMISSIVE_5);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_6", FOV_PERMISSIVE_6);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_7", FOV_PERMISSIVE_7);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_8", FOV_PERMISSIVE_8);
PyModule_AddIntConstant(module, "FOV_RESTRICTIVE", FOV_RESTRICTIVE);
PyModule_AddIntConstant(module, "FOV_SYMMETRIC_SHADOWCAST", FOV_SYMMETRIC_SHADOWCAST);
return module;
}
// Method definitions
static PyMethodDef libtcodMethods[] = {
{"compute_fov", McRFPy_Libtcod::compute_fov, METH_VARARGS,
"compute_fov(grid, x, y, radius, light_walls=True, algorithm=FOV_BASIC)\n\n"
"Compute field of view from a position.\n\n"
"Args:\n"
" grid: Grid object to compute FOV on\n"
" x, y: Origin position\n"
" radius: Maximum sight radius\n"
" light_walls: Whether walls are lit when in FOV\n"
" algorithm: FOV algorithm to use (FOV_BASIC, FOV_SHADOW, etc.)\n\n"
"Returns:\n"
" List of (x, y) tuples for visible cells"},
{"find_path", McRFPy_Libtcod::find_path, METH_VARARGS,
"find_path(grid, x1, y1, x2, y2, diagonal_cost=1.41)\n\n"
"Find shortest path between two points using A*.\n\n"
"Args:\n"
" grid: Grid object to pathfind on\n"
" x1, y1: Starting position\n"
" x2, y2: Target position\n"
" diagonal_cost: Cost of diagonal movement\n\n"
"Returns:\n"
" List of (x, y) tuples representing the path, or empty list if no path exists"},
{"line", McRFPy_Libtcod::line, METH_VARARGS,
"line(x1, y1, x2, y2)\n\n"
"Get cells along a line using Bresenham's algorithm.\n\n"
"Args:\n"
" x1, y1: Starting position\n"
" x2, y2: Ending position\n\n"
"Returns:\n"
" List of (x, y) tuples along the line"},
{"line_iter", McRFPy_Libtcod::line_iter, METH_VARARGS,
"line_iter(x1, y1, x2, y2)\n\n"
"Iterate over cells along a line.\n\n"
"Args:\n"
" x1, y1: Starting position\n"
" x2, y2: Ending position\n\n"
"Returns:\n"
" Iterator of (x, y) tuples along the line"},
{"dijkstra_new", McRFPy_Libtcod::dijkstra_new, METH_VARARGS,
"dijkstra_new(grid, diagonal_cost=1.41)\n\n"
"Create a Dijkstra pathfinding context for a grid.\n\n"
"Args:\n"
" grid: Grid object to use for pathfinding\n"
" diagonal_cost: Cost of diagonal movement\n\n"
"Returns:\n"
" Grid object configured for Dijkstra pathfinding"},
{"dijkstra_compute", McRFPy_Libtcod::dijkstra_compute, METH_VARARGS,
"dijkstra_compute(grid, root_x, root_y)\n\n"
"Compute Dijkstra distance map from root position.\n\n"
"Args:\n"
" grid: Grid object with Dijkstra context\n"
" root_x, root_y: Root position to compute distances from"},
{"dijkstra_get_distance", McRFPy_Libtcod::dijkstra_get_distance, METH_VARARGS,
"dijkstra_get_distance(grid, x, y)\n\n"
"Get distance from root to a position.\n\n"
"Args:\n"
" grid: Grid object with computed Dijkstra map\n"
" x, y: Position to get distance for\n\n"
"Returns:\n"
" Float distance or None if position is invalid/unreachable"},
{"dijkstra_path_to", McRFPy_Libtcod::dijkstra_path_to, METH_VARARGS,
"dijkstra_path_to(grid, x, y)\n\n"
"Get shortest path from position to Dijkstra root.\n\n"
"Args:\n"
" grid: Grid object with computed Dijkstra map\n"
" x, y: Starting position\n\n"
"Returns:\n"
" List of (x, y) tuples representing the path to root"},
{NULL, NULL, 0, NULL}
};
// Module definition
static PyModuleDef libtcodModule = {
PyModuleDef_HEAD_INIT,
"mcrfpy.libtcod",
"TCOD-compatible algorithms for field of view, pathfinding, and line drawing.\n\n"
"This module provides access to TCOD's algorithms integrated with McRogueFace grids.\n"
"Unlike the original TCOD, these functions work directly with Grid objects.\n\n"
"FOV Algorithms:\n"
" FOV_BASIC - Basic circular FOV\n"
" FOV_SHADOW - Shadow casting (recommended)\n"
" FOV_DIAMOND - Diamond-shaped FOV\n"
" FOV_PERMISSIVE_0 through FOV_PERMISSIVE_8 - Permissive variants\n"
" FOV_RESTRICTIVE - Most restrictive FOV\n"
" FOV_SYMMETRIC_SHADOWCAST - Symmetric shadow casting\n\n"
"Example:\n"
" import mcrfpy\n"
" from mcrfpy import libtcod\n\n"
" grid = mcrfpy.Grid(50, 50)\n"
" visible = libtcod.compute_fov(grid, 25, 25, 10)\n"
" path = libtcod.find_path(grid, 0, 0, 49, 49)",
-1,
libtcodMethods
};
// Module initialization
PyObject* McRFPy_Libtcod::init_libtcod_module() {
PyObject* m = PyModule_Create(&libtcodModule);
if (m == NULL) {
return NULL;
}
// Add FOV algorithm constants
add_fov_constants(m);
return m;
}

View File

@ -1,27 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <libtcod.h>
namespace McRFPy_Libtcod
{
// Field of View algorithms
static PyObject* compute_fov(PyObject* self, PyObject* args);
// Pathfinding
static PyObject* find_path(PyObject* self, PyObject* args);
static PyObject* dijkstra_new(PyObject* self, PyObject* args);
static PyObject* dijkstra_compute(PyObject* self, PyObject* args);
static PyObject* dijkstra_get_distance(PyObject* self, PyObject* args);
static PyObject* dijkstra_path_to(PyObject* self, PyObject* args);
// Line algorithms
static PyObject* line(PyObject* self, PyObject* args);
static PyObject* line_iter(PyObject* self, PyObject* args);
// FOV algorithm constants
static PyObject* add_fov_constants(PyObject* module);
// Module initialization
PyObject* init_libtcod_module();
}

View File

@ -1,33 +0,0 @@
#ifndef MCROGUEFACE_CONFIG_H
#define MCROGUEFACE_CONFIG_H
#include <string>
#include <vector>
#include <filesystem>
struct McRogueFaceConfig {
// McRogueFace specific
bool headless = false;
bool audio_enabled = true;
// Python interpreter emulation
bool python_mode = false;
std::string python_command; // -c command
std::string python_module; // -m module
bool interactive_mode = false; // -i flag
bool show_version = false; // -V flag
bool show_help = false; // -h flag
// Script execution
std::filesystem::path script_path;
std::vector<std::string> script_args;
// Scripts to execute before main script (--exec flag)
std::vector<std::filesystem::path> exec_scripts;
// Screenshot functionality for headless mode
std::string screenshot_path;
bool take_screenshot = false;
};
#endif // MCROGUEFACE_CONFIG_H

View File

@ -1,61 +0,0 @@
#include "Profiler.h"
#include <iostream>
ProfilingLogger::ProfilingLogger()
: headers_written(false)
{
}
ProfilingLogger::~ProfilingLogger() {
close();
}
bool ProfilingLogger::open(const std::string& filename, const std::vector<std::string>& columns) {
column_names = columns;
file.open(filename);
if (!file.is_open()) {
std::cerr << "Failed to open profiling log file: " << filename << std::endl;
return false;
}
// Write CSV header
for (size_t i = 0; i < columns.size(); ++i) {
file << columns[i];
if (i < columns.size() - 1) {
file << ",";
}
}
file << "\n";
file.flush();
headers_written = true;
return true;
}
void ProfilingLogger::writeRow(const std::vector<float>& values) {
if (!file.is_open()) {
return;
}
if (values.size() != column_names.size()) {
std::cerr << "ProfilingLogger: value count (" << values.size()
<< ") doesn't match column count (" << column_names.size() << ")" << std::endl;
return;
}
for (size_t i = 0; i < values.size(); ++i) {
file << values[i];
if (i < values.size() - 1) {
file << ",";
}
}
file << "\n";
}
void ProfilingLogger::close() {
if (file.is_open()) {
file.flush();
file.close();
}
}

View File

@ -1,111 +0,0 @@
#pragma once
#include <chrono>
#include <string>
#include <vector>
#include <fstream>
/**
* @brief Simple RAII-based profiling timer for measuring code execution time
*
* Usage:
* float timing = 0.0f;
* {
* ScopedTimer timer(timing);
* // ... code to profile ...
* } // timing now contains elapsed milliseconds
*/
class ScopedTimer {
private:
std::chrono::high_resolution_clock::time_point start;
float& target_ms;
public:
/**
* @brief Construct a new Scoped Timer and start timing
* @param target Reference to float that will receive elapsed time in milliseconds
*/
explicit ScopedTimer(float& target)
: target_ms(target)
{
start = std::chrono::high_resolution_clock::now();
}
/**
* @brief Destructor automatically records elapsed time
*/
~ScopedTimer() {
auto end = std::chrono::high_resolution_clock::now();
target_ms = std::chrono::duration<float, std::milli>(end - start).count();
}
// Prevent copying
ScopedTimer(const ScopedTimer&) = delete;
ScopedTimer& operator=(const ScopedTimer&) = delete;
};
/**
* @brief Accumulating timer that adds elapsed time to existing value
*
* Useful for measuring total time across multiple calls in a single frame
*/
class AccumulatingTimer {
private:
std::chrono::high_resolution_clock::time_point start;
float& target_ms;
public:
explicit AccumulatingTimer(float& target)
: target_ms(target)
{
start = std::chrono::high_resolution_clock::now();
}
~AccumulatingTimer() {
auto end = std::chrono::high_resolution_clock::now();
target_ms += std::chrono::duration<float, std::milli>(end - start).count();
}
AccumulatingTimer(const AccumulatingTimer&) = delete;
AccumulatingTimer& operator=(const AccumulatingTimer&) = delete;
};
/**
* @brief CSV profiling data logger for batch analysis
*
* Writes profiling data to CSV file for later analysis with Python/pandas/Excel
*/
class ProfilingLogger {
private:
std::ofstream file;
bool headers_written;
std::vector<std::string> column_names;
public:
ProfilingLogger();
~ProfilingLogger();
/**
* @brief Open a CSV file for writing profiling data
* @param filename Path to CSV file
* @param columns Column names for the CSV header
* @return true if file opened successfully
*/
bool open(const std::string& filename, const std::vector<std::string>& columns);
/**
* @brief Write a row of profiling data
* @param values Data values (must match column count)
*/
void writeRow(const std::vector<float>& values);
/**
* @brief Close the file and flush data
*/
void close();
/**
* @brief Check if logger is ready to write
*/
bool isOpen() const { return file.is_open(); }
};

View File

@ -1,135 +0,0 @@
#include "GameEngine.h"
#include <sstream>
#include <iomanip>
GameEngine::ProfilerOverlay::ProfilerOverlay(sf::Font& fontRef)
: font(fontRef), visible(false), updateInterval(10), frameCounter(0)
{
text.setFont(font);
text.setCharacterSize(14);
text.setFillColor(sf::Color::White);
text.setPosition(10.0f, 10.0f);
// Semi-transparent dark background
background.setFillColor(sf::Color(0, 0, 0, 180));
background.setPosition(5.0f, 5.0f);
}
void GameEngine::ProfilerOverlay::toggle() {
visible = !visible;
}
void GameEngine::ProfilerOverlay::setVisible(bool vis) {
visible = vis;
}
bool GameEngine::ProfilerOverlay::isVisible() const {
return visible;
}
sf::Color GameEngine::ProfilerOverlay::getPerformanceColor(float frameTimeMs) {
if (frameTimeMs < 16.6f) {
return sf::Color::Green; // 60+ FPS
} else if (frameTimeMs < 33.3f) {
return sf::Color::Yellow; // 30-60 FPS
} else {
return sf::Color::Red; // <30 FPS
}
}
std::string GameEngine::ProfilerOverlay::formatFloat(float value, int precision) {
std::stringstream ss;
ss << std::fixed << std::setprecision(precision) << value;
return ss.str();
}
std::string GameEngine::ProfilerOverlay::formatPercentage(float part, float total) {
if (total <= 0.0f) return "0%";
float pct = (part / total) * 100.0f;
return formatFloat(pct, 0) + "%";
}
void GameEngine::ProfilerOverlay::update(const ProfilingMetrics& metrics) {
if (!visible) return;
// Only update text every N frames to reduce overhead
frameCounter++;
if (frameCounter < updateInterval) {
return;
}
frameCounter = 0;
std::stringstream ss;
ss << "McRogueFace Performance Monitor\n";
ss << "================================\n";
// Frame time and FPS
float frameMs = metrics.avgFrameTime;
ss << "FPS: " << metrics.fps << " (" << formatFloat(frameMs, 1) << "ms/frame)\n";
// Performance warning
if (frameMs > 33.3f) {
ss << "WARNING: Frame time exceeds 30 FPS target!\n";
}
ss << "\n";
// Timing breakdown
ss << "Frame Time Breakdown:\n";
ss << " Grid Render: " << formatFloat(metrics.gridRenderTime, 1) << "ms ("
<< formatPercentage(metrics.gridRenderTime, frameMs) << ")\n";
ss << " Cells: " << metrics.gridCellsRendered << " rendered\n";
ss << " Entities: " << metrics.entitiesRendered << " / " << metrics.totalEntities << " drawn\n";
if (metrics.fovOverlayTime > 0.01f) {
ss << " FOV Overlay: " << formatFloat(metrics.fovOverlayTime, 1) << "ms\n";
}
if (metrics.entityRenderTime > 0.01f) {
ss << " Entity Render: " << formatFloat(metrics.entityRenderTime, 1) << "ms ("
<< formatPercentage(metrics.entityRenderTime, frameMs) << ")\n";
}
if (metrics.pythonScriptTime > 0.01f) {
ss << " Python: " << formatFloat(metrics.pythonScriptTime, 1) << "ms ("
<< formatPercentage(metrics.pythonScriptTime, frameMs) << ")\n";
}
if (metrics.animationTime > 0.01f) {
ss << " Animations: " << formatFloat(metrics.animationTime, 1) << "ms ("
<< formatPercentage(metrics.animationTime, frameMs) << ")\n";
}
ss << "\n";
// Other metrics
ss << "Draw Calls: " << metrics.drawCalls << "\n";
ss << "UI Elements: " << metrics.uiElements << " (" << metrics.visibleElements << " visible)\n";
// Calculate unaccounted time
float accountedTime = metrics.gridRenderTime + metrics.entityRenderTime +
metrics.pythonScriptTime + metrics.animationTime;
float unaccountedTime = frameMs - accountedTime;
if (unaccountedTime > 1.0f) {
ss << "\n";
ss << "Other: " << formatFloat(unaccountedTime, 1) << "ms ("
<< formatPercentage(unaccountedTime, frameMs) << ")\n";
}
ss << "\n";
ss << "Press F3 to hide this overlay";
text.setString(ss.str());
// Update background size to fit text
sf::FloatRect textBounds = text.getLocalBounds();
background.setSize(sf::Vector2f(textBounds.width + 20.0f, textBounds.height + 20.0f));
}
void GameEngine::ProfilerOverlay::render(sf::RenderTarget& target) {
if (!visible) return;
target.draw(background);
target.draw(text);
}

View File

@ -1,293 +0,0 @@
#include "PyAnimation.h"
#include "McRFPy_API.h"
#include "UIDrawable.h"
#include "UIFrame.h"
#include "UICaption.h"
#include "UISprite.h"
#include "UIGrid.h"
#include "UIEntity.h"
#include "UI.h" // For the PyTypeObject definitions
#include <cstring>
PyObject* PyAnimation::create(PyTypeObject* type, PyObject* args, PyObject* kwds) {
PyAnimationObject* self = (PyAnimationObject*)type->tp_alloc(type, 0);
if (self != NULL) {
// Will be initialized in init
}
return (PyObject*)self;
}
int PyAnimation::init(PyAnimationObject* self, PyObject* args, PyObject* kwds) {
static const char* keywords[] = {"property", "target", "duration", "easing", "delta", "callback", nullptr};
const char* property_name;
PyObject* target_value;
float duration;
const char* easing_name = "linear";
int delta = 0;
PyObject* callback = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "sOf|spO", const_cast<char**>(keywords),
&property_name, &target_value, &duration, &easing_name, &delta, &callback)) {
return -1;
}
// Validate callback is callable if provided
if (callback && callback != Py_None && !PyCallable_Check(callback)) {
PyErr_SetString(PyExc_TypeError, "callback must be callable");
return -1;
}
// Convert None to nullptr for C++
if (callback == Py_None) {
callback = nullptr;
}
// Convert Python target value to AnimationValue
AnimationValue animValue;
if (PyFloat_Check(target_value)) {
animValue = static_cast<float>(PyFloat_AsDouble(target_value));
}
else if (PyLong_Check(target_value)) {
animValue = static_cast<int>(PyLong_AsLong(target_value));
}
else if (PyList_Check(target_value)) {
// List of integers for sprite animation
std::vector<int> indices;
Py_ssize_t size = PyList_Size(target_value);
for (Py_ssize_t i = 0; i < size; i++) {
PyObject* item = PyList_GetItem(target_value, i);
if (PyLong_Check(item)) {
indices.push_back(PyLong_AsLong(item));
} else {
PyErr_SetString(PyExc_TypeError, "Sprite animation list must contain only integers");
return -1;
}
}
animValue = indices;
}
else if (PyTuple_Check(target_value)) {
Py_ssize_t size = PyTuple_Size(target_value);
if (size == 2) {
// Vector2f
float x = PyFloat_AsDouble(PyTuple_GetItem(target_value, 0));
float y = PyFloat_AsDouble(PyTuple_GetItem(target_value, 1));
animValue = sf::Vector2f(x, y);
}
else if (size == 3 || size == 4) {
// Color (RGB or RGBA)
int r = PyLong_AsLong(PyTuple_GetItem(target_value, 0));
int g = PyLong_AsLong(PyTuple_GetItem(target_value, 1));
int b = PyLong_AsLong(PyTuple_GetItem(target_value, 2));
int a = size == 4 ? PyLong_AsLong(PyTuple_GetItem(target_value, 3)) : 255;
animValue = sf::Color(r, g, b, a);
}
else {
PyErr_SetString(PyExc_ValueError, "Tuple must have 2 elements (vector) or 3-4 elements (color)");
return -1;
}
}
else if (PyUnicode_Check(target_value)) {
// String for text animation
const char* str = PyUnicode_AsUTF8(target_value);
animValue = std::string(str);
}
else {
PyErr_SetString(PyExc_TypeError, "Target value must be float, int, list, tuple, or string");
return -1;
}
// Get easing function
EasingFunction easingFunc = EasingFunctions::getByName(easing_name);
// Create the Animation
self->data = std::make_shared<Animation>(property_name, animValue, duration, easingFunc, delta != 0, callback);
return 0;
}
void PyAnimation::dealloc(PyAnimationObject* self) {
self->data.reset();
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject* PyAnimation::get_property(PyAnimationObject* self, void* closure) {
return PyUnicode_FromString(self->data->getTargetProperty().c_str());
}
PyObject* PyAnimation::get_duration(PyAnimationObject* self, void* closure) {
return PyFloat_FromDouble(self->data->getDuration());
}
PyObject* PyAnimation::get_elapsed(PyAnimationObject* self, void* closure) {
return PyFloat_FromDouble(self->data->getElapsed());
}
PyObject* PyAnimation::get_is_complete(PyAnimationObject* self, void* closure) {
return PyBool_FromLong(self->data->isComplete());
}
PyObject* PyAnimation::get_is_delta(PyAnimationObject* self, void* closure) {
return PyBool_FromLong(self->data->isDelta());
}
PyObject* PyAnimation::start(PyAnimationObject* self, PyObject* args) {
PyObject* target_obj;
if (!PyArg_ParseTuple(args, "O", &target_obj)) {
return NULL;
}
// Get type objects from the module to ensure they're initialized
PyObject* frame_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Frame");
PyObject* caption_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Caption");
PyObject* sprite_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Sprite");
PyObject* grid_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid");
PyObject* entity_type = PyObject_GetAttrString(McRFPy_API::mcrf_module, "Entity");
bool handled = false;
// Use PyObject_IsInstance to support inheritance
if (frame_type && PyObject_IsInstance(target_obj, frame_type)) {
PyUIFrameObject* frame = (PyUIFrameObject*)target_obj;
if (frame->data) {
self->data->start(frame->data);
AnimationManager::getInstance().addAnimation(self->data);
handled = true;
}
}
else if (caption_type && PyObject_IsInstance(target_obj, caption_type)) {
PyUICaptionObject* caption = (PyUICaptionObject*)target_obj;
if (caption->data) {
self->data->start(caption->data);
AnimationManager::getInstance().addAnimation(self->data);
handled = true;
}
}
else if (sprite_type && PyObject_IsInstance(target_obj, sprite_type)) {
PyUISpriteObject* sprite = (PyUISpriteObject*)target_obj;
if (sprite->data) {
self->data->start(sprite->data);
AnimationManager::getInstance().addAnimation(self->data);
handled = true;
}
}
else if (grid_type && PyObject_IsInstance(target_obj, grid_type)) {
PyUIGridObject* grid = (PyUIGridObject*)target_obj;
if (grid->data) {
self->data->start(grid->data);
AnimationManager::getInstance().addAnimation(self->data);
handled = true;
}
}
else if (entity_type && PyObject_IsInstance(target_obj, entity_type)) {
// Special handling for Entity since it doesn't inherit from UIDrawable
PyUIEntityObject* entity = (PyUIEntityObject*)target_obj;
if (entity->data) {
self->data->startEntity(entity->data);
AnimationManager::getInstance().addAnimation(self->data);
handled = true;
}
}
// Clean up references
Py_XDECREF(frame_type);
Py_XDECREF(caption_type);
Py_XDECREF(sprite_type);
Py_XDECREF(grid_type);
Py_XDECREF(entity_type);
if (!handled) {
PyErr_SetString(PyExc_TypeError, "Target must be a Frame, Caption, Sprite, Grid, or Entity (or a subclass of these)");
return NULL;
}
Py_RETURN_NONE;
}
PyObject* PyAnimation::update(PyAnimationObject* self, PyObject* args) {
float deltaTime;
if (!PyArg_ParseTuple(args, "f", &deltaTime)) {
return NULL;
}
bool still_running = self->data->update(deltaTime);
return PyBool_FromLong(still_running);
}
PyObject* PyAnimation::get_current_value(PyAnimationObject* self, PyObject* args) {
AnimationValue value = self->data->getCurrentValue();
// Convert AnimationValue back to Python
return std::visit([](const auto& val) -> PyObject* {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
return PyFloat_FromDouble(val);
}
else if constexpr (std::is_same_v<T, int>) {
return PyLong_FromLong(val);
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// This shouldn't happen as we interpolate to int
return PyLong_FromLong(0);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
return Py_BuildValue("(iiii)", val.r, val.g, val.b, val.a);
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
return Py_BuildValue("(ff)", val.x, val.y);
}
else if constexpr (std::is_same_v<T, std::string>) {
return PyUnicode_FromString(val.c_str());
}
Py_RETURN_NONE;
}, value);
}
PyObject* PyAnimation::complete(PyAnimationObject* self, PyObject* args) {
if (self->data) {
self->data->complete();
}
Py_RETURN_NONE;
}
PyObject* PyAnimation::has_valid_target(PyAnimationObject* self, PyObject* args) {
if (self->data && self->data->hasValidTarget()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyGetSetDef PyAnimation::getsetters[] = {
{"property", (getter)get_property, NULL, "Target property name", NULL},
{"duration", (getter)get_duration, NULL, "Animation duration in seconds", NULL},
{"elapsed", (getter)get_elapsed, NULL, "Elapsed time in seconds", NULL},
{"is_complete", (getter)get_is_complete, NULL, "Whether animation is complete", NULL},
{"is_delta", (getter)get_is_delta, NULL, "Whether animation uses delta mode", NULL},
{NULL}
};
PyMethodDef PyAnimation::methods[] = {
{"start", (PyCFunction)start, METH_VARARGS,
"start(target) -> None\n\n"
"Start the animation on a target UI element.\n\n"
"Args:\n"
" target: The UI element to animate (Frame, Caption, Sprite, Grid, or Entity)\n\n"
"Note:\n"
" The animation will automatically stop if the target is destroyed."},
{"update", (PyCFunction)update, METH_VARARGS,
"Update the animation by deltaTime (returns True if still running)"},
{"get_current_value", (PyCFunction)get_current_value, METH_NOARGS,
"Get the current interpolated value"},
{"complete", (PyCFunction)complete, METH_NOARGS,
"complete() -> None\n\n"
"Complete the animation immediately by jumping to the final value."},
{"hasValidTarget", (PyCFunction)has_valid_target, METH_NOARGS,
"hasValidTarget() -> bool\n\n"
"Check if the animation still has a valid target.\n\n"
"Returns:\n"
" True if the target still exists, False if it was destroyed."},
{NULL}
};

View File

@ -1,52 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "structmember.h"
#include "Animation.h"
#include <memory>
typedef struct {
PyObject_HEAD
std::shared_ptr<Animation> data;
} PyAnimationObject;
class PyAnimation {
public:
static PyObject* create(PyTypeObject* type, PyObject* args, PyObject* kwds);
static int init(PyAnimationObject* self, PyObject* args, PyObject* kwds);
static void dealloc(PyAnimationObject* self);
// Properties
static PyObject* get_property(PyAnimationObject* self, void* closure);
static PyObject* get_duration(PyAnimationObject* self, void* closure);
static PyObject* get_elapsed(PyAnimationObject* self, void* closure);
static PyObject* get_is_complete(PyAnimationObject* self, void* closure);
static PyObject* get_is_delta(PyAnimationObject* self, void* closure);
// Methods
static PyObject* start(PyAnimationObject* self, PyObject* args);
static PyObject* update(PyAnimationObject* self, PyObject* args);
static PyObject* get_current_value(PyAnimationObject* self, PyObject* args);
static PyObject* complete(PyAnimationObject* self, PyObject* args);
static PyObject* has_valid_target(PyAnimationObject* self, PyObject* args);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
static PyTypeObject PyAnimationType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Animation",
.tp_basicsize = sizeof(PyAnimationObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)PyAnimation::dealloc,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Animation object for animating UI properties"),
.tp_methods = PyAnimation::methods,
.tp_getset = PyAnimation::getsetters,
.tp_init = (initproc)PyAnimation::init,
.tp_new = PyAnimation::create,
};
}

View File

@ -5,21 +5,6 @@ PyCallable::PyCallable(PyObject* _target)
target = Py_XNewRef(_target);
}
PyCallable::PyCallable(const PyCallable& other)
{
target = Py_XNewRef(other.target);
}
PyCallable& PyCallable::operator=(const PyCallable& other)
{
if (this != &other) {
PyObject* old_target = target;
target = Py_XNewRef(other.target);
Py_XDECREF(old_target);
}
return *this;
}
PyCallable::~PyCallable()
{
if (target)
@ -31,11 +16,49 @@ PyObject* PyCallable::call(PyObject* args, PyObject* kwargs)
return PyObject_Call(target, args, kwargs);
}
bool PyCallable::isNone() const
bool PyCallable::isNone()
{
return (target == Py_None || target == NULL);
}
PyTimerCallable::PyTimerCallable(PyObject* _target, int _interval, int now)
: PyCallable(_target), interval(_interval), last_ran(now)
{}
PyTimerCallable::PyTimerCallable()
: PyCallable(Py_None), interval(0), last_ran(0)
{}
bool PyTimerCallable::hasElapsed(int now)
{
return now >= last_ran + interval;
}
void PyTimerCallable::call(int now)
{
PyObject* args = Py_BuildValue("(i)", now);
PyObject* retval = PyCallable::call(args, NULL);
if (!retval)
{
PyErr_Print();
PyErr_Clear();
} else if (retval != Py_None)
{
std::cout << "timer returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
std::cout << PyUnicode_AsUTF8(PyObject_Repr(retval)) << std::endl;
}
}
bool PyTimerCallable::test(int now)
{
if(hasElapsed(now))
{
call(now);
last_ran = now;
return true;
}
return false;
}
PyClickCallable::PyClickCallable(PyObject* _target)
: PyCallable(_target)

View File

@ -6,15 +6,24 @@ class PyCallable
{
protected:
PyObject* target;
public:
PyCallable(PyObject*);
PyCallable(const PyCallable& other);
PyCallable& operator=(const PyCallable& other);
~PyCallable();
PyObject* call(PyObject*, PyObject*);
bool isNone() const;
PyObject* borrow() const { return target; }
public:
bool isNone();
};
class PyTimerCallable: public PyCallable
{
private:
int interval;
int last_ran;
void call(int);
public:
bool hasElapsed(int);
bool test(int);
PyTimerCallable(PyObject*, int, int);
PyTimerCallable();
};
class PyClickCallable: public PyCallable
@ -24,11 +33,6 @@ public:
PyObject* borrow();
PyClickCallable(PyObject*);
PyClickCallable();
PyClickCallable(const PyClickCallable& other) : PyCallable(other) {}
PyClickCallable& operator=(const PyClickCallable& other) {
PyCallable::operator=(other);
return *this;
}
};
class PyKeyCallable: public PyCallable

View File

@ -1,9 +1,4 @@
#include "PyColor.h"
#include "McRFPy_API.h"
#include "PyObjectUtils.h"
#include "PyRAII.h"
#include <string>
#include <cstdio>
PyGetSetDef PyColor::getsetters[] = {
{"r", (getter)PyColor::get_member, (setter)PyColor::set_member, "Red component", (void*)0},
@ -13,28 +8,16 @@ PyGetSetDef PyColor::getsetters[] = {
{NULL}
};
PyMethodDef PyColor::methods[] = {
{"from_hex", (PyCFunction)PyColor::from_hex, METH_VARARGS | METH_CLASS, "Create Color from hex string (e.g., '#FF0000' or 'FF0000')"},
{"to_hex", (PyCFunction)PyColor::to_hex, METH_NOARGS, "Convert Color to hex string"},
{"lerp", (PyCFunction)PyColor::lerp, METH_VARARGS, "Linearly interpolate between this color and another"},
{NULL}
};
PyColor::PyColor(sf::Color target)
:data(target) {}
PyObject* PyColor::pyObject()
{
PyTypeObject* type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Color");
if (!type) return nullptr;
PyColorObject* obj = (PyColorObject*)type->tp_alloc(type, 0);
Py_DECREF(type);
if (obj) {
obj->data = data;
}
return (PyObject*)obj;
PyObject* obj = PyType_GenericAlloc(&mcrfpydef::PyColorType, 0);
Py_INCREF(obj);
PyColorObject* self = (PyColorObject*)obj;
self->data = data;
return obj;
}
sf::Color PyColor::fromPy(PyObject* obj)
@ -142,189 +125,12 @@ PyObject* PyColor::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
PyObject* PyColor::get_member(PyObject* obj, void* closure)
{
PyColorObject* self = (PyColorObject*)obj;
long member = (long)closure;
switch (member) {
case 0: // r
return PyLong_FromLong(self->data.r);
case 1: // g
return PyLong_FromLong(self->data.g);
case 2: // b
return PyLong_FromLong(self->data.b);
case 3: // a
return PyLong_FromLong(self->data.a);
default:
PyErr_SetString(PyExc_AttributeError, "Invalid color member");
return NULL;
}
// TODO
return Py_None;
}
int PyColor::set_member(PyObject* obj, PyObject* value, void* closure)
{
PyColorObject* self = (PyColorObject*)obj;
long member = (long)closure;
if (!PyLong_Check(value)) {
PyErr_SetString(PyExc_TypeError, "Color values must be integers");
return -1;
}
long val = PyLong_AsLong(value);
if (val < 0 || val > 255) {
PyErr_SetString(PyExc_ValueError, "Color values must be between 0 and 255");
return -1;
}
switch (member) {
case 0: // r
self->data.r = static_cast<sf::Uint8>(val);
break;
case 1: // g
self->data.g = static_cast<sf::Uint8>(val);
break;
case 2: // b
self->data.b = static_cast<sf::Uint8>(val);
break;
case 3: // a
self->data.a = static_cast<sf::Uint8>(val);
break;
default:
PyErr_SetString(PyExc_AttributeError, "Invalid color member");
return -1;
}
// TODO
return 0;
}
PyColorObject* PyColor::from_arg(PyObject* args)
{
// Use RAII for type reference management
PyRAII::PyTypeRef type("Color", McRFPy_API::mcrf_module);
if (!type) {
return NULL;
}
// Check if args is already a Color instance
if (PyObject_IsInstance(args, (PyObject*)type.get())) {
return (PyColorObject*)args;
}
// Create new Color object using RAII
PyRAII::PyObjectRef obj(type->tp_alloc(type.get(), 0), true);
if (!obj) {
return NULL;
}
// Initialize the object
int err = init((PyColorObject*)obj.get(), args, NULL);
if (err) {
// obj will be automatically cleaned up when it goes out of scope
return NULL;
}
// Release ownership and return
return (PyColorObject*)obj.release();
}
// Color helper method implementations
PyObject* PyColor::from_hex(PyObject* cls, PyObject* args)
{
const char* hex_str;
if (!PyArg_ParseTuple(args, "s", &hex_str)) {
return NULL;
}
std::string hex(hex_str);
// Remove # if present
if (hex.length() > 0 && hex[0] == '#') {
hex = hex.substr(1);
}
// Validate hex string
if (hex.length() != 6 && hex.length() != 8) {
PyErr_SetString(PyExc_ValueError, "Hex string must be 6 or 8 characters (RGB or RGBA)");
return NULL;
}
// Parse hex values
try {
unsigned int r = std::stoul(hex.substr(0, 2), nullptr, 16);
unsigned int g = std::stoul(hex.substr(2, 2), nullptr, 16);
unsigned int b = std::stoul(hex.substr(4, 2), nullptr, 16);
unsigned int a = 255;
if (hex.length() == 8) {
a = std::stoul(hex.substr(6, 2), nullptr, 16);
}
// Create new Color object
PyTypeObject* type = (PyTypeObject*)cls;
PyColorObject* color = (PyColorObject*)type->tp_alloc(type, 0);
if (color) {
color->data = sf::Color(r, g, b, a);
}
return (PyObject*)color;
} catch (const std::exception& e) {
PyErr_SetString(PyExc_ValueError, "Invalid hex string");
return NULL;
}
}
PyObject* PyColor::to_hex(PyColorObject* self, PyObject* Py_UNUSED(ignored))
{
char hex[10]; // #RRGGBBAA + null terminator
// Include alpha only if not fully opaque
if (self->data.a < 255) {
snprintf(hex, sizeof(hex), "#%02X%02X%02X%02X",
self->data.r, self->data.g, self->data.b, self->data.a);
} else {
snprintf(hex, sizeof(hex), "#%02X%02X%02X",
self->data.r, self->data.g, self->data.b);
}
return PyUnicode_FromString(hex);
}
PyObject* PyColor::lerp(PyColorObject* self, PyObject* args)
{
PyObject* other_obj;
float t;
if (!PyArg_ParseTuple(args, "Of", &other_obj, &t)) {
return NULL;
}
// Validate other color
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Color");
if (!PyObject_IsInstance(other_obj, (PyObject*)type)) {
Py_DECREF(type);
PyErr_SetString(PyExc_TypeError, "First argument must be a Color");
return NULL;
}
PyColorObject* other = (PyColorObject*)other_obj;
// Clamp t to [0, 1]
if (t < 0.0f) t = 0.0f;
if (t > 1.0f) t = 1.0f;
// Perform linear interpolation
sf::Uint8 r = static_cast<sf::Uint8>(self->data.r + (other->data.r - self->data.r) * t);
sf::Uint8 g = static_cast<sf::Uint8>(self->data.g + (other->data.g - self->data.g) * t);
sf::Uint8 b = static_cast<sf::Uint8>(self->data.b + (other->data.b - self->data.b) * t);
sf::Uint8 a = static_cast<sf::Uint8>(self->data.a + (other->data.a - self->data.a) * t);
// Create new Color object
PyColorObject* result = (PyColorObject*)type->tp_alloc(type, 0);
Py_DECREF(type);
if (result) {
result->data = sf::Color(r, g, b, a);
}
return (PyObject*)result;
}

View File

@ -28,19 +28,11 @@ public:
static PyObject* get_member(PyObject*, void*);
static int set_member(PyObject*, PyObject*, void*);
// Color helper methods
static PyObject* from_hex(PyObject* cls, PyObject* args);
static PyObject* to_hex(PyColorObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* lerp(PyColorObject* self, PyObject* args);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
static PyColorObject* from_arg(PyObject*);
};
namespace mcrfpydef {
static PyTypeObject PyColorType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Color",
.tp_basicsize = sizeof(PyColorObject),
.tp_itemsize = 0,
@ -48,7 +40,6 @@ namespace mcrfpydef {
.tp_hash = PyColor::hash,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Color Object"),
.tp_methods = PyColor::methods,
.tp_getset = PyColor::getsetters,
.tp_init = (initproc)PyColor::init,
.tp_new = PyColor::pynew,

View File

@ -1,179 +0,0 @@
#include "PyDrawable.h"
#include "McRFPy_API.h"
// Click property getter
static PyObject* PyDrawable_get_click(PyDrawableObject* self, void* closure)
{
if (!self->data->click_callable)
Py_RETURN_NONE;
PyObject* ptr = self->data->click_callable->borrow();
if (ptr && ptr != Py_None)
return ptr;
else
Py_RETURN_NONE;
}
// Click property setter
static int PyDrawable_set_click(PyDrawableObject* self, PyObject* value, void* closure)
{
if (value == Py_None) {
self->data->click_unregister();
} else if (PyCallable_Check(value)) {
self->data->click_register(value);
} else {
PyErr_SetString(PyExc_TypeError, "click must be callable or None");
return -1;
}
return 0;
}
// Z-index property getter
static PyObject* PyDrawable_get_z_index(PyDrawableObject* self, void* closure)
{
return PyLong_FromLong(self->data->z_index);
}
// Z-index property setter
static int PyDrawable_set_z_index(PyDrawableObject* self, PyObject* value, void* closure)
{
if (!PyLong_Check(value)) {
PyErr_SetString(PyExc_TypeError, "z_index must be an integer");
return -1;
}
int val = PyLong_AsLong(value);
self->data->z_index = val;
// Mark scene as needing resort
self->data->notifyZIndexChanged();
return 0;
}
// Visible property getter (new for #87)
static PyObject* PyDrawable_get_visible(PyDrawableObject* self, void* closure)
{
return PyBool_FromLong(self->data->visible);
}
// Visible property setter (new for #87)
static int PyDrawable_set_visible(PyDrawableObject* self, PyObject* value, void* closure)
{
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "visible must be a boolean");
return -1;
}
self->data->visible = (value == Py_True);
return 0;
}
// Opacity property getter (new for #88)
static PyObject* PyDrawable_get_opacity(PyDrawableObject* self, void* closure)
{
return PyFloat_FromDouble(self->data->opacity);
}
// Opacity property setter (new for #88)
static int PyDrawable_set_opacity(PyDrawableObject* self, PyObject* value, void* closure)
{
float val;
if (PyFloat_Check(value)) {
val = PyFloat_AsDouble(value);
} else if (PyLong_Check(value)) {
val = PyLong_AsLong(value);
} else {
PyErr_SetString(PyExc_TypeError, "opacity must be a number");
return -1;
}
// Clamp to valid range
if (val < 0.0f) val = 0.0f;
if (val > 1.0f) val = 1.0f;
self->data->opacity = val;
return 0;
}
// GetSetDef array for properties
static PyGetSetDef PyDrawable_getsetters[] = {
{"click", (getter)PyDrawable_get_click, (setter)PyDrawable_set_click,
"Callable executed when object is clicked", NULL},
{"z_index", (getter)PyDrawable_get_z_index, (setter)PyDrawable_set_z_index,
"Z-order for rendering (lower values rendered first)", NULL},
{"visible", (getter)PyDrawable_get_visible, (setter)PyDrawable_set_visible,
"Whether the object is visible", NULL},
{"opacity", (getter)PyDrawable_get_opacity, (setter)PyDrawable_set_opacity,
"Opacity level (0.0 = transparent, 1.0 = opaque)", NULL},
{NULL} // Sentinel
};
// get_bounds method implementation (#89)
static PyObject* PyDrawable_get_bounds(PyDrawableObject* self, PyObject* Py_UNUSED(args))
{
auto bounds = self->data->get_bounds();
return Py_BuildValue("(ffff)", bounds.left, bounds.top, bounds.width, bounds.height);
}
// move method implementation (#98)
static PyObject* PyDrawable_move(PyDrawableObject* self, PyObject* args)
{
float dx, dy;
if (!PyArg_ParseTuple(args, "ff", &dx, &dy)) {
return NULL;
}
self->data->move(dx, dy);
Py_RETURN_NONE;
}
// resize method implementation (#98)
static PyObject* PyDrawable_resize(PyDrawableObject* self, PyObject* args)
{
float w, h;
if (!PyArg_ParseTuple(args, "ff", &w, &h)) {
return NULL;
}
self->data->resize(w, h);
Py_RETURN_NONE;
}
// Method definitions
static PyMethodDef PyDrawable_methods[] = {
{"get_bounds", (PyCFunction)PyDrawable_get_bounds, METH_NOARGS,
"Get bounding box as (x, y, width, height)"},
{"move", (PyCFunction)PyDrawable_move, METH_VARARGS,
"Move by relative offset (dx, dy)"},
{"resize", (PyCFunction)PyDrawable_resize, METH_VARARGS,
"Resize to new dimensions (width, height)"},
{NULL} // Sentinel
};
// Type initialization
static int PyDrawable_init(PyDrawableObject* self, PyObject* args, PyObject* kwds)
{
PyErr_SetString(PyExc_TypeError, "Drawable is an abstract base class and cannot be instantiated directly");
return -1;
}
namespace mcrfpydef {
PyTypeObject PyDrawableType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Drawable",
.tp_basicsize = sizeof(PyDrawableObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)[](PyObject* self) {
PyDrawableObject* obj = (PyDrawableObject*)self;
obj->data.reset();
Py_TYPE(self)->tp_free(self);
},
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_doc = PyDoc_STR("Base class for all drawable UI elements"),
.tp_methods = PyDrawable_methods,
.tp_getset = PyDrawable_getsetters,
.tp_init = (initproc)PyDrawable_init,
.tp_new = PyType_GenericNew,
};
}

View File

@ -1,15 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "UIDrawable.h"
// Python object structure for UIDrawable base class
typedef struct {
PyObject_HEAD
std::shared_ptr<UIDrawable> data;
} PyDrawableObject;
// Declare the Python type for Drawable base class
namespace mcrfpydef {
extern PyTypeObject PyDrawableType;
}

View File

@ -61,19 +61,3 @@ PyObject* PyFont::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
{
return (PyObject*)type->tp_alloc(type, 0);
}
PyObject* PyFont::get_family(PyFontObject* self, void* closure)
{
return PyUnicode_FromString(self->data->font.getInfo().family.c_str());
}
PyObject* PyFont::get_source(PyFontObject* self, void* closure)
{
return PyUnicode_FromString(self->data->source.c_str());
}
PyGetSetDef PyFont::getsetters[] = {
{"family", (getter)PyFont::get_family, NULL, "Font family name", NULL},
{"source", (getter)PyFont::get_source, NULL, "Source filename of the font", NULL},
{NULL} // Sentinel
};

View File

@ -21,17 +21,10 @@ public:
static Py_hash_t hash(PyObject*);
static int init(PyFontObject*, PyObject*, PyObject*);
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
// Getters for properties
static PyObject* get_family(PyFontObject* self, void* closure);
static PyObject* get_source(PyFontObject* self, void* closure);
static PyGetSetDef getsetters[];
};
namespace mcrfpydef {
static PyTypeObject PyFontType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Font",
.tp_basicsize = sizeof(PyFontObject),
.tp_itemsize = 0,
@ -39,7 +32,6 @@ namespace mcrfpydef {
//.tp_hash = PyFont::hash,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Font Object"),
.tp_getset = PyFont::getsetters,
//.tp_base = &PyBaseObject_Type,
.tp_init = (initproc)PyFont::init,
.tp_new = PyType_GenericNew, //PyFont::pynew,

View File

@ -1,76 +0,0 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "McRFPy_API.h"
#include "PyRAII.h"
namespace PyObjectUtils {
// Template for getting Python type object from module
template<typename T>
PyTypeObject* getPythonType(const char* typeName) {
PyTypeObject* type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, typeName);
if (!type) {
PyErr_Format(PyExc_RuntimeError, "Could not find %s type in module", typeName);
}
return type;
}
// Generic function to create a Python object of given type
inline PyObject* createPyObjectGeneric(const char* typeName) {
PyTypeObject* type = getPythonType<void>(typeName);
if (!type) return nullptr;
PyObject* obj = type->tp_alloc(type, 0);
Py_DECREF(type);
return obj;
}
// Helper function to allocate and initialize a Python object with data
template<typename PyObjType, typename DataType>
PyObject* createPyObjectWithData(const char* typeName, DataType data) {
PyTypeObject* type = getPythonType<void>(typeName);
if (!type) return nullptr;
PyObjType* obj = (PyObjType*)type->tp_alloc(type, 0);
Py_DECREF(type);
if (obj) {
obj->data = data;
}
return (PyObject*)obj;
}
// Function to convert UIDrawable to appropriate Python object
// This is moved to UICollection.cpp to avoid circular dependencies
// RAII-based object creation example
inline PyObject* createPyObjectGenericRAII(const char* typeName) {
PyRAII::PyTypeRef type(typeName, McRFPy_API::mcrf_module);
if (!type) {
PyErr_Format(PyExc_RuntimeError, "Could not find %s type in module", typeName);
return nullptr;
}
PyObject* obj = type->tp_alloc(type.get(), 0);
// Return the new reference (caller owns it)
return obj;
}
// Example of using PyObjectRef for safer reference management
template<typename PyObjType, typename DataType>
PyObject* createPyObjectWithDataRAII(const char* typeName, DataType data) {
PyRAII::PyObjectRef obj = PyRAII::createObject<PyObjType>(typeName, McRFPy_API::mcrf_module);
if (!obj) {
PyErr_Format(PyExc_RuntimeError, "Could not create %s object", typeName);
return nullptr;
}
// Access the object through the RAII wrapper
((PyObjType*)obj.get())->data = data;
// Release ownership to return to Python
return obj.release();
}
}

View File

@ -1,164 +0,0 @@
#pragma once
#include "Python.h"
#include "PyVector.h"
#include "McRFPy_API.h"
// Helper class for standardized position argument parsing across UI classes
class PyPositionHelper {
public:
// Template structure for parsing results
struct ParseResult {
float x = 0.0f;
float y = 0.0f;
bool has_position = false;
};
struct ParseResultInt {
int x = 0;
int y = 0;
bool has_position = false;
};
// Parse position from multiple formats for UI class constructors
// Supports: (x, y), x=x, y=y, ((x,y)), (pos=(x,y)), (Vector), pos=Vector
static ParseResult parse_position(PyObject* args, PyObject* kwds,
int* arg_index = nullptr)
{
ParseResult result;
float x = 0.0f, y = 0.0f;
PyObject* pos_obj = nullptr;
int start_index = arg_index ? *arg_index : 0;
// Check for positional tuple (x, y) first
if (!kwds && PyTuple_Size(args) > start_index + 1) {
PyObject* first = PyTuple_GetItem(args, start_index);
PyObject* second = PyTuple_GetItem(args, start_index + 1);
// Check if both are numbers
if ((PyFloat_Check(first) || PyLong_Check(first)) &&
(PyFloat_Check(second) || PyLong_Check(second))) {
x = PyFloat_Check(first) ? PyFloat_AsDouble(first) : PyLong_AsLong(first);
y = PyFloat_Check(second) ? PyFloat_AsDouble(second) : PyLong_AsLong(second);
result.x = x;
result.y = y;
result.has_position = true;
if (arg_index) *arg_index += 2;
return result;
}
}
// Check for single positional argument that might be tuple or Vector
if (!kwds && PyTuple_Size(args) > start_index) {
PyObject* first = PyTuple_GetItem(args, start_index);
PyVectorObject* vec = PyVector::from_arg(first);
if (vec) {
result.x = vec->data.x;
result.y = vec->data.y;
result.has_position = true;
if (arg_index) *arg_index += 1;
return result;
}
}
// Try keyword arguments
if (kwds) {
PyObject* x_obj = PyDict_GetItemString(kwds, "x");
PyObject* y_obj = PyDict_GetItemString(kwds, "y");
PyObject* pos_kw = PyDict_GetItemString(kwds, "pos");
if (x_obj && y_obj) {
if ((PyFloat_Check(x_obj) || PyLong_Check(x_obj)) &&
(PyFloat_Check(y_obj) || PyLong_Check(y_obj))) {
result.x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : PyLong_AsLong(x_obj);
result.y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : PyLong_AsLong(y_obj);
result.has_position = true;
return result;
}
}
if (pos_kw) {
PyVectorObject* vec = PyVector::from_arg(pos_kw);
if (vec) {
result.x = vec->data.x;
result.y = vec->data.y;
result.has_position = true;
return result;
}
}
}
return result;
}
// Parse integer position for Grid.at() and similar
static ParseResultInt parse_position_int(PyObject* args, PyObject* kwds)
{
ParseResultInt result;
// Check for positional tuple (x, y) first
if (!kwds && PyTuple_Size(args) >= 2) {
PyObject* first = PyTuple_GetItem(args, 0);
PyObject* second = PyTuple_GetItem(args, 1);
if (PyLong_Check(first) && PyLong_Check(second)) {
result.x = PyLong_AsLong(first);
result.y = PyLong_AsLong(second);
result.has_position = true;
return result;
}
}
// Check for single tuple argument
if (!kwds && PyTuple_Size(args) == 1) {
PyObject* first = PyTuple_GetItem(args, 0);
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
PyObject* x_obj = PyTuple_GetItem(first, 0);
PyObject* y_obj = PyTuple_GetItem(first, 1);
if (PyLong_Check(x_obj) && PyLong_Check(y_obj)) {
result.x = PyLong_AsLong(x_obj);
result.y = PyLong_AsLong(y_obj);
result.has_position = true;
return result;
}
}
}
// Try keyword arguments
if (kwds) {
PyObject* x_obj = PyDict_GetItemString(kwds, "x");
PyObject* y_obj = PyDict_GetItemString(kwds, "y");
PyObject* pos_obj = PyDict_GetItemString(kwds, "pos");
if (x_obj && y_obj && PyLong_Check(x_obj) && PyLong_Check(y_obj)) {
result.x = PyLong_AsLong(x_obj);
result.y = PyLong_AsLong(y_obj);
result.has_position = true;
return result;
}
if (pos_obj && PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if (PyLong_Check(x_val) && PyLong_Check(y_val)) {
result.x = PyLong_AsLong(x_val);
result.y = PyLong_AsLong(y_val);
result.has_position = true;
return result;
}
}
}
return result;
}
// Error message helper
static void set_position_error() {
PyErr_SetString(PyExc_TypeError,
"Position can be specified as: (x, y), x=x, y=y, ((x,y)), pos=(x,y), or pos=Vector");
}
static void set_position_int_error() {
PyErr_SetString(PyExc_TypeError,
"Position must be specified as: (x, y), x=x, y=y, ((x,y)), or pos=(x,y) with integer values");
}
};

View File

@ -1,138 +0,0 @@
#pragma once
#include "Python.h"
#include <utility>
namespace PyRAII {
// RAII wrapper for PyObject* that automatically manages reference counting
class PyObjectRef {
private:
PyObject* ptr;
public:
// Constructors
PyObjectRef() : ptr(nullptr) {}
explicit PyObjectRef(PyObject* p, bool steal_ref = false) : ptr(p) {
if (ptr && !steal_ref) {
Py_INCREF(ptr);
}
}
// Copy constructor
PyObjectRef(const PyObjectRef& other) : ptr(other.ptr) {
if (ptr) {
Py_INCREF(ptr);
}
}
// Move constructor
PyObjectRef(PyObjectRef&& other) noexcept : ptr(other.ptr) {
other.ptr = nullptr;
}
// Destructor
~PyObjectRef() {
Py_XDECREF(ptr);
}
// Copy assignment
PyObjectRef& operator=(const PyObjectRef& other) {
if (this != &other) {
Py_XDECREF(ptr);
ptr = other.ptr;
if (ptr) {
Py_INCREF(ptr);
}
}
return *this;
}
// Move assignment
PyObjectRef& operator=(PyObjectRef&& other) noexcept {
if (this != &other) {
Py_XDECREF(ptr);
ptr = other.ptr;
other.ptr = nullptr;
}
return *this;
}
// Access operators
PyObject* get() const { return ptr; }
PyObject* operator->() const { return ptr; }
PyObject& operator*() const { return *ptr; }
operator bool() const { return ptr != nullptr; }
// Release ownership (for returning to Python)
PyObject* release() {
PyObject* temp = ptr;
ptr = nullptr;
return temp;
}
// Reset with new pointer
void reset(PyObject* p = nullptr, bool steal_ref = false) {
if (p != ptr) {
Py_XDECREF(ptr);
ptr = p;
if (ptr && !steal_ref) {
Py_INCREF(ptr);
}
}
}
};
// Helper class for managing PyTypeObject* references from module lookups
class PyTypeRef {
private:
PyTypeObject* type;
public:
PyTypeRef() : type(nullptr) {}
explicit PyTypeRef(const char* typeName, PyObject* module) {
type = (PyTypeObject*)PyObject_GetAttrString(module, typeName);
// GetAttrString returns a new reference, so we own it
}
~PyTypeRef() {
Py_XDECREF((PyObject*)type);
}
// Delete copy operations to prevent accidental reference issues
PyTypeRef(const PyTypeRef&) = delete;
PyTypeRef& operator=(const PyTypeRef&) = delete;
// Allow move operations
PyTypeRef(PyTypeRef&& other) noexcept : type(other.type) {
other.type = nullptr;
}
PyTypeRef& operator=(PyTypeRef&& other) noexcept {
if (this != &other) {
Py_XDECREF((PyObject*)type);
type = other.type;
other.type = nullptr;
}
return *this;
}
PyTypeObject* get() const { return type; }
PyTypeObject* operator->() const { return type; }
operator bool() const { return type != nullptr; }
};
// Convenience function to create a new object with RAII
template<typename PyObjType>
PyObjectRef createObject(const char* typeName, PyObject* module) {
PyTypeRef type(typeName, module);
if (!type) {
return PyObjectRef();
}
PyObject* obj = type->tp_alloc(type.get(), 0);
// tp_alloc returns a new reference, so we steal it
return PyObjectRef(obj, true);
}
}

Some files were not shown because too many files have changed in this diff Show More