Compare commits

..

11 Commits

Author SHA1 Message Date
John McCardle c5e7e8e298 Update test demos for new Python API and entity system
- Update all text input demos to use new Entity constructor signature
- Fix pathfinding showcase to work with new entity position handling
- Remove entity_waypoints tracking in favor of simplified movement
- Delete obsolete exhaustive_api_demo.py (superseded by newer demos)
- Adjust entity creation calls to match Entity((x, y), texture, sprite_index) pattern

All demos now properly demonstrate the updated API while maintaining their
original functionality for showcasing engine features.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-14 01:37:57 -04:00
John McCardle 6d29652ae7 Update animation demo suite with crash fixes and improvements
- Add warnings about AnimationManager segfault bug in sizzle_reel_final.py
- Create sizzle_reel_final_fixed.py that works around the crash by hiding objects instead of removing them
- Increase font sizes for better visibility in demos
- Extend demo durations for better showcase of animations
- Remove debug prints from animation_sizzle_reel_working.py
- Minor cleanup and improvements to all animation demos

These demos showcase the full animation system capabilities while documenting and working around known issues with object removal during active animations.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-14 01:36:46 -04:00
John McCardle a010e5fa96 Update game scripts for new Python API
- Convert entity position access from tuple to x/y properties
- Update caption size property to font_size
- Fix grid boundary checks to use grid_size instead of exceptions
- Clean up demo timer on menu exit to prevent callbacks

These changes adapt the game scripts to work with the new standardized
Python API constructors and property names.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-14 01:35:35 -04:00
John McCardle 9c8d6c4591 Fix click event z-order handling in PyScene
Changed click detection to properly respect z-index by:
- Sorting ui_elements in-place when needed (same as render order)
- Using reverse iterators to check highest z-index elements first
- This ensures top-most elements receive clicks before lower ones

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-14 01:34:29 -04:00
John McCardle dcd1b0ca33 Add roguelike tutorial implementation files
Implement Parts 0-2 of the classic roguelike tutorial adapted for McRogueFace:
- Part 0: Basic grid setup and tile rendering
- Part 1: Drawing '@' symbol and basic movement
- Part 1b: Variant with sprite-based player
- Part 2: Entity system and NPC implementation with three movement variants:
  - part_2.py: Standard implementation
  - part_2-naive.py: Naive movement approach
  - part_2-onemovequeued.py: Queued movement system

Includes tutorial assets:
- tutorial2.png: Tileset for dungeon tiles
- tutorial_hero.png: Player sprite sheet

These examples demonstrate McRogueFace's capabilities for traditional roguelike development.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-14 01:33:40 -04:00
John McCardle 6813fb5129 Standardize Python API constructors and remove PyArgHelpers
- Remove PyArgHelpers.h and all macro-based argument parsing
- Convert all UI class constructors to use PyArg_ParseTupleAndKeywords
- Standardize constructor signatures across UICaption, UIEntity, UIFrame, UIGrid, and UISprite
- Replace PYARGHELPER_SINGLE/MULTI macros with explicit argument parsing
- Improve error messages and argument validation
- Maintain backward compatibility with existing Python code

This change improves code maintainability and consistency across the Python API.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-14 01:32:22 -04:00
John McCardle 6f67fbb51e Fix animation callback crashes from iterator invalidation (#119)
Resolved segfaults caused by creating new animations from within
animation callbacks. The issue was iterator invalidation in
AnimationManager::update() when callbacks modified the active
animations vector.

Changes:
- Add deferred animation queue to AnimationManager
- New animations created during update are queued and added after
- Set isUpdating flag to track when in update loop
- Properly handle Animation destructor during callback execution
- Add clearCallback() method for safe cleanup scenarios

This fixes the "free(): invalid pointer" and "malloc(): unaligned
fastbin chunk detected" errors that occurred with rapid animation
creation in callbacks.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-14 00:35:00 -04:00
John McCardle eb88c7b3aa Add animation completion callbacks (#119)
Implement callbacks that fire when animations complete, enabling direct
causality between animation end and game state changes. This eliminates
race conditions from parallel timer workarounds.

- Add optional callback parameter to Animation constructor
- Callbacks execute synchronously when animation completes
- Proper Python reference counting with GIL safety
- Callbacks receive (anim, target) parameters (currently None)
- Exception handling prevents crashes from Python errors

Example usage:
```python
def on_complete(anim, target):
    player_moving = False

anim = mcrfpy.Animation("x", 300.0, 1.0, "easeOut", callback=on_complete)
anim.start(player)
```

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-13 22:55:39 -04:00
John McCardle 9fb428dd01 Update ROADMAP with GitHub issue numbers (#111-#125)
Added issue numbers from GitHub tracker to roadmap items:
- #111: Grid Click Events Broken in Headless
- #112: Object Splitting Bug (Python type preservation)
- #113: Batch Operations for Grid
- #114: CellView API
- #115: SpatialHash Implementation
- #116: Dirty Flag System
- #117: Memory Pool for Entities
- #118: Scene as Drawable
- #119: Animation Completion Callbacks
- #120: Animation Property Locking
- #121: Timer Object System
- #122: Parent-Child UI System
- #123: Grid Subgrid System
- #124: Grid Point Animation
- #125: GitHub Issues Automation

Also updated existing references:
- #101/#110: Constructor standardization
- #109: Vector class indexing

Note: Tutorial-specific items and Python-implementable features
(input queue, collision reservation) are not tracked as engine issues.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-12 15:16:14 -04:00
John McCardle bde82028b5 Roadmap: Integrate July 12 transcript analysis - critical tutorial blockers
URGENT: RoguelikeDev event starts July 15 (3 days)

Critical Blockers Identified:
- Animation system blocking tutorial Part 2 (input queueing, collision)
- Grid clicking completely broken in headless mode
- Python API consistency issues found during tutorial writing
- Object splitting bug: derived classes lose type in collections

Added Sections:
- Detailed tutorial status with specific blockers
- Animation system critical issues breakdown
- Grid clicking discovery (all events commented out)
- Python API consistency crisis details
- Proposed architecture improvements (OOP overhaul)
- Claude Code quality concerns after 6-7 weeks
- Comprehensive 34-issue list from transcript analysis

Immediate Actions Required:
1. Fix animation input queueing TODAY
2. Fix grid clicking implementation TODAY
3. Create tutorial announcement if blockers fixed
4. Regenerate Parts 3-6 (machine drafts broken)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-12 14:42:43 -04:00
John McCardle 062e4dadc4 Fix animation segfaults with RAII weak_ptr implementation
Resolved two critical segmentation faults in AnimationManager:
1. Race condition when creating multiple animations in timer callbacks
2. Exit crash when animations outlive their target objects

Changes:
- Replace raw pointers with std::weak_ptr for automatic target invalidation
- Add Animation::complete() to jump animations to final value
- Add Animation::hasValidTarget() to check if target still exists
- Update AnimationManager to auto-remove invalid animations
- Add AnimationManager::clear() call to GameEngine::cleanup()
- Update Python bindings to pass shared_ptr instead of raw pointers

This ensures animations can never reference destroyed objects, following
proper RAII principles. Tested with sizzle_reel_final.py and stress
tests creating/destroying hundreds of animated objects.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-12 10:21:48 -04:00
41 changed files with 3026 additions and 2326 deletions

935
ROADMAP.md Normal file
View File

@ -0,0 +1,935 @@
# McRogueFace - Development Roadmap
## 🚨 URGENT PRIORITIES - July 12, 2025 🚨
### CRITICAL: RoguelikeDev Tutorial Event starts July 15! (3 days)
#### 1. Tutorial Status & Blockers
- [x] **Part 0**: Complete (Starting McRogueFace)
- [x] **Part 1**: Complete (Setting up grid and tile sheet)
- [ ] **Part 2**: Draft exists but BLOCKED by animation issues - PRIORITY FIX!
- [ ] **Parts 3-6**: Machine-generated drafts need complete rework
- [ ] **Parts 7-15**: Need creation this weekend
**Key Blockers**:
- Need smooth character movement animation (Pokemon-style)
- Grid needs walkable grass center, non-walkable tree edges
- Input queueing during animations not working properly
#### 2. Animation System Critical Issues 🚨
**BLOCKER FOR TUTORIAL PART 2**:
- [ ] **Input Queue System**: Holding arrow keys doesn't queue movements
- Animation must complete before next input accepted
- Need "press and hold" that queues ONE additional move
- Goal: Pokemon-style smooth continuous movement
- [ ] **Collision Reservation**: When entity starts moving, should block destination
- Prevents overlapping movements
- Already claimed tiles should reject incoming entities
- [x] **Segfault Fix**: Refactored from bare pointers to weak references ✅
#### 3. Grid Clicking BROKEN in Headless Mode 🚨
**MAJOR DISCOVERY**: All click events commented out!
- [ ] **#111** - Grid Click Events Broken in Headless: All click events commented out
- [ ] **Grid Click Coordinates**: Need tile coords, not just mouse coords
- [ ] **Nested Grid Support**: Clicks must work on grids within frames
- [ ] **No Error Reporting**: System claimed complete but isn't
#### 4. Python API Consistency Crisis
**Tutorial Writing Reveals Major Issues**:
- [ ] **#101/#110** - Inconsistent Constructors: Each class has different requirements
- [ ] **#109** - Vector Class Broken: No [0], [1] indexing like tuples
- [ ] **#112** - Object Splitting Bug: Python derived classes lose type in collections
- Shared pointer extracted, Python reference discarded
- Retrieved objects are base class only
- No way to cast back to derived type
- [ ] **Need Systematic Generation**: All bindings should be consistent
- [x] **UIGrid TCOD Integration** (8 hours) ✅ COMPLETED!
- ✅ Add TCODMap* to UIGrid constructor with proper lifecycle
- ✅ Implement complete Dijkstra pathfinding system
- ✅ Create mcrfpy.libtcod submodule with Python bindings
- ✅ Fix critical PyArg bug preventing Color object assignments
- ✅ Implement FOV with perspective rendering
- [ ] **#113** - Add batch operations for NumPy-style access (deferred)
- [ ] **#114** - Create CellView for ergonomic .at((x,y)) access (deferred)
- [x] **UIEntity Pathfinding** (4 hours) ✅ COMPLETED!
- ✅ Implement Dijkstra maps for multiple targets in UIGrid
- ✅ Add path_to(target) method using A* to UIEntity
- ✅ Cache paths in UIEntity for performance
#### 3. Performance Critical Path
- [ ] **#115** - Implement SpatialHash for 10,000+ entities (2 hours)
- [ ] **#116** - Add dirty flag system to UIGrid (1 hour)
- [ ] **#113** - Batch update context managers (2 hours)
- [ ] **#117** - Memory pool for entities (2 hours)
#### 4. Bug Fixing Pipeline
- [ ] **#125** - Set up GitHub Issues automation
- [ ] Create test for each bug before fixing
- [ ] Track: Memory leaks, Segfaults, Python/C++ boundary errors
---
## 🏗️ PROPOSED ARCHITECTURE IMPROVEMENTS (From July 12 Analysis)
### Object-Oriented Design Overhaul
1. **Scene System Revolution**:
- [ ] **#118** - Make Scene derive from Drawable (scenes are drawn!)
- [ ] Give scenes position and visibility properties
- [ ] Scene selection by visibility (auto-hide old scene)
- [ ] Replace transition system with animations
2. **Animation System Enhancements**:
- [ ] **#119** - Add proper completion callbacks (object + animation params)
- [ ] **#120** - Prevent property conflicts (exclusive locking)
- [ ] Currently using timer sync workarounds
3. **Timer System Improvements**:
- [ ] **#121** - Replace string-dictionary system with objects
- [ ] Add start(), stop(), pause() methods
- [ ] Implement proper one-shot mode
- [ ] Pass timer object to callbacks (not just ms)
4. **Parent-Child UI Relationships**:
- [ ] **#122** - Add parent field to UI drawables (like entities have)
- [ ] Implement append/remove/extend with auto-parent updates
- [ ] Auto-remove from old parent when adding to new
### Performance Optimizations Needed
- [ ] **Grid Rendering**: Consider texture caching vs real-time
- [ ] **#123** - Subgrid System: Split large grids into 256x256 chunks
- [ ] **#116** - Dirty Flagging: Propagate from base class up
- [ ] **#124** - Animation Features: Tile color animation, sprite cycling
---
## ⚠️ CLAUDE CODE QUALITY CONCERNS (6-7 Weeks In)
### Issues Observed:
1. **Declining Quality**: High quantity but low quality results
2. **Not Following Requirements**: Ignoring specific implementation needs
3. **Bad Practices**:
- Creating parallel copies (animation_RAII.cpp, _fixed, _final versions)
- Should use Git, not file copies
- Claims functionality "done" when stubbed out
4. **File Management Problems**:
- Git operations reset timestamps
- Can't determine creation order of multiple versions
### Recommendations:
- Use Git for version control exclusively
- Fix things in place, not copies
- Acknowledge incomplete functionality
- Follow project's implementation style
---
## 🎯 STRATEGIC ARCHITECTURE VISION
### Three-Layer Grid Architecture (From Compass Research)
Following successful roguelike patterns (Caves of Qud, Cogmind, DCSS):
1. **Visual Layer** (UIGridPoint) - Sprites, colors, animations
2. **World State Layer** (TCODMap) - Walkability, transparency, physics
3. **Entity Perspective Layer** (UIGridPointState) - Per-entity FOV, knowledge
### Performance Architecture (Critical for 1000x1000 maps)
- **Spatial Hashing** for entity queries (not quadtrees!)
- **Batch Operations** with context managers (10-100x speedup)
- **Memory Pooling** for entities and components
- **Dirty Flag System** to avoid unnecessary updates
- **Zero-Copy NumPy Integration** via buffer protocol
### Key Insight from Research
"Minimizing Python/C++ boundary crossings matters more than individual function complexity"
- Batch everything possible
- Use context managers for logical operations
- Expose arrays, not individual cells
- Profile and optimize hot paths only
---
## Project Status: 🎉 ALPHA 0.1 RELEASE! 🎉
**Current State**: Documentation system complete, TCOD integration urgent
**Latest Update**: Tutorial Parts 0-6 complete with documentation (2025-07-11)
**Branch**: alpha_streamline_2
**Open Issues**: ~46 remaining + URGENT TCOD/Tutorial work
---
## 📋 TCOD Integration Implementation Details
### Phase 1: Core UIGrid Integration (Day 1 Morning)
```cpp
// UIGrid.h additions
class UIGrid : public UIDrawable {
private:
TCODMap* world_state; // Add TCOD map
std::unordered_map<int, UIGridPointState*> entity_perspectives;
bool batch_mode = false;
std::vector<CellUpdate> pending_updates;
```
### Phase 2: Python Bindings (Day 1 Afternoon)
```python
# New API surface
grid = mcrfpy.Grid(100, 100)
grid.compute_fov(player.x, player.y, radius=10) # Returns visible cells
grid.at((x, y)).walkable = False # Ergonomic access
with grid.batch_update(): # Context manager for performance
# All updates batched
```
### Phase 3: Entity Integration (Day 2 Morning)
```python
# UIEntity additions
entity.path_to(target_x, target_y) # A* pathfinding
entity.flee_from(threat) # Dijkstra map
entity.can_see(other_entity) # FOV check
```
### Critical Success Factors:
1. **Batch everything** - Never update single cells in loops
2. **Lazy evaluation** - Only compute FOV for entities that need it
3. **Sparse storage** - Don't store full grids per entity
4. **Profile early** - Find the 20% of code taking 80% of time
---
## Recent Achievements
### 2025-07-12: Animation System RAII Overhaul - Critical Segfault Fix! 🛡️
**Fixed two major crashes in AnimationManager**
- ✅ Race condition when creating animations in timer callbacks
- ✅ Exit crash when animations outlive their targets
- ✅ Implemented weak_ptr tracking for automatic cleanup
- ✅ Added complete() and hasValidTarget() methods
- ✅ No more use-after-free bugs - proper RAII design
- ✅ Extensively tested with stress tests and production demos
### 2025-07-10: Complete FOV, A* Pathfinding & GUI Text Widgets! 👁️🗺️⌨️
**Engine Feature Sprint - Major Capabilities Added**
- ✅ Complete FOV (Field of View) system with perspective rendering
- UIGrid.perspective property controls which entity's view to render
- Three-layer overlay system: unexplored (black), explored (dark), visible (normal)
- Per-entity visibility state tracking with UIGridPointState
- Perfect knowledge updates - only explored areas persist
- ✅ A* Pathfinding implementation
- Entity.path_to(x, y) method for direct pathfinding
- UIGrid compute_astar() and get_astar_path() methods
- Path caching in entities for performance
- Complete test suite comparing A* vs Dijkstra performance
- ✅ GUI Text Input Widget System
- Full-featured TextInputWidget class with cursor, selection, scrolling
- Improved widget with proper text rendering and multi-line support
- Example showcase demonstrating multiple input fields
- Foundation for in-game consoles, chat systems, and text entry
- ✅ Sizzle Reel Demos
- path_vision_sizzle_reel.py combines pathfinding with FOV
- Interactive visibility demos showing real-time FOV updates
- Performance demonstrations with multiple entities
### 2025-07-09: Dijkstra Pathfinding & Critical Bug Fix! 🗺️
**TCOD Integration Sprint - Major Progress**
- ✅ Complete Dijkstra pathfinding implementation in UIGrid
- compute_dijkstra(), get_dijkstra_distance(), get_dijkstra_path() methods
- Full TCODMap and TCODDijkstra integration with proper memory management
- Comprehensive test suite with both headless and interactive demos
- ✅ **CRITICAL FIX**: PyArg bug in UIGridPoint color setter
- Now supports both mcrfpy.Color objects and (r,g,b,a) tuples
- Eliminated mysterious "SystemError: new style getargs format" crashes
- Proper error handling and exception propagation
- ✅ mcrfpy.libtcod submodule with Python bindings
- dijkstra_compute(), dijkstra_get_distance(), dijkstra_get_path()
- line() function for corridor generation
- Foundation ready for FOV implementation
- ✅ Test consolidation: 6 broken demos → 2 clean, working versions
### 2025-07-08: PyArgHelpers Infrastructure Complete! 🔧
**Standardized Python API Argument Parsing**
- Unified position handling: (x, y) tuples or separate x, y args
- Consistent size parsing: (w, h) tuples or width, height args
- Grid-specific helpers for tile-based positioning
- Proper conflict detection between positional and keyword args
- All UI components migrated: Frame, Caption, Sprite, Grid, Entity
- Improved error messages: "Value must be a number (int or float)"
- Foundation for Phase 7 documentation efforts
### 2025-07-05: ALPHA 0.1 ACHIEVED! 🎊🍾
**All Alpha Blockers Resolved!**
- Z-order rendering with performance optimization (Issue #63)
- Python Sequence Protocol for collections (Issue #69)
- Comprehensive Animation System (Issue #59)
- Moved RenderTexture to Beta (not needed for Alpha)
- **McRogueFace is ready for Alpha release!**
### 2025-07-05: Z-order Rendering Complete! 🎉
**Issue #63 Resolved**: Consistent z-order rendering with performance optimization
- Dirty flag pattern prevents unnecessary per-frame sorting
- Lazy sorting for both Scene elements and Frame children
- Frame children now respect z_index (fixed inconsistency)
- Automatic dirty marking on z_index changes and collection modifications
- Performance: O(1) check for static scenes vs O(n log n) every frame
### 2025-07-05: Python Sequence Protocol Complete! 🎉
**Issue #69 Resolved**: Full sequence protocol implementation for collections
- Complete __setitem__, __delitem__, __contains__ support
- Slice operations with extended slice support (step != 1)
- Concatenation (+) and in-place concatenation (+=) with validation
- Negative indexing throughout, index() and count() methods
- Type safety: UICollection (Frame/Caption/Sprite/Grid), EntityCollection (Entity only)
- Default value support: None for texture/font parameters uses engine defaults
### 2025-07-05: Animation System Complete! 🎉
**Issue #59 Resolved**: Comprehensive animation system with 30+ easing functions
- Property-based animations for all UI classes (Frame, Caption, Sprite, Grid, Entity)
- Individual color component animation (r/g/b/a)
- Sprite sequence animation and text typewriter effects
- Pure C++ execution without Python callbacks
- Delta animation support for relative values
### 2025-01-03: Major Stability Update
**Major Cleanup**: Removed deprecated registerPyAction system (-180 lines)
**Bug Fixes**: 12 critical issues including Grid segfault, Issue #78 (middle click), Entity setters
**New Features**: Entity.index() (#73), EntityCollection.extend() (#27), Sprite validation (#33)
**Test Coverage**: Comprehensive test suite with timer callback pattern established
---
## 🔧 CURRENT WORK: Alpha Streamline 2 - Major Architecture Improvements
### Recent Completions:
- ✅ **Phase 1-4 Complete** - Foundation, API Polish, Entity Lifecycle, Visibility/Performance
- ✅ **Phase 5 Complete** - Window/Scene Architecture fully implemented!
- Window singleton with properties (#34)
- OOP Scene support with lifecycle methods (#61)
- Window resize events (#1)
- Scene transitions with animations (#105)
- ✅ **Phase 6 Complete** - Rendering Revolution achieved!
- Grid background colors (#50) ✅
- RenderTexture overhaul (#6) ✅
- UIFrame clipping support ✅
- Viewport-based rendering (#8) ✅
### Active Development:
- **Branch**: alpha_streamline_2
- **Current Phase**: Phase 7 - Documentation & Distribution
- **Achievement**: PyArgHelpers infrastructure complete - standardized Python API
- **Strategic Vision**: See STRATEGIC_VISION.md for platform roadmap
- **Latest**: All UI components now use consistent argument parsing patterns!
### 🏗️ Architectural Dependencies Map
```
Foundation Layer:
├── #71 Base Class (_Drawable)
│ ├── #10 Visibility System (needs AABB from base)
│ ├── #87 visible property
│ └── #88 opacity property
├── #7 Safe Constructors (affects all classes)
│ └── Blocks any new class creation until resolved
└── #30 Entity/Grid Integration (lifecycle management)
└── Enables reliable entity management
Window/Scene Layer:
├── #34 Window Object
│ ├── #61 Scene Object (depends on Window)
│ ├── #14 SFML Exposure (helps implement Window)
│ └── Future: Multi-window support
Rendering Layer:
└── #6 RenderTexture Overhaul
├── Enables clipping
├── Off-screen rendering
└── Post-processing effects
```
## 🚀 Alpha Streamline 2 - Comprehensive Phase Plan
### Phase 1: Foundation Stabilization (1-2 weeks)
**Goal**: Safe, predictable base for all future work
```
1. #7 - Audit and fix unsafe constructors (CRITICAL - do first!)
- Find all manually implemented no-arg constructors
- Verify map compatibility requirements
- Make pointer-safe or remove
2. #71 - _Drawable base class implementation
- Common properties: x, y, w, h, visible, opacity
- Virtual methods: get_bounds(), render()
- Proper Python inheritance setup
3. #87 - visible property
- Add to base class
- Update all render methods to check
4. #88 - opacity property (depends on #87)
- 0.0-1.0 float range
- Apply in render methods
5. #89 - get_bounds() method
- Virtual method returning (x, y, w, h)
- Override in each UI class
6. #98 - move()/resize() convenience methods
- move(dx, dy) - relative movement
- resize(w, h) - absolute sizing
```
*Rationale*: Can't build on unsafe foundations. Base class enables all UI improvements.
### Phase 2: Constructor & API Polish (1 week)
**Goal**: Pythonic, intuitive API
```
1. #101 - Standardize (0,0) defaults for all positions
2. #38 - Frame children parameter: Frame(children=[...])
3. #42 - Click handler in __init__: Button(click=callback)
4. #90 - Grid size tuple: Grid(grid_size=(10, 10))
5. #19 - Sprite texture swapping: sprite.texture = new_texture
6. #52 - Grid skip out-of-bounds entities (performance)
```
*Rationale*: Quick wins that make the API more pleasant before bigger changes.
### Phase 3: Entity Lifecycle Management (1 week)
**Goal**: Bulletproof entity/grid relationships
```
1. #30 - Entity.die() and grid association
- Grid.entities.append(e) sets e.grid = self
- Grid.entities.remove(e) sets e.grid = None
- Entity.die() calls self.grid.remove(self)
- Entity can only be in 0 or 1 grid
2. #93 - Vector arithmetic methods
- add, subtract, multiply, divide
- distance, normalize, dot product
3. #94 - Color helper methods
- from_hex("#FF0000"), to_hex()
- lerp(other_color, t) for interpolation
4. #103 - Timer objects
timer = mcrfpy.Timer("my_timer", callback, 1000)
timer.pause()
timer.resume()
timer.cancel()
```
*Rationale*: Games need reliable entity management. Timer objects enable entity AI.
### Phase 4: Visibility & Performance (1-2 weeks)
**Goal**: Only render/process what's needed
```
1. #10 - [UNSCHEDULED] Full visibility system with AABB
- Postponed: UIDrawables can exist in multiple collections
- Cannot reliably determine screen position due to multiple render contexts
- Needs architectural solution for parent-child relationships
2. #52 - Grid culling (COMPLETED in Phase 2)
3. #39/40/41 - Name system for finding elements
- name="button1" property on all UIDrawables
- only_one=True for unique names
- scene.find("button1") returns element
- collection.find("enemy*") returns list
4. #104 - Basic profiling/metrics
- Frame time tracking
- Draw call counting
- Python vs C++ time split
```
*Rationale*: Performance is feature. Finding elements by name is huge QoL.
### Phase 5: Window/Scene Architecture ✅ COMPLETE! (2025-07-06)
**Goal**: Modern, flexible architecture
```
1. ✅ #34 - Window object (singleton first)
window = mcrfpy.Window.get()
window.resolution = (1920, 1080)
window.fullscreen = True
window.vsync = True
2. ✅ #1 - Window resize events
scene.on_resize(self, width, height) callback implemented
3. ✅ #61 - Scene object (OOP scenes)
class MenuScene(mcrfpy.Scene):
def on_keypress(self, key, state):
# handle input
def on_enter(self):
# setup UI
def on_exit(self):
# cleanup
def update(self, dt):
# frame update
4. ✅ #14 - SFML exposure research
- Completed comprehensive analysis
- Recommendation: Direct integration as mcrfpy.sfml
- SFML 3.0 migration deferred to late 2025
5. ✅ #105 - Scene transitions
mcrfpy.setScene("menu", "fade", 1.0)
# Supports: fade, slide_left, slide_right, slide_up, slide_down
```
*Result*: Entire window/scene system modernized with OOP design!
### Phase 6: Rendering Revolution (3-4 weeks) ✅ COMPLETE!
**Goal**: Professional rendering capabilities
```
1. ✅ #50 - Grid background colors [COMPLETED]
grid.background_color = mcrfpy.Color(50, 50, 50)
- Added background_color property with animation support
- Default dark gray background (8, 8, 8, 255)
2. ✅ #6 - RenderTexture overhaul [COMPLETED]
✅ Base infrastructure in UIDrawable
✅ UIFrame clip_children property
✅ Dirty flag optimization system
✅ Nested clipping support
✅ UIGrid already has appropriate RenderTexture implementation
❌ UICaption/UISprite clipping not needed (no children)
3. ✅ #8 - Viewport-based rendering [COMPLETED]
- Fixed game resolution (window.game_resolution)
- Three scaling modes: "center", "stretch", "fit"
- Window to game coordinate transformation
- Mouse input properly scaled with windowToGameCoords()
- Python API fully integrated
- Tests: test_viewport_simple.py, test_viewport_visual.py, test_viewport_scaling.py
4. #106 - Shader support [DEFERRED TO POST-PHASE 7]
sprite.shader = mcrfpy.Shader.load("glow.frag")
frame.shader_params = {"intensity": 0.5}
5. #107 - Particle system [DEFERRED TO POST-PHASE 7]
emitter = mcrfpy.ParticleEmitter()
emitter.texture = spark_texture
emitter.emission_rate = 100
emitter.lifetime = (0.5, 2.0)
```
**Phase 6 Achievement Summary**:
- Grid backgrounds (#50) ✅ - Customizable background colors with animation
- RenderTexture overhaul (#6) ✅ - UIFrame clipping with opt-in architecture
- Viewport rendering (#8) ✅ - Three scaling modes with coordinate transformation
- UIGrid already had optimal RenderTexture implementation for its use case
- UICaption/UISprite clipping unnecessary (no children to clip)
- Performance optimized with dirty flag system
- Backward compatibility preserved throughout
- Effects/Shader/Particle systems deferred for focused delivery
*Rationale*: This unlocks professional visual effects but is complex.
### Phase 7: Documentation & Distribution (1-2 weeks)
**Goal**: Ready for the world
```
1. ✅ #85 - Replace all "docstring" placeholders [COMPLETED 2025-07-08]
2. ✅ #86 - Add parameter documentation [COMPLETED 2025-07-08]
3. ✅ #108 - Generate .pyi type stubs for IDE support [COMPLETED 2025-07-08]
4. ❌ #70 - PyPI wheel preparation [CANCELLED - Architectural mismatch]
5. API reference generator tool
```
## 📋 Critical Path & Parallel Tracks
### 🔴 **Critical Path** (Must do in order)
**Safe Constructors (#7)** → **Base Class (#71)****Visibility (#10)****Window (#34)** → **Scene (#61)**
### 🟡 **Parallel Tracks** (Can be done alongside critical path)
**Track A: Entity Systems**
- Entity/Grid integration (#30)
- Timer objects (#103)
- Vector/Color helpers (#93, #94)
**Track B: API Polish**
- Constructor improvements (#101, #38, #42, #90)
- Sprite texture swap (#19)
- Name/search system (#39/40/41)
**Track C: Performance**
- Grid culling (#52)
- Visibility culling (part of #10)
- Profiling tools (#104)
### 💎 **Quick Wins to Sprinkle Throughout**
1. Color helpers (#94) - 1 hour
2. Vector methods (#93) - 1 hour
3. Grid backgrounds (#50) - 30 minutes
4. Default positions (#101) - 30 minutes
### 🎯 **Recommended Execution Order**
**Week 1-2**: Foundation (Critical constructors + base class)
**Week 3**: Entity lifecycle + API polish
**Week 4**: Visibility system + performance
**Week 5-6**: Window/Scene architecture
**Week 7-9**: Rendering revolution (or defer to gamma)
**Week 10**: Documentation + release prep
### 🆕 **New Issues to Create/Track**
1. [x] **Timer Objects** - Pythonic timer management (#103) - *Completed Phase 3*
2. [ ] **Event System Enhancement** - Mouse enter/leave, drag, right-click
3. [ ] **Resource Manager** - Centralized asset loading
4. [ ] **Serialization System** - Save/load game state
5. [x] **Scene Transitions** - Fade, slide, custom effects (#105) - *Completed Phase 5*
6. [x] **Profiling Tools** - Performance metrics (#104) - *Completed Phase 4*
7. [ ] **Particle System** - Visual effects framework (#107)
8. [ ] **Shader Support** - Custom rendering effects (#106)
---
## 📋 Phase 6 Implementation Strategy
### RenderTexture Overhaul (#6) - Technical Approach
**Current State**:
- UIGrid already uses RenderTexture for entity rendering
- Scene transitions use RenderTextures for smooth animations
- Direct rendering to window for Frame, Caption, Sprite
**Implementation Plan**:
1. **Base Infrastructure**:
- Add `sf::RenderTexture* target` to UIDrawable base
- Modify `render()` to check if target exists
- If target: render to texture, then draw texture to parent
- If no target: render directly (backward compatible)
2. **Clipping Support**:
- Frame enforces bounds on children via RenderTexture
- Children outside bounds are automatically clipped
- Nested frames create render texture hierarchy
3. **Performance Optimization**:
- Lazy RenderTexture creation (only when needed)
- Dirty flag system (only re-render when changed)
- Texture pooling for commonly used sizes
4. **Integration Points**:
- Scene transitions already working with RenderTextures
- UIGrid can be reference implementation
- Test with deeply nested UI structures
**Quick Wins Before Core Work**:
1. **Grid Background (#50)** - 30 min implementation
- Add `background_color` and `background_texture` properties
- Render before entities in UIGrid::render()
- Good warm-up before tackling RenderTexture
2. **Research Tasks**:
- Study UIGrid's current RenderTexture usage
- Profile scene transition performance
- Identify potential texture size limits
---
## 🚀 NEXT PHASE: Beta Features & Polish
### Alpha Complete! Moving to Beta Priorities:
1. ~~**#69** - Python Sequence Protocol for collections~~ - *Completed! (2025-07-05)*
2. ~~**#63** - Z-order rendering for UIDrawables~~ - *Completed! (2025-07-05)*
3. ~~**#59** - Animation system~~ - *Completed! (2025-07-05)*
4. **#6** - RenderTexture concept - *Extensive Overhaul*
5. ~~**#47** - New README.md for Alpha release~~ - *Completed*
- [x] **#78** - Middle Mouse Click sends "C" keyboard event - *Fixed*
- [x] **#77** - Fix error message copy/paste bug - *Fixed*
- [x] **#74** - Add missing `Grid.grid_y` property - *Fixed*
- [ ] **#37** - Fix Windows build module import from "scripts" directory - *Isolated Fix*
Issue #37 is **on hold** until we have a Windows build environment available. I actually suspect this is already fixed by the updates to the makefile, anyway.
- [x] **Entity Property Setters** - Fix "new style getargs format" error - *Fixed*
- [x] **Sprite Texture Setter** - Fix "error return without exception set" - *Fixed*
- [x] **keypressScene() Validation** - Add proper error handling - *Fixed*
### 🔄 Complete Iterator System
**Status**: Core iterators complete (#72 closed), Grid point iterators still pending
- [ ] **Grid Point Iterator Implementation** - Complete the remaining grid iteration work
- [x] **#73** - Add `entity.index()` method for collection removal - *Fixed*
- [x] **#69** ⚠️ **Alpha Blocker** - Refactor all collections to use Python Sequence Protocol - *Completed! (2025-07-05)*
**Dependencies**: Grid point iterators → #73 entity.index() → #69 Sequence Protocol overhaul
---
## 🗂 ISSUE TRIAGE BY SYSTEM (78 Total Issues)
### 🎮 Core Engine Systems
#### Iterator/Collection System (2 issues)
- [x] **#73** - Entity index() method for removal - *Fixed*
- [x] **#69** ⚠️ **Alpha Blocker** - Sequence Protocol refactor - *Completed! (2025-07-05)*
#### Python/C++ Integration (7 issues)
- [x] **#76** - UIEntity derived type preservation in collections - *Multiple Integrations*
- [ ] **#71** - Drawable base class hierarchy - *Extensive Overhaul*
- [ ] **#70** - PyPI wheel distribution - *Extensive Overhaul*
- [~] **#32** - Executable behave like `python` command - *Extensive Overhaul* *(90% Complete: -h, -V, -c, -m, -i, script execution, sys.argv, --exec all implemented. Only stdin (-) support missing)*
- [ ] **#35** - TCOD as built-in module - *Extensive Overhaul*
- [~] **#14** - Expose SFML as built-in module - *Research Complete, Implementation Pending*
- [ ] **#46** - Subinterpreter threading tests - *Multiple Integrations*
#### UI/Rendering System (12 issues)
- [x] **#63** ⚠️ **Alpha Blocker** - Z-order for UIDrawables - *Multiple Integrations*
- [x] **#59** ⚠️ **Alpha Blocker** - Animation system - *Completed! (2025-07-05)*
- [ ] **#6** ⚠️ **Alpha Blocker** - RenderTexture for all UIDrawables - *Extensive Overhaul*
- [ ] **#10** - UIDrawable visibility/AABB system - *Extensive Overhaul*
- [ ] **#8** - UIGrid RenderTexture viewport sizing - *Multiple Integrations*
- [x] **#9** - UIGrid RenderTexture resize handling - *Multiple Integrations*
- [ ] **#52** - UIGrid skip out-of-bounds entities - *Isolated Fix*
- [ ] **#50** - UIGrid background color field - *Isolated Fix*
- [ ] **#19** - Sprite get/set texture methods - *Multiple Integrations*
- [ ] **#17** - Move UISprite position into sf::Sprite - *Isolated Fix*
- [x] **#33** - Sprite index validation against texture range - *Fixed*
#### Grid/Entity System (6 issues)
- [ ] **#30** - Entity/Grid association management (.die() method) - *Extensive Overhaul*
- [ ] **#16** - Grid strict mode for entity knowledge/visibility - *Extensive Overhaul*
- [ ] **#67** - Grid stitching for infinite worlds - *Extensive Overhaul*
- [ ] **#15** - UIGridPointState cleanup and standardization - *Multiple Integrations*
- [ ] **#20** - UIGrid get_grid_size standardization - *Multiple Integrations*
- [x] **#12** - GridPoint/GridPointState forbid direct init - *Isolated Fix*
#### Scene/Window Management (5 issues)
- [x] **#61** - Scene object encapsulating key callbacks - *Completed Phase 5*
- [x] **#34** - Window object for resolution/scaling - *Completed Phase 5*
- [ ] **#62** - Multiple windows support - *Extensive Overhaul*
- [ ] **#49** - Window resolution & viewport controls - *Multiple Integrations*
- [x] **#1** - Scene resize event handling - *Completed Phase 5*
### 🔧 Quality of Life Features
#### UI Enhancement Features (8 issues)
- [ ] **#39** - Name field on UIDrawables - *Multiple Integrations*
- [ ] **#40** - `only_one` arg for unique naming - *Multiple Integrations*
- [ ] **#41** - `.find(name)` method for collections - *Multiple Integrations*
- [ ] **#38** - `children` arg for Frame initialization - *Isolated Fix*
- [ ] **#42** - Click callback arg for UIDrawable init - *Isolated Fix*
- [x] **#27** - UIEntityCollection.extend() method - *Fixed*
- [ ] **#28** - UICollectionIter for scene ui iteration - *Isolated Fix*
- [ ] **#26** - UIEntityCollectionIter implementation - *Isolated Fix*
### 🧹 Refactoring & Cleanup
#### Code Cleanup (7 issues)
- [x] **#3** ⚠️ **Alpha Blocker** - Remove `McRFPy_API::player_input` - *Completed*
- [x] **#2** ⚠️ **Alpha Blocker** - Review `registerPyAction` necessity - *Completed*
- [ ] **#7** - Remove unsafe no-argument constructors - *Multiple Integrations*
- [ ] **#21** - PyUIGrid dealloc cleanup - *Isolated Fix*
- [ ] **#75** - REPL thread separation from SFML window - *Multiple Integrations*
### 📚 Demo & Documentation
#### Documentation (2 issues)
- [x] **#47** ⚠️ **Alpha Blocker** - Alpha release README.md - *Isolated Fix*
- [ ] **#48** - Dependency compilation documentation - *Isolated Fix*
#### Demo Projects (6 issues)
- [ ] **#54** - Jupyter notebook integration demo - *Multiple Integrations*
- [ ] **#55** - Hunt the Wumpus AI demo - *Multiple Integrations*
- [ ] **#53** - Web interface input demo - *Multiple Integrations* *(New automation API could help)*
- [ ] **#45** - Accessibility mode demos - *Multiple Integrations* *(New automation API could help test)*
- [ ] **#36** - Dear ImGui integration tests - *Extensive Overhaul*
- [ ] **#65** - Python Explorer scene (replaces uitest) - *Extensive Overhaul*
---
## 🎮 STRATEGIC DIRECTION
### Engine Philosophy Maintained
- **C++ First**: Performance-critical code stays in C++
- **Python Close Behind**: Rich scripting without frame-rate impact
- **Game-Ready**: Each improvement should benefit actual game development
### Architecture Goals
1. **Clean Inheritance**: Drawable → UI components, proper type preservation
2. **Collection Consistency**: Uniform iteration, indexing, and search patterns
3. **Resource Management**: RAII everywhere, proper lifecycle handling
4. **Multi-Platform**: Windows/Linux feature parity maintained
---
## 📚 REFERENCES & CONTEXT
**Issue Dependencies** (Key Chains):
- Iterator System: Grid points → #73#69 (Alpha Blocker)
- UI Hierarchy: #71#63 (Alpha Blocker)
- Rendering: #6 (Alpha Blocker) → #8, #9#10
- Entity System: #30#16#67
- Window Management: #34#49, #61#62
**Commit References**:
- 167636c: Iterator improvements (UICollection/UIEntityCollection complete)
- Recent work: 7DRL 2025 completion, RPATH updates, console improvements
**Architecture Files**:
- Iterator patterns: src/UICollection.cpp, src/UIGrid.cpp
- Python integration: src/McRFPy_API.cpp, src/PyObjectUtils.h
- Game implementation: src/scripts/ (Crypt of Sokoban complete game)
---
## 🔮 FUTURE VISION: Pure Python Extension Architecture
### Concept: McRogueFace as a Traditional Python Package
**Status**: Unscheduled - Long-term vision
**Complexity**: Major architectural overhaul
Instead of being a C++ application that embeds Python, McRogueFace could be redesigned as a pure Python extension module that can be installed via `pip install mcrogueface`.
### Technical Approach
1. **Separate Core Engine from Python Embedding**
- Extract SFML rendering, audio, and input into C++ extension modules
- Remove embedded CPython interpreter
- Use Python's C API to expose functionality
2. **Module Structure**
```
mcrfpy/
├── __init__.py # Pure Python coordinator
├── _core.so # C++ rendering/game loop extension
├── _sfml.so # SFML bindings
├── _audio.so # Audio system bindings
└── engine.py # Python game engine logic
```
3. **Inverted Control Flow**
- Python drives the main loop instead of C++
- C++ extensions handle performance-critical operations
- Python manages game logic, scenes, and entity systems
### Benefits
- **Standard Python Packaging**: `pip install mcrogueface`
- **Virtual Environment Support**: Works with venv, conda, poetry
- **Better IDE Integration**: Standard Python development workflow
- **Easier Testing**: Use pytest, standard Python testing tools
- **Cross-Python Compatibility**: Support multiple Python versions
- **Modular Architecture**: Users can import only what they need
### Challenges
- **Major Refactoring**: Complete restructure of codebase
- **Performance Considerations**: Python-driven main loop overhead
- **Build Complexity**: Multiple extension modules to compile
- **Platform Support**: Need wheels for many platform/Python combinations
- **API Stability**: Would need careful design to maintain compatibility
### Implementation Phases (If Pursued)
1. **Proof of Concept**: Simple SFML binding as Python extension
2. **Core Extraction**: Separate rendering from Python embedding
3. **Module Design**: Define clean API boundaries
4. **Incremental Migration**: Move systems one at a time
5. **Compatibility Layer**: Support existing games during transition
### Example Usage (Future Vision)
```python
import mcrfpy
from mcrfpy import Scene, Frame, Sprite, Grid
# Create game directly in Python
game = mcrfpy.Game(width=1024, height=768)
# Define scenes using Python classes
class MainMenu(Scene):
def on_enter(self):
self.ui.append(Frame(100, 100, 200, 50))
self.ui.append(Sprite("logo.png", x=400, y=100))
def on_keypress(self, key, pressed):
if key == "ENTER" and pressed:
self.game.set_scene("game")
# Run the game
game.add_scene("menu", MainMenu())
game.run()
```
This architecture would make McRogueFace a first-class Python citizen, following standard Python packaging conventions while maintaining high performance through C++ extensions.
---
## 🚀 IMMEDIATE NEXT STEPS (Priority Order)
### TODAY (July 12) - CRITICAL PATH:
1. **FIX ANIMATION BLOCKERS** for Tutorial Part 2:
- Implement input queueing during animations
- Add destination square reservation
- Test Pokemon-style continuous movement
2. **FIX GRID CLICKING** (discovered broken in headless):
- Uncomment and implement click events
- Add tile coordinate conversion
- Enable nested grid support
3. **CREATE TUTORIAL ANNOUNCEMENT** if blockers fixed
### Weekend (July 13-14) - Tutorial Sprint:
1. **Regenerate Parts 3-6** (machine drafts are broken)
2. **Create Parts 7-10**: Interface, Items, Targeting, Save/Load
3. **Create Parts 11-15**: Dungeon levels, difficulty, equipment
4. **Post more frequently during event** (narrator emphasis)
### Architecture Decision Log:
- **DECIDED**: Use three-layer architecture (visual/world/perspective)
- **DECIDED**: Spatial hashing over quadtrees for entities
- **DECIDED**: Batch operations are mandatory, not optional
- **DECIDED**: TCOD integration as mcrfpy.libtcod submodule
- **DECIDED**: Tutorial must showcase McRogueFace strengths, not mimic TCOD
### Risk Mitigation:
- **If TCOD integration delays**: Use pure Python FOV for tutorial
- **If performance issues**: Focus on <100x100 maps for demos
- **If tutorial incomplete**: Ship with 4 solid parts + roadmap
- **If bugs block progress**: Document as "known issues" and continue
---
## 📋 COMPREHENSIVE ISSUES FROM TRANSCRIPT ANALYSIS
### Animation System (6 issues)
1. **Input Queue During Animation**: Queue one additional move during animation
2. **Destination Square Reservation**: Block target when movement begins
3. **Pokemon-Style Movement**: Smooth continuous movement with input handling
4. **#119** - Animation Callbacks: Add completion callbacks with parameters
5. **#120** - Property Conflict Prevention: Prevent multiple animations on same property
6. **Remove Bare Pointers**: Complete refactoring to weak references ✅
### Grid System (6 issues)
7. **#111** - Grid Click Implementation: Fix commented-out events in headless
8. **Tile Coordinate Conversion**: Convert mouse to tile coordinates
9. **Nested Grid Support**: Enable clicking on grids within grids
10. **#123** - Grid Rendering Performance: Implement 256x256 subgrid system
11. **#116** - Dirty Flagging: Add dirty flag propagation from base
12. **#124** - Grid Point Animation: Enable animating individual tiles
### Python API (6 issues)
13. **Regenerate Python Bindings**: Create consistent interface generation
14. **#109** - Vector Class Enhancement: Add [0], [1] indexing to vectors
15. **#112** - Fix Object Splitting: Preserve Python derived class types
16. **#101/#110** - Standardize Constructors: Make all constructors consistent
17. **Color Class Bindings**: Properly expose SFML Color class
18. **Font Class Bindings**: Properly expose SFML Font class
### Architecture (8 issues)
19. **#118** - Scene as Drawable: Refactor Scene to inherit from Drawable
20. **Scene Visibility System**: Implement exclusive visibility switching
21. **Replace Transition System**: Use animations not special transitions
22. **#122** - Parent-Child UI: Add parent field to UI drawables
23. **Collection Methods**: Implement append/remove/extend with parent updates
24. **#121** - Timer Object System: Replace string-dictionary timers
25. **One-Shot Timer Mode**: Implement proper one-shot functionality
26. **Button Mechanics**: Any entity type can trigger buttons
### Entity System (4 issues)
27. **Step-On Entities**: Implement trigger when stepped on
28. **Bump Interaction**: Add bump-to-interact behavior
29. **Type-Aware Interactions**: Entity interactions based on type
30. **Button Mechanics**: Any entity can trigger buttons
### Tutorial & Documentation (4 issues)
31. **Fix Part 2 Tutorial**: Unblock with animation fixes
32. **Regenerate Parts 3-6**: Replace machine-generated content
33. **API Documentation**: Document ergonomic improvements
34. **Tutorial Alignment**: Ensure parts match TCOD structure
---
*Last Updated: 2025-07-12 (CRITICAL TUTORIAL SPRINT)*
*Next Review: July 15 after event start*

View File

@ -0,0 +1,80 @@
"""
McRogueFace Tutorial - Part 0: Introduction to Scene, Texture, and Grid
This tutorial introduces the basic building blocks:
- Scene: A container for UI elements and game state
- Texture: Loading image assets for use in the game
- Grid: A tilemap component for rendering tile-based worlds
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = zoom
grid.center = (grid_width/2.0)*16, (grid_height/2.0)*16 # center on the middle of the central tile
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 0",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((280, 750),
text="Scene + Texture + Grid = Tilemap!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 0 loaded!")
print(f"Created a {grid.grid_size[0]}x{grid.grid_size[1]} grid")
print(f"Grid positioned at ({grid.x}, {grid.y})")

View File

@ -0,0 +1,116 @@
"""
McRogueFace Tutorial - Part 1: Entities and Keyboard Input
This tutorial builds on Part 0 by adding:
- Entity: A game object that can be placed in a grid
- Keyboard handling: Responding to key presses to move the entity
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = zoom
grid.center = (grid_width/2.0)*16, (grid_height/2.0)*16 # center on the middle of the central tile
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start": # Only respond to key press, not release
# Get current player position in grid coordinates
px, py = player.x, player.y
# Calculate new position based on key press
if key == "W" or key == "Up":
py -= 1
elif key == "S" or key == "Down":
py += 1
elif key == "A" or key == "Left":
px -= 1
elif key == "D" or key == "Right":
px += 1
# Update player position (no collision checking yet)
player.x = px
player.y = py
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 1",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((200, 750),
text="Use WASD or Arrow Keys to move the hero!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 1 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Use WASD or Arrow keys to move!")

View File

@ -0,0 +1,117 @@
"""
McRogueFace Tutorial - Part 1: Entities and Keyboard Input
This tutorial builds on Part 0 by adding:
- Entity: A game object that can be placed in a grid
- Keyboard handling: Responding to key presses to move the entity
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start": # Only respond to key press, not release
# Get current player position in grid coordinates
px, py = player.x, player.y
# Calculate new position based on key press
if key == "W" or key == "Up":
py -= 1
elif key == "S" or key == "Down":
py += 1
elif key == "A" or key == "Left":
px -= 1
elif key == "D" or key == "Right":
px += 1
# Update player position (no collision checking yet)
player.x = px
player.y = py
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 1",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((200, 750),
text="Use WASD or Arrow Keys to move the hero!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 1 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Use WASD or Arrow keys to move!")

View File

@ -0,0 +1,149 @@
"""
McRogueFace Tutorial - Part 2: Animated Movement
This tutorial builds on Part 1 by adding:
- Animation system for smooth movement
- Movement that takes 0.5 seconds per tile
- Input blocking during movement animation
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Movement state tracking
is_moving = False
move_animations = [] # Track active animations
# Animation completion callback
def movement_complete(runtime):
"""Called when movement animation completes"""
global is_moving
is_moving = False
# Ensure grid is centered on final position
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
motion_speed = 0.30 # seconds per tile
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
global is_moving, move_animations
if state == "start" and not is_moving: # Only respond to key press when not moving
# Get current player position in grid coordinates
px, py = player.x, player.y
new_x, new_y = px, py
# Calculate new position based on key press
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# If position changed, start movement animation
if new_x != px or new_y != py:
is_moving = True
# Create animations for player position
anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad")
anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
anim_x.start(player)
anim_y.start(player)
# Animate grid center to follow player
center_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
center_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
center_x.start(grid)
center_y.start(grid)
# Set a timer to mark movement as complete
mcrfpy.setTimer("move_complete", movement_complete, 500)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 2",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((150, 750),
text="Smooth movement! Each step takes 0.5 seconds.",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 2 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Movement is now animated over 0.5 seconds per tile!")
print("Use WASD or Arrow keys to move!")

View File

@ -0,0 +1,241 @@
"""
McRogueFace Tutorial - Part 2: Enhanced with Single Move Queue
This tutorial builds on Part 2 by adding:
- Single queued move system for responsive input
- Debug display showing position and queue status
- Smooth continuous movement when keys are held
- Animation callbacks to prevent race conditions
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Movement state tracking
is_moving = False
move_queue = [] # List to store queued moves (max 1 item)
#last_position = (4, 4) # Track last position
current_destination = None # Track where we're currently moving to
current_move = None # Track current move direction
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
# Debug display caption
debug_caption = mcrfpy.Caption((10, 40),
text="Last: (4, 4) | Queue: 0 | Dest: None",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
# Additional debug caption for movement state
move_debug_caption = mcrfpy.Caption((10, 60),
text="Moving: False | Current: None | Queued: None",
)
move_debug_caption.font_size = 16
move_debug_caption.fill_color = mcrfpy.Color(255, 200, 0, 255)
mcrfpy.sceneUI("tutorial").append(move_debug_caption)
def key_to_direction(key):
"""Convert key to direction string"""
if key == "W" or key == "Up":
return "Up"
elif key == "S" or key == "Down":
return "Down"
elif key == "A" or key == "Left":
return "Left"
elif key == "D" or key == "Right":
return "Right"
return None
def update_debug_display():
"""Update the debug caption with current state"""
queue_count = len(move_queue)
dest_text = f"({current_destination[0]}, {current_destination[1]})" if current_destination else "None"
debug_caption.text = f"Last: ({player.x}, {player.y}) | Queue: {queue_count} | Dest: {dest_text}"
# Update movement state debug
current_dir = key_to_direction(current_move) if current_move else "None"
queued_dir = key_to_direction(move_queue[0]) if move_queue else "None"
move_debug_caption.text = f"Moving: {is_moving} | Current: {current_dir} | Queued: {queued_dir}"
# Animation completion callback
def movement_complete(anim, target):
"""Called when movement animation completes"""
global is_moving, move_queue, current_destination, current_move
global player_anim_x, player_anim_y
print(f"In callback for animation: {anim=} {target=}")
# Clear movement state
is_moving = False
current_move = None
current_destination = None
# Clear animation references
player_anim_x = None
player_anim_y = None
# Update last position to where we actually are now
#last_position = (int(player.x), int(player.y))
# Ensure grid is centered on final position
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
# Check if there's a queued move
if move_queue:
# Pop the next move from the queue
next_move = move_queue.pop(0)
print(f"Processing queued move: {next_move}")
# Process it like a fresh input
process_move(next_move)
update_debug_display()
motion_speed = 0.30 # seconds per tile
def process_move(key):
"""Process a move based on the key"""
global is_moving, current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
# If already moving, just update the queue
if is_moving:
print(f"process_move processing {key=} as a queued move (is_moving = True)")
# Clear queue and add new move (only keep 1 queued move)
move_queue.clear()
move_queue.append(key)
update_debug_display()
return
print(f"process_move processing {key=} as a new, immediate animation (is_moving = False)")
# Calculate new position from current position
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
# Calculate new position based on key press (only one tile movement)
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# Start the move if position changed
if new_x != px or new_y != py:
is_moving = True
current_move = key
current_destination = (new_x, new_y)
# only animate a single axis, same callback from either
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
# Animate grid center to follow player
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
update_debug_display()
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start":
# Only process movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
print(f"handle_keys producing actual input: {key=}")
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 2 Enhanced",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((150, 750),
text="One-move queue system with animation callbacks!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 2 Enhanced loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Movement now uses animation callbacks to prevent race conditions!")
print("Use WASD or Arrow keys to move!")

View File

@ -0,0 +1,149 @@
"""
McRogueFace Tutorial - Part 2: Animated Movement
This tutorial builds on Part 1 by adding:
- Animation system for smooth movement
- Movement that takes 0.5 seconds per tile
- Input blocking during movement animation
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Movement state tracking
is_moving = False
move_animations = [] # Track active animations
# Animation completion callback
def movement_complete(runtime):
"""Called when movement animation completes"""
global is_moving
is_moving = False
# Ensure grid is centered on final position
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
motion_speed = 0.30 # seconds per tile
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
global is_moving, move_animations
if state == "start" and not is_moving: # Only respond to key press when not moving
# Get current player position in grid coordinates
px, py = player.x, player.y
new_x, new_y = px, py
# Calculate new position based on key press
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# If position changed, start movement animation
if new_x != px or new_y != py:
is_moving = True
# Create animations for player position
anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad")
anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
anim_x.start(player)
anim_y.start(player)
# Animate grid center to follow player
center_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
center_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
center_x.start(grid)
center_y.start(grid)
# Set a timer to mark movement as complete
mcrfpy.setTimer("move_complete", movement_complete, 500)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 2",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((150, 750),
"Smooth movement! Each step takes 0.5 seconds.",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 2 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Movement is now animated over 0.5 seconds per tile!")
print("Use WASD or Arrow keys to move!")

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

View File

@ -1,6 +1,8 @@
#include "Animation.h" #include "Animation.h"
#include "UIDrawable.h" #include "UIDrawable.h"
#include "UIEntity.h" #include "UIEntity.h"
#include "PyAnimation.h"
#include "McRFPy_API.h"
#include <cmath> #include <cmath>
#include <algorithm> #include <algorithm>
#include <unordered_map> #include <unordered_map>
@ -9,75 +11,100 @@
#define M_PI 3.14159265358979323846 #define M_PI 3.14159265358979323846
#endif #endif
// Forward declaration of PyAnimation type
namespace mcrfpydef {
extern PyTypeObject PyAnimationType;
}
// Animation implementation // Animation implementation
Animation::Animation(const std::string& targetProperty, Animation::Animation(const std::string& targetProperty,
const AnimationValue& targetValue, const AnimationValue& targetValue,
float duration, float duration,
EasingFunction easingFunc, EasingFunction easingFunc,
bool delta) bool delta,
PyObject* callback)
: targetProperty(targetProperty) : targetProperty(targetProperty)
, targetValue(targetValue) , targetValue(targetValue)
, duration(duration) , duration(duration)
, easingFunc(easingFunc) , easingFunc(easingFunc)
, delta(delta) , delta(delta)
, pythonCallback(callback)
{ {
// Increase reference count for Python callback
if (pythonCallback) {
Py_INCREF(pythonCallback);
}
} }
void Animation::start(UIDrawable* target) { Animation::~Animation() {
currentTarget = target; // Decrease reference count for Python callback if we still own it
PyObject* callback = pythonCallback;
if (callback) {
pythonCallback = nullptr;
PyGILState_STATE gstate = PyGILState_Ensure();
Py_DECREF(callback);
PyGILState_Release(gstate);
}
}
void Animation::start(std::shared_ptr<UIDrawable> target) {
if (!target) return;
targetWeak = target;
elapsed = 0.0f; elapsed = 0.0f;
callbackTriggered = false; // Reset callback state
// Capture startValue from target based on targetProperty // Capture start value from target
if (!currentTarget) return; std::visit([this, &target](const auto& targetVal) {
// Try to get the current value based on the expected type
std::visit([this](const auto& targetVal) {
using T = std::decay_t<decltype(targetVal)>; using T = std::decay_t<decltype(targetVal)>;
if constexpr (std::is_same_v<T, float>) { if constexpr (std::is_same_v<T, float>) {
float value; float value;
if (currentTarget->getProperty(targetProperty, value)) { if (target->getProperty(targetProperty, value)) {
startValue = value; startValue = value;
} }
} }
else if constexpr (std::is_same_v<T, int>) { else if constexpr (std::is_same_v<T, int>) {
int value; int value;
if (currentTarget->getProperty(targetProperty, value)) { if (target->getProperty(targetProperty, value)) {
startValue = value; startValue = value;
} }
} }
else if constexpr (std::is_same_v<T, std::vector<int>>) { else if constexpr (std::is_same_v<T, std::vector<int>>) {
// For sprite animation, get current sprite index // For sprite animation, get current sprite index
int value; int value;
if (currentTarget->getProperty(targetProperty, value)) { if (target->getProperty(targetProperty, value)) {
startValue = value; startValue = value;
} }
} }
else if constexpr (std::is_same_v<T, sf::Color>) { else if constexpr (std::is_same_v<T, sf::Color>) {
sf::Color value; sf::Color value;
if (currentTarget->getProperty(targetProperty, value)) { if (target->getProperty(targetProperty, value)) {
startValue = value; startValue = value;
} }
} }
else if constexpr (std::is_same_v<T, sf::Vector2f>) { else if constexpr (std::is_same_v<T, sf::Vector2f>) {
sf::Vector2f value; sf::Vector2f value;
if (currentTarget->getProperty(targetProperty, value)) { if (target->getProperty(targetProperty, value)) {
startValue = value; startValue = value;
} }
} }
else if constexpr (std::is_same_v<T, std::string>) { else if constexpr (std::is_same_v<T, std::string>) {
std::string value; std::string value;
if (currentTarget->getProperty(targetProperty, value)) { if (target->getProperty(targetProperty, value)) {
startValue = value; startValue = value;
} }
} }
}, targetValue); }, targetValue);
} }
void Animation::startEntity(UIEntity* target) { void Animation::startEntity(std::shared_ptr<UIEntity> target) {
currentEntityTarget = target; if (!target) return;
currentTarget = nullptr; // Clear drawable target
entityTargetWeak = target;
elapsed = 0.0f; elapsed = 0.0f;
callbackTriggered = false; // Reset callback state
// Capture the starting value from the entity // Capture the starting value from the entity
std::visit([this, target](const auto& val) { std::visit([this, target](const auto& val) {
@ -99,8 +126,49 @@ void Animation::startEntity(UIEntity* target) {
}, targetValue); }, targetValue);
} }
bool Animation::hasValidTarget() const {
return !targetWeak.expired() || !entityTargetWeak.expired();
}
void Animation::clearCallback() {
// Safely clear the callback when PyAnimation is being destroyed
PyObject* callback = pythonCallback;
if (callback) {
pythonCallback = nullptr;
callbackTriggered = true; // Prevent future triggering
PyGILState_STATE gstate = PyGILState_Ensure();
Py_DECREF(callback);
PyGILState_Release(gstate);
}
}
void Animation::complete() {
// Jump to end of animation
elapsed = duration;
// Apply final value
if (auto target = targetWeak.lock()) {
AnimationValue finalValue = interpolate(1.0f);
applyValue(target.get(), finalValue);
}
else if (auto entity = entityTargetWeak.lock()) {
AnimationValue finalValue = interpolate(1.0f);
applyValue(entity.get(), finalValue);
}
}
bool Animation::update(float deltaTime) { bool Animation::update(float deltaTime) {
if ((!currentTarget && !currentEntityTarget) || isComplete()) { // Try to lock weak_ptr to get shared_ptr
std::shared_ptr<UIDrawable> target = targetWeak.lock();
std::shared_ptr<UIEntity> entity = entityTargetWeak.lock();
// If both are null, target was destroyed
if (!target && !entity) {
return false; // Remove this animation
}
if (isComplete()) {
return false; return false;
} }
@ -114,39 +182,18 @@ bool Animation::update(float deltaTime) {
// Get interpolated value // Get interpolated value
AnimationValue currentValue = interpolate(easedT); AnimationValue currentValue = interpolate(easedT);
// Apply currentValue to target (either drawable or entity) // Apply to whichever target is valid
std::visit([this](const auto& value) { if (target) {
using T = std::decay_t<decltype(value)>; applyValue(target.get(), currentValue);
} else if (entity) {
if (currentTarget) { applyValue(entity.get(), currentValue);
// Handle UIDrawable targets }
if constexpr (std::is_same_v<T, float>) {
currentTarget->setProperty(targetProperty, value); // Trigger callback when animation completes
} // Check pythonCallback again in case it was cleared during update
else if constexpr (std::is_same_v<T, int>) { if (isComplete() && !callbackTriggered && pythonCallback) {
currentTarget->setProperty(targetProperty, value); triggerCallback();
} }
else if constexpr (std::is_same_v<T, sf::Color>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
currentTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, std::string>) {
currentTarget->setProperty(targetProperty, value);
}
}
else if (currentEntityTarget) {
// Handle UIEntity targets
if constexpr (std::is_same_v<T, float>) {
currentEntityTarget->setProperty(targetProperty, value);
}
else if constexpr (std::is_same_v<T, int>) {
currentEntityTarget->setProperty(targetProperty, value);
}
// Entities don't support other types yet
}
}, currentValue);
return !isComplete(); return !isComplete();
} }
@ -254,6 +301,77 @@ AnimationValue Animation::interpolate(float t) const {
}, targetValue); }, targetValue);
} }
void Animation::applyValue(UIDrawable* target, const AnimationValue& value) {
if (!target) return;
std::visit([this, target](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, int>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, std::string>) {
target->setProperty(targetProperty, val);
}
}, value);
}
void Animation::applyValue(UIEntity* entity, const AnimationValue& value) {
if (!entity) return;
std::visit([this, entity](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
entity->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, int>) {
entity->setProperty(targetProperty, val);
}
// Entities don't support other types yet
}, value);
}
void Animation::triggerCallback() {
if (!pythonCallback) return;
// Ensure we only trigger once
if (callbackTriggered) return;
callbackTriggered = true;
PyGILState_STATE gstate = PyGILState_Ensure();
// TODO: In future, create PyAnimation wrapper for this animation
// For now, pass None for both parameters
PyObject* args = PyTuple_New(2);
Py_INCREF(Py_None);
Py_INCREF(Py_None);
PyTuple_SetItem(args, 0, Py_None); // animation parameter
PyTuple_SetItem(args, 1, Py_None); // target parameter
PyObject* result = PyObject_CallObject(pythonCallback, args);
Py_DECREF(args);
if (!result) {
// Print error but don't crash
PyErr_Print();
PyErr_Clear(); // Clear the error state
} else {
Py_DECREF(result);
}
PyGILState_Release(gstate);
}
// Easing functions implementation // Easing functions implementation
namespace EasingFunctions { namespace EasingFunctions {
@ -502,26 +620,50 @@ AnimationManager& AnimationManager::getInstance() {
} }
void AnimationManager::addAnimation(std::shared_ptr<Animation> animation) { void AnimationManager::addAnimation(std::shared_ptr<Animation> animation) {
activeAnimations.push_back(animation); if (animation && animation->hasValidTarget()) {
if (isUpdating) {
// Defer adding during update to avoid iterator invalidation
pendingAnimations.push_back(animation);
} else {
activeAnimations.push_back(animation);
}
}
} }
void AnimationManager::update(float deltaTime) { void AnimationManager::update(float deltaTime) {
for (auto& anim : activeAnimations) { // Set flag to defer new animations
anim->update(deltaTime); isUpdating = true;
}
cleanup(); // Remove completed or invalid animations
}
void AnimationManager::cleanup() {
activeAnimations.erase( activeAnimations.erase(
std::remove_if(activeAnimations.begin(), activeAnimations.end(), std::remove_if(activeAnimations.begin(), activeAnimations.end(),
[](const std::shared_ptr<Animation>& anim) { [deltaTime](std::shared_ptr<Animation>& anim) {
return anim->isComplete(); return !anim || !anim->update(deltaTime);
}), }),
activeAnimations.end() activeAnimations.end()
); );
// Clear update flag
isUpdating = false;
// Add any animations that were created during update
if (!pendingAnimations.empty()) {
activeAnimations.insert(activeAnimations.end(),
pendingAnimations.begin(),
pendingAnimations.end());
pendingAnimations.clear();
}
} }
void AnimationManager::clear() {
void AnimationManager::clear(bool completeAnimations) {
if (completeAnimations) {
// Complete all animations before clearing
for (auto& anim : activeAnimations) {
if (anim) {
anim->complete();
}
}
}
activeAnimations.clear(); activeAnimations.clear();
} }

View File

@ -6,6 +6,7 @@
#include <variant> #include <variant>
#include <vector> #include <vector>
#include <SFML/Graphics.hpp> #include <SFML/Graphics.hpp>
#include "Python.h"
// Forward declarations // Forward declarations
class UIDrawable; class UIDrawable;
@ -36,13 +37,20 @@ public:
const AnimationValue& targetValue, const AnimationValue& targetValue,
float duration, float duration,
EasingFunction easingFunc = EasingFunctions::linear, EasingFunction easingFunc = EasingFunctions::linear,
bool delta = false); bool delta = false,
PyObject* callback = nullptr);
// Destructor - cleanup Python callback reference
~Animation();
// Apply this animation to a drawable // Apply this animation to a drawable
void start(UIDrawable* target); void start(std::shared_ptr<UIDrawable> target);
// Apply this animation to an entity (special case since Entity doesn't inherit from UIDrawable) // Apply this animation to an entity (special case since Entity doesn't inherit from UIDrawable)
void startEntity(UIEntity* target); void startEntity(std::shared_ptr<UIEntity> target);
// Complete the animation immediately (jump to final value)
void complete();
// Update animation (called each frame) // Update animation (called each frame)
// Returns true if animation is still running, false if complete // Returns true if animation is still running, false if complete
@ -51,6 +59,12 @@ public:
// Get current interpolated value // Get current interpolated value
AnimationValue getCurrentValue() const; AnimationValue getCurrentValue() const;
// Check if animation has valid target
bool hasValidTarget() const;
// Clear the callback (called when PyAnimation is deallocated)
void clearCallback();
// Animation properties // Animation properties
std::string getTargetProperty() const { return targetProperty; } std::string getTargetProperty() const { return targetProperty; }
float getDuration() const { return duration; } float getDuration() const { return duration; }
@ -67,11 +81,24 @@ private:
EasingFunction easingFunc; // Easing function to use EasingFunction easingFunc; // Easing function to use
bool delta; // If true, targetValue is relative to start bool delta; // If true, targetValue is relative to start
UIDrawable* currentTarget = nullptr; // Current target being animated // RAII: Use weak_ptr for safe target tracking
UIEntity* currentEntityTarget = nullptr; // Current entity target (alternative to drawable) std::weak_ptr<UIDrawable> targetWeak;
std::weak_ptr<UIEntity> entityTargetWeak;
// Callback support
PyObject* pythonCallback = nullptr; // Python callback function (we own a reference)
bool callbackTriggered = false; // Ensure callback only fires once
PyObject* pyAnimationWrapper = nullptr; // Weak reference to PyAnimation if created from Python
// Helper to interpolate between values // Helper to interpolate between values
AnimationValue interpolate(float t) const; AnimationValue interpolate(float t) const;
// Helper to apply value to target
void applyValue(UIDrawable* target, const AnimationValue& value);
void applyValue(UIEntity* entity, const AnimationValue& value);
// Trigger callback when animation completes
void triggerCallback();
}; };
// Easing functions library // Easing functions library
@ -134,13 +161,12 @@ public:
// Update all animations // Update all animations
void update(float deltaTime); void update(float deltaTime);
// Remove completed animations // Clear all animations (optionally completing them first)
void cleanup(); void clear(bool completeAnimations = false);
// Clear all animations
void clear();
private: private:
AnimationManager() = default; AnimationManager() = default;
std::vector<std::shared_ptr<Animation>> activeAnimations; std::vector<std::shared_ptr<Animation>> activeAnimations;
std::vector<std::shared_ptr<Animation>> pendingAnimations; // Animations to add after update
bool isUpdating = false; // Flag to track if we're in update loop
}; };

View File

@ -16,7 +16,7 @@ GameEngine::GameEngine(const McRogueFaceConfig& cfg)
{ {
Resources::font.loadFromFile("./assets/JetbrainsMono.ttf"); Resources::font.loadFromFile("./assets/JetbrainsMono.ttf");
Resources::game = this; Resources::game = this;
window_title = "Crypt of Sokoban - 7DRL 2025, McRogueface Engine"; window_title = "McRogueFace Engine";
// Initialize rendering based on headless mode // Initialize rendering based on headless mode
if (headless) { if (headless) {
@ -91,6 +91,9 @@ void GameEngine::cleanup()
if (cleaned_up) return; if (cleaned_up) return;
cleaned_up = true; cleaned_up = true;
// Clear all animations first (RAII handles invalidation)
AnimationManager::getInstance().clear();
// Clear Python references before destroying C++ objects // Clear Python references before destroying C++ objects
// Clear all timers (they hold Python callables) // Clear all timers (they hold Python callables)
timers.clear(); timers.clear();
@ -182,7 +185,7 @@ void GameEngine::setWindowScale(float multiplier)
void GameEngine::run() void GameEngine::run()
{ {
std::cout << "GameEngine::run() starting main loop..." << std::endl; //std::cout << "GameEngine::run() starting main loop..." << std::endl;
float fps = 0.0; float fps = 0.0;
frameTime = 0.016f; // Initialize to ~60 FPS frameTime = 0.016f; // Initialize to ~60 FPS
clock.restart(); clock.restart();
@ -259,7 +262,7 @@ void GameEngine::run()
int tenth_fps = (metrics.fps * 10) % 10; int tenth_fps = (metrics.fps * 10) % 10;
if (!headless && window) { if (!headless && window) {
window->setTitle(window_title + " " + std::to_string(whole_fps) + "." + std::to_string(tenth_fps) + " FPS"); window->setTitle(window_title);
} }
// In windowed mode, check if window was closed // In windowed mode, check if window was closed

View File

@ -18,19 +18,31 @@ PyObject* PyAnimation::create(PyTypeObject* type, PyObject* args, PyObject* kwds
} }
int PyAnimation::init(PyAnimationObject* self, PyObject* args, PyObject* kwds) { int PyAnimation::init(PyAnimationObject* self, PyObject* args, PyObject* kwds) {
static const char* keywords[] = {"property", "target", "duration", "easing", "delta", nullptr}; static const char* keywords[] = {"property", "target", "duration", "easing", "delta", "callback", nullptr};
const char* property_name; const char* property_name;
PyObject* target_value; PyObject* target_value;
float duration; float duration;
const char* easing_name = "linear"; const char* easing_name = "linear";
int delta = 0; int delta = 0;
PyObject* callback = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "sOf|sp", const_cast<char**>(keywords), if (!PyArg_ParseTupleAndKeywords(args, kwds, "sOf|spO", const_cast<char**>(keywords),
&property_name, &target_value, &duration, &easing_name, &delta)) { &property_name, &target_value, &duration, &easing_name, &delta, &callback)) {
return -1; return -1;
} }
// Validate callback is callable if provided
if (callback && callback != Py_None && !PyCallable_Check(callback)) {
PyErr_SetString(PyExc_TypeError, "callback must be callable");
return -1;
}
// Convert None to nullptr for C++
if (callback == Py_None) {
callback = nullptr;
}
// Convert Python target value to AnimationValue // Convert Python target value to AnimationValue
AnimationValue animValue; AnimationValue animValue;
@ -90,7 +102,7 @@ int PyAnimation::init(PyAnimationObject* self, PyObject* args, PyObject* kwds) {
EasingFunction easingFunc = EasingFunctions::getByName(easing_name); EasingFunction easingFunc = EasingFunctions::getByName(easing_name);
// Create the Animation // Create the Animation
self->data = std::make_shared<Animation>(property_name, animValue, duration, easingFunc, delta != 0); self->data = std::make_shared<Animation>(property_name, animValue, duration, easingFunc, delta != 0, callback);
return 0; return 0;
} }
@ -126,50 +138,50 @@ PyObject* PyAnimation::start(PyAnimationObject* self, PyObject* args) {
return NULL; return NULL;
} }
// Get the UIDrawable from the Python object
UIDrawable* drawable = nullptr;
// Check type by comparing type names // Check type by comparing type names
const char* type_name = Py_TYPE(target_obj)->tp_name; const char* type_name = Py_TYPE(target_obj)->tp_name;
if (strcmp(type_name, "mcrfpy.Frame") == 0) { if (strcmp(type_name, "mcrfpy.Frame") == 0) {
PyUIFrameObject* frame = (PyUIFrameObject*)target_obj; PyUIFrameObject* frame = (PyUIFrameObject*)target_obj;
drawable = frame->data.get(); if (frame->data) {
self->data->start(frame->data);
AnimationManager::getInstance().addAnimation(self->data);
}
} }
else if (strcmp(type_name, "mcrfpy.Caption") == 0) { else if (strcmp(type_name, "mcrfpy.Caption") == 0) {
PyUICaptionObject* caption = (PyUICaptionObject*)target_obj; PyUICaptionObject* caption = (PyUICaptionObject*)target_obj;
drawable = caption->data.get(); if (caption->data) {
self->data->start(caption->data);
AnimationManager::getInstance().addAnimation(self->data);
}
} }
else if (strcmp(type_name, "mcrfpy.Sprite") == 0) { else if (strcmp(type_name, "mcrfpy.Sprite") == 0) {
PyUISpriteObject* sprite = (PyUISpriteObject*)target_obj; PyUISpriteObject* sprite = (PyUISpriteObject*)target_obj;
drawable = sprite->data.get(); if (sprite->data) {
self->data->start(sprite->data);
AnimationManager::getInstance().addAnimation(self->data);
}
} }
else if (strcmp(type_name, "mcrfpy.Grid") == 0) { else if (strcmp(type_name, "mcrfpy.Grid") == 0) {
PyUIGridObject* grid = (PyUIGridObject*)target_obj; PyUIGridObject* grid = (PyUIGridObject*)target_obj;
drawable = grid->data.get(); if (grid->data) {
self->data->start(grid->data);
AnimationManager::getInstance().addAnimation(self->data);
}
} }
else if (strcmp(type_name, "mcrfpy.Entity") == 0) { else if (strcmp(type_name, "mcrfpy.Entity") == 0) {
// Special handling for Entity since it doesn't inherit from UIDrawable // Special handling for Entity since it doesn't inherit from UIDrawable
PyUIEntityObject* entity = (PyUIEntityObject*)target_obj; PyUIEntityObject* entity = (PyUIEntityObject*)target_obj;
// Start the animation directly on the entity if (entity->data) {
self->data->startEntity(entity->data.get()); self->data->startEntity(entity->data);
AnimationManager::getInstance().addAnimation(self->data);
// Add to AnimationManager }
AnimationManager::getInstance().addAnimation(self->data);
Py_RETURN_NONE;
} }
else { else {
PyErr_SetString(PyExc_TypeError, "Target must be a Frame, Caption, Sprite, Grid, or Entity"); PyErr_SetString(PyExc_TypeError, "Target must be a Frame, Caption, Sprite, Grid, or Entity");
return NULL; return NULL;
} }
// Start the animation
self->data->start(drawable);
// Add to AnimationManager
AnimationManager::getInstance().addAnimation(self->data);
Py_RETURN_NONE; Py_RETURN_NONE;
} }
@ -214,6 +226,20 @@ PyObject* PyAnimation::get_current_value(PyAnimationObject* self, PyObject* args
}, value); }, value);
} }
PyObject* PyAnimation::complete(PyAnimationObject* self, PyObject* args) {
if (self->data) {
self->data->complete();
}
Py_RETURN_NONE;
}
PyObject* PyAnimation::has_valid_target(PyAnimationObject* self, PyObject* args) {
if (self->data && self->data->hasValidTarget()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyGetSetDef PyAnimation::getsetters[] = { PyGetSetDef PyAnimation::getsetters[] = {
{"property", (getter)get_property, NULL, "Target property name", NULL}, {"property", (getter)get_property, NULL, "Target property name", NULL},
{"duration", (getter)get_duration, NULL, "Animation duration in seconds", NULL}, {"duration", (getter)get_duration, NULL, "Animation duration in seconds", NULL},
@ -225,10 +251,23 @@ PyGetSetDef PyAnimation::getsetters[] = {
PyMethodDef PyAnimation::methods[] = { PyMethodDef PyAnimation::methods[] = {
{"start", (PyCFunction)start, METH_VARARGS, {"start", (PyCFunction)start, METH_VARARGS,
"Start the animation on a target UIDrawable"}, "start(target) -> None\n\n"
"Start the animation on a target UI element.\n\n"
"Args:\n"
" target: The UI element to animate (Frame, Caption, Sprite, Grid, or Entity)\n\n"
"Note:\n"
" The animation will automatically stop if the target is destroyed."},
{"update", (PyCFunction)update, METH_VARARGS, {"update", (PyCFunction)update, METH_VARARGS,
"Update the animation by deltaTime (returns True if still running)"}, "Update the animation by deltaTime (returns True if still running)"},
{"get_current_value", (PyCFunction)get_current_value, METH_NOARGS, {"get_current_value", (PyCFunction)get_current_value, METH_NOARGS,
"Get the current interpolated value"}, "Get the current interpolated value"},
{"complete", (PyCFunction)complete, METH_NOARGS,
"complete() -> None\n\n"
"Complete the animation immediately by jumping to the final value."},
{"hasValidTarget", (PyCFunction)has_valid_target, METH_NOARGS,
"hasValidTarget() -> bool\n\n"
"Check if the animation still has a valid target.\n\n"
"Returns:\n"
" True if the target still exists, False if it was destroyed."},
{NULL} {NULL}
}; };

View File

@ -28,6 +28,8 @@ public:
static PyObject* start(PyAnimationObject* self, PyObject* args); static PyObject* start(PyAnimationObject* self, PyObject* args);
static PyObject* update(PyAnimationObject* self, PyObject* args); static PyObject* update(PyAnimationObject* self, PyObject* args);
static PyObject* get_current_value(PyAnimationObject* self, PyObject* args); static PyObject* get_current_value(PyAnimationObject* self, PyObject* args);
static PyObject* complete(PyAnimationObject* self, PyObject* args);
static PyObject* has_valid_target(PyAnimationObject* self, PyObject* args);
static PyGetSetDef getsetters[]; static PyGetSetDef getsetters[];
static PyMethodDef methods[]; static PyMethodDef methods[];

View File

@ -1,410 +0,0 @@
#pragma once
#include "Python.h"
#include "PyVector.h"
#include "PyColor.h"
#include <SFML/Graphics.hpp>
#include <string>
// Unified argument parsing helpers for Python API consistency
namespace PyArgHelpers {
// Position in pixels (float)
struct PositionResult {
float x, y;
bool valid;
const char* error;
};
// Size in pixels (float)
struct SizeResult {
float w, h;
bool valid;
const char* error;
};
// Grid position in tiles (float - for animation)
struct GridPositionResult {
float grid_x, grid_y;
bool valid;
const char* error;
};
// Grid size in tiles (int - can't have fractional tiles)
struct GridSizeResult {
int grid_w, grid_h;
bool valid;
const char* error;
};
// Color parsing
struct ColorResult {
sf::Color color;
bool valid;
const char* error;
};
// Helper to check if a keyword conflicts with positional args
static bool hasConflict(PyObject* kwds, const char* key, bool has_positional) {
if (!kwds || !has_positional) return false;
PyObject* value = PyDict_GetItemString(kwds, key);
return value != nullptr;
}
// Parse position with conflict detection
static PositionResult parsePosition(PyObject* args, PyObject* kwds, int* next_arg = nullptr) {
PositionResult result = {0.0f, 0.0f, false, nullptr};
int start_idx = next_arg ? *next_arg : 0;
bool has_positional = false;
// Check for positional tuple argument first
if (args && PyTuple_Size(args) > start_idx) {
PyObject* first = PyTuple_GetItem(args, start_idx);
// Is it a tuple/Vector?
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
// Extract from tuple
PyObject* x_obj = PyTuple_GetItem(first, 0);
PyObject* y_obj = PyTuple_GetItem(first, 1);
if ((PyFloat_Check(x_obj) || PyLong_Check(x_obj)) &&
(PyFloat_Check(y_obj) || PyLong_Check(y_obj))) {
result.x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : PyLong_AsLong(x_obj);
result.y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : PyLong_AsLong(y_obj);
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
}
} else if (PyObject_TypeCheck(first, (PyTypeObject*)PyObject_GetAttrString(PyImport_ImportModule("mcrfpy"), "Vector"))) {
// It's a Vector object
PyVectorObject* vec = (PyVectorObject*)first;
result.x = vec->data.x;
result.y = vec->data.y;
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
}
}
// Check for keyword conflicts
if (has_positional) {
if (hasConflict(kwds, "pos", true) || hasConflict(kwds, "x", true) || hasConflict(kwds, "y", true)) {
result.valid = false;
result.error = "position specified both positionally and by keyword";
return result;
}
}
// If no positional, try keywords
if (!has_positional && kwds) {
PyObject* pos_obj = PyDict_GetItemString(kwds, "pos");
PyObject* x_obj = PyDict_GetItemString(kwds, "x");
PyObject* y_obj = PyDict_GetItemString(kwds, "y");
// Check for conflicts between pos and x/y
if (pos_obj && (x_obj || y_obj)) {
result.valid = false;
result.error = "pos and x/y cannot both be specified";
return result;
}
if (pos_obj) {
// Parse pos keyword
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
result.x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
result.y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
result.valid = true;
}
} else if (PyObject_TypeCheck(pos_obj, (PyTypeObject*)PyObject_GetAttrString(PyImport_ImportModule("mcrfpy"), "Vector"))) {
PyVectorObject* vec = (PyVectorObject*)pos_obj;
result.x = vec->data.x;
result.y = vec->data.y;
result.valid = true;
}
} else if (x_obj && y_obj) {
// Parse x, y keywords
if ((PyFloat_Check(x_obj) || PyLong_Check(x_obj)) &&
(PyFloat_Check(y_obj) || PyLong_Check(y_obj))) {
result.x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : PyLong_AsLong(x_obj);
result.y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : PyLong_AsLong(y_obj);
result.valid = true;
}
}
}
return result;
}
// Parse size with conflict detection
static SizeResult parseSize(PyObject* args, PyObject* kwds, int* next_arg = nullptr) {
SizeResult result = {0.0f, 0.0f, false, nullptr};
int start_idx = next_arg ? *next_arg : 0;
bool has_positional = false;
// Check for positional tuple argument
if (args && PyTuple_Size(args) > start_idx) {
PyObject* first = PyTuple_GetItem(args, start_idx);
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
PyObject* w_obj = PyTuple_GetItem(first, 0);
PyObject* h_obj = PyTuple_GetItem(first, 1);
if ((PyFloat_Check(w_obj) || PyLong_Check(w_obj)) &&
(PyFloat_Check(h_obj) || PyLong_Check(h_obj))) {
result.w = PyFloat_Check(w_obj) ? PyFloat_AsDouble(w_obj) : PyLong_AsLong(w_obj);
result.h = PyFloat_Check(h_obj) ? PyFloat_AsDouble(h_obj) : PyLong_AsLong(h_obj);
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
}
}
}
// Check for keyword conflicts
if (has_positional) {
if (hasConflict(kwds, "size", true) || hasConflict(kwds, "w", true) || hasConflict(kwds, "h", true)) {
result.valid = false;
result.error = "size specified both positionally and by keyword";
return result;
}
}
// If no positional, try keywords
if (!has_positional && kwds) {
PyObject* size_obj = PyDict_GetItemString(kwds, "size");
PyObject* w_obj = PyDict_GetItemString(kwds, "w");
PyObject* h_obj = PyDict_GetItemString(kwds, "h");
// Check for conflicts between size and w/h
if (size_obj && (w_obj || h_obj)) {
result.valid = false;
result.error = "size and w/h cannot both be specified";
return result;
}
if (size_obj) {
// Parse size keyword
if (PyTuple_Check(size_obj) && PyTuple_Size(size_obj) == 2) {
PyObject* w_val = PyTuple_GetItem(size_obj, 0);
PyObject* h_val = PyTuple_GetItem(size_obj, 1);
if ((PyFloat_Check(w_val) || PyLong_Check(w_val)) &&
(PyFloat_Check(h_val) || PyLong_Check(h_val))) {
result.w = PyFloat_Check(w_val) ? PyFloat_AsDouble(w_val) : PyLong_AsLong(w_val);
result.h = PyFloat_Check(h_val) ? PyFloat_AsDouble(h_val) : PyLong_AsLong(h_val);
result.valid = true;
}
}
} else if (w_obj && h_obj) {
// Parse w, h keywords
if ((PyFloat_Check(w_obj) || PyLong_Check(w_obj)) &&
(PyFloat_Check(h_obj) || PyLong_Check(h_obj))) {
result.w = PyFloat_Check(w_obj) ? PyFloat_AsDouble(w_obj) : PyLong_AsLong(w_obj);
result.h = PyFloat_Check(h_obj) ? PyFloat_AsDouble(h_obj) : PyLong_AsLong(h_obj);
result.valid = true;
}
}
}
return result;
}
// Parse grid position (float for smooth animation)
static GridPositionResult parseGridPosition(PyObject* args, PyObject* kwds, int* next_arg = nullptr) {
GridPositionResult result = {0.0f, 0.0f, false, nullptr};
int start_idx = next_arg ? *next_arg : 0;
bool has_positional = false;
// Check for positional tuple argument
if (args && PyTuple_Size(args) > start_idx) {
PyObject* first = PyTuple_GetItem(args, start_idx);
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
PyObject* x_obj = PyTuple_GetItem(first, 0);
PyObject* y_obj = PyTuple_GetItem(first, 1);
if ((PyFloat_Check(x_obj) || PyLong_Check(x_obj)) &&
(PyFloat_Check(y_obj) || PyLong_Check(y_obj))) {
result.grid_x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : PyLong_AsLong(x_obj);
result.grid_y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : PyLong_AsLong(y_obj);
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
}
}
}
// Check for keyword conflicts
if (has_positional) {
if (hasConflict(kwds, "grid_pos", true) || hasConflict(kwds, "grid_x", true) || hasConflict(kwds, "grid_y", true)) {
result.valid = false;
result.error = "grid position specified both positionally and by keyword";
return result;
}
}
// If no positional, try keywords
if (!has_positional && kwds) {
PyObject* grid_pos_obj = PyDict_GetItemString(kwds, "grid_pos");
PyObject* grid_x_obj = PyDict_GetItemString(kwds, "grid_x");
PyObject* grid_y_obj = PyDict_GetItemString(kwds, "grid_y");
// Check for conflicts between grid_pos and grid_x/grid_y
if (grid_pos_obj && (grid_x_obj || grid_y_obj)) {
result.valid = false;
result.error = "grid_pos and grid_x/grid_y cannot both be specified";
return result;
}
if (grid_pos_obj) {
// Parse grid_pos keyword
if (PyTuple_Check(grid_pos_obj) && PyTuple_Size(grid_pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(grid_pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(grid_pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
result.grid_x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
result.grid_y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
result.valid = true;
}
}
} else if (grid_x_obj && grid_y_obj) {
// Parse grid_x, grid_y keywords
if ((PyFloat_Check(grid_x_obj) || PyLong_Check(grid_x_obj)) &&
(PyFloat_Check(grid_y_obj) || PyLong_Check(grid_y_obj))) {
result.grid_x = PyFloat_Check(grid_x_obj) ? PyFloat_AsDouble(grid_x_obj) : PyLong_AsLong(grid_x_obj);
result.grid_y = PyFloat_Check(grid_y_obj) ? PyFloat_AsDouble(grid_y_obj) : PyLong_AsLong(grid_y_obj);
result.valid = true;
}
}
}
return result;
}
// Parse grid size (int - no fractional tiles)
static GridSizeResult parseGridSize(PyObject* args, PyObject* kwds, int* next_arg = nullptr) {
GridSizeResult result = {0, 0, false, nullptr};
int start_idx = next_arg ? *next_arg : 0;
bool has_positional = false;
// Check for positional tuple argument
if (args && PyTuple_Size(args) > start_idx) {
PyObject* first = PyTuple_GetItem(args, start_idx);
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
PyObject* w_obj = PyTuple_GetItem(first, 0);
PyObject* h_obj = PyTuple_GetItem(first, 1);
if (PyLong_Check(w_obj) && PyLong_Check(h_obj)) {
result.grid_w = PyLong_AsLong(w_obj);
result.grid_h = PyLong_AsLong(h_obj);
result.valid = true;
has_positional = true;
if (next_arg) (*next_arg)++;
} else {
result.valid = false;
result.error = "grid size must be specified with integers";
return result;
}
}
}
// Check for keyword conflicts
if (has_positional) {
if (hasConflict(kwds, "grid_size", true) || hasConflict(kwds, "grid_w", true) || hasConflict(kwds, "grid_h", true)) {
result.valid = false;
result.error = "grid size specified both positionally and by keyword";
return result;
}
}
// If no positional, try keywords
if (!has_positional && kwds) {
PyObject* grid_size_obj = PyDict_GetItemString(kwds, "grid_size");
PyObject* grid_w_obj = PyDict_GetItemString(kwds, "grid_w");
PyObject* grid_h_obj = PyDict_GetItemString(kwds, "grid_h");
// Check for conflicts between grid_size and grid_w/grid_h
if (grid_size_obj && (grid_w_obj || grid_h_obj)) {
result.valid = false;
result.error = "grid_size and grid_w/grid_h cannot both be specified";
return result;
}
if (grid_size_obj) {
// Parse grid_size keyword
if (PyTuple_Check(grid_size_obj) && PyTuple_Size(grid_size_obj) == 2) {
PyObject* w_val = PyTuple_GetItem(grid_size_obj, 0);
PyObject* h_val = PyTuple_GetItem(grid_size_obj, 1);
if (PyLong_Check(w_val) && PyLong_Check(h_val)) {
result.grid_w = PyLong_AsLong(w_val);
result.grid_h = PyLong_AsLong(h_val);
result.valid = true;
} else {
result.valid = false;
result.error = "grid size must be specified with integers";
return result;
}
}
} else if (grid_w_obj && grid_h_obj) {
// Parse grid_w, grid_h keywords
if (PyLong_Check(grid_w_obj) && PyLong_Check(grid_h_obj)) {
result.grid_w = PyLong_AsLong(grid_w_obj);
result.grid_h = PyLong_AsLong(grid_h_obj);
result.valid = true;
} else {
result.valid = false;
result.error = "grid size must be specified with integers";
return result;
}
}
}
return result;
}
// Parse color using existing PyColor infrastructure
static ColorResult parseColor(PyObject* obj, const char* param_name = nullptr) {
ColorResult result = {sf::Color::White, false, nullptr};
if (!obj) {
return result;
}
// Use existing PyColor::from_arg which handles tuple/Color conversion
auto py_color = PyColor::from_arg(obj);
if (py_color) {
result.color = py_color->data;
result.valid = true;
} else {
result.valid = false;
std::string error_msg = param_name
? std::string(param_name) + " must be a color tuple (r,g,b) or (r,g,b,a)"
: "Invalid color format - expected tuple (r,g,b) or (r,g,b,a)";
result.error = error_msg.c_str();
}
return result;
}
// Helper to validate a texture object
static bool isValidTexture(PyObject* obj) {
if (!obj) return false;
PyObject* texture_type = PyObject_GetAttrString(PyImport_ImportModule("mcrfpy"), "Texture");
bool is_texture = PyObject_IsInstance(obj, texture_type);
Py_DECREF(texture_type);
return is_texture;
}
// Helper to validate a click handler
static bool isValidClickHandler(PyObject* obj) {
return obj && PyCallable_Check(obj);
}
}

View File

@ -31,13 +31,18 @@ void PyScene::do_mouse_input(std::string button, std::string type)
// Convert window coordinates to game coordinates using the viewport // Convert window coordinates to game coordinates using the viewport
auto mousepos = game->windowToGameCoords(sf::Vector2f(unscaledmousepos)); auto mousepos = game->windowToGameCoords(sf::Vector2f(unscaledmousepos));
// Create a sorted copy by z-index (highest first) // Only sort if z_index values have changed
std::vector<std::shared_ptr<UIDrawable>> sorted_elements(*ui_elements); if (ui_elements_need_sort) {
std::sort(sorted_elements.begin(), sorted_elements.end(), // Sort in ascending order (same as render)
[](const auto& a, const auto& b) { return a->z_index > b->z_index; }); std::sort(ui_elements->begin(), ui_elements->end(),
[](const auto& a, const auto& b) { return a->z_index < b->z_index; });
ui_elements_need_sort = false;
}
// Check elements in z-order (top to bottom) // Check elements in reverse z-order (highest z_index first, top to bottom)
for (const auto& element : sorted_elements) { // Use reverse iterators to go from end to beginning
for (auto it = ui_elements->rbegin(); it != ui_elements->rend(); ++it) {
const auto& element = *it;
if (!element->visible) continue; if (!element->visible) continue;
if (auto target = element->click_at(sf::Vector2f(mousepos))) { if (auto target = element->click_at(sf::Vector2f(mousepos))) {

View File

@ -3,7 +3,6 @@
#include "PyColor.h" #include "PyColor.h"
#include "PyVector.h" #include "PyVector.h"
#include "PyFont.h" #include "PyFont.h"
#include "PyArgHelpers.h"
// UIDrawable methods now in UIBase.h // UIDrawable methods now in UIBase.h
#include <algorithm> #include <algorithm>
@ -303,183 +302,135 @@ int UICaption::init(PyUICaptionObject* self, PyObject* args, PyObject* kwds)
{ {
using namespace mcrfpydef; using namespace mcrfpydef;
// Try parsing with PyArgHelpers // Define all parameters with defaults
int arg_idx = 0; PyObject* pos_obj = nullptr;
auto pos_result = PyArgHelpers::parsePosition(args, kwds, &arg_idx);
// Default values
float x = 0.0f, y = 0.0f, outline = 0.0f;
char* text = nullptr;
PyObject* font = nullptr; PyObject* font = nullptr;
const char* text = "";
PyObject* fill_color = nullptr; PyObject* fill_color = nullptr;
PyObject* outline_color = nullptr; PyObject* outline_color = nullptr;
float outline = 0.0f;
float font_size = 16.0f;
PyObject* click_handler = nullptr; PyObject* click_handler = nullptr;
int visible = 1;
float opacity = 1.0f;
int z_index = 0;
const char* name = nullptr;
float x = 0.0f, y = 0.0f;
// Case 1: Got position from helpers (tuple format) // Keywords list matches the new spec: positional args first, then all keyword args
if (pos_result.valid) { static const char* kwlist[] = {
x = pos_result.x; "pos", "font", "text", // Positional args (as per spec)
y = pos_result.y; // Keyword-only args
"fill_color", "outline_color", "outline", "font_size", "click",
// Parse remaining arguments "visible", "opacity", "z_index", "name", "x", "y",
static const char* remaining_keywords[] = { nullptr
"text", "font", "fill_color", "outline_color", "outline", "click", nullptr };
};
// Parse arguments with | for optional positional args
// Create new tuple with remaining args if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOzOOffOifizff", const_cast<char**>(kwlist),
Py_ssize_t total_args = PyTuple_Size(args); &pos_obj, &font, &text, // Positional
PyObject* remaining_args = PyTuple_GetSlice(args, arg_idx, total_args); &fill_color, &outline_color, &outline, &font_size, &click_handler,
&visible, &opacity, &z_index, &name, &x, &y)) {
if (!PyArg_ParseTupleAndKeywords(remaining_args, kwds, "|zOOOfO", return -1;
const_cast<char**>(remaining_keywords), }
&text, &font, &fill_color, &outline_color,
&outline, &click_handler)) { // Handle position argument (can be tuple, Vector, or use x/y keywords)
Py_DECREF(remaining_args); if (pos_obj) {
if (pos_result.error) PyErr_SetString(PyExc_TypeError, pos_result.error); PyVectorObject* vec = PyVector::from_arg(pos_obj);
if (vec) {
x = vec->data.x;
y = vec->data.y;
Py_DECREF(vec);
} else {
PyErr_Clear();
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
} else {
PyErr_SetString(PyExc_TypeError, "pos tuple must contain numbers");
return -1;
}
} else {
PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector");
return -1;
}
}
}
// Handle font argument
std::shared_ptr<PyFont> pyfont = nullptr;
if (font && font != Py_None) {
if (!PyObject_IsInstance(font, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Font"))) {
PyErr_SetString(PyExc_TypeError, "font must be a mcrfpy.Font instance");
return -1; return -1;
} }
Py_DECREF(remaining_args); auto obj = (PyFontObject*)font;
} pyfont = obj->data;
// Case 2: Traditional format
else {
PyErr_Clear(); // Clear any errors from helpers
// First check if this is the old (text, x, y, ...) format
PyObject* first_arg = args && PyTuple_Size(args) > 0 ? PyTuple_GetItem(args, 0) : nullptr;
bool text_first = first_arg && PyUnicode_Check(first_arg);
if (text_first) {
// Pattern: (text, x, y, ...)
static const char* text_first_keywords[] = {
"text", "x", "y", "font", "fill_color", "outline_color",
"outline", "click", "pos", nullptr
};
PyObject* pos_obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|zffOOOfOO",
const_cast<char**>(text_first_keywords),
&text, &x, &y, &font, &fill_color, &outline_color,
&outline, &click_handler, &pos_obj)) {
return -1;
}
// Handle pos keyword override
if (pos_obj && pos_obj != Py_None) {
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
}
} else if (PyObject_TypeCheck(pos_obj, (PyTypeObject*)PyObject_GetAttrString(
PyImport_ImportModule("mcrfpy"), "Vector"))) {
PyVectorObject* vec = (PyVectorObject*)pos_obj;
x = vec->data.x;
y = vec->data.y;
} else {
PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector");
return -1;
}
}
} else {
// Pattern: (x, y, text, ...)
static const char* xy_keywords[] = {
"x", "y", "text", "font", "fill_color", "outline_color",
"outline", "click", "pos", nullptr
};
PyObject* pos_obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ffzOOOfOO",
const_cast<char**>(xy_keywords),
&x, &y, &text, &font, &fill_color, &outline_color,
&outline, &click_handler, &pos_obj)) {
return -1;
}
// Handle pos keyword override
if (pos_obj && pos_obj != Py_None) {
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
}
} else if (PyObject_TypeCheck(pos_obj, (PyTypeObject*)PyObject_GetAttrString(
PyImport_ImportModule("mcrfpy"), "Vector"))) {
PyVectorObject* vec = (PyVectorObject*)pos_obj;
x = vec->data.x;
y = vec->data.y;
} else {
PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector");
return -1;
}
}
}
} }
self->data->position = sf::Vector2f(x, y); // Set base class position // Create the caption
self->data->text.setPosition(self->data->position); // Sync text position self->data = std::make_shared<UICaption>();
// check types for font, fill_color, outline_color self->data->position = sf::Vector2f(x, y);
self->data->text.setPosition(self->data->position);
//std::cout << PyUnicode_AsUTF8(PyObject_Repr(font)) << std::endl; self->data->text.setOutlineThickness(outline);
if (font != NULL && font != Py_None && !PyObject_IsInstance(font, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Font")/*(PyObject*)&PyFontType)*/)){
PyErr_SetString(PyExc_TypeError, "font must be a mcrfpy.Font instance or None"); // Set the font
return -1; if (pyfont) {
} else if (font != NULL && font != Py_None) self->data->text.setFont(pyfont->font);
{ } else {
auto font_obj = (PyFontObject*)font;
self->data->text.setFont(font_obj->data->font);
self->font = font;
Py_INCREF(font);
} else
{
// Use default font when None or not provided // Use default font when None or not provided
if (McRFPy_API::default_font) { if (McRFPy_API::default_font) {
self->data->text.setFont(McRFPy_API::default_font->font); self->data->text.setFont(McRFPy_API::default_font->font);
// Store reference to default font
PyObject* default_font_obj = PyObject_GetAttrString(McRFPy_API::mcrf_module, "default_font");
if (default_font_obj) {
self->font = default_font_obj;
// Don't need to DECREF since we're storing it
}
} }
} }
// Handle text - default to empty string if not provided // Set character size
if (text && text != NULL) { self->data->text.setCharacterSize(static_cast<unsigned int>(font_size));
self->data->text.setString((std::string)text);
} else { // Set text
self->data->text.setString(""); if (text && strlen(text) > 0) {
self->data->text.setString(std::string(text));
} }
self->data->text.setOutlineThickness(outline);
if (fill_color) { // Handle fill_color
auto fc = PyColor::from_arg(fill_color); if (fill_color && fill_color != Py_None) {
if (!fc) { PyColorObject* color_obj = PyColor::from_arg(fill_color);
PyErr_SetString(PyExc_TypeError, "fill_color must be mcrfpy.Color or arguments to mcrfpy.Color.__init__"); if (!color_obj) {
PyErr_SetString(PyExc_TypeError, "fill_color must be a Color or color tuple");
return -1; return -1;
} }
self->data->text.setFillColor(PyColor::fromPy(fc)); self->data->text.setFillColor(color_obj->data);
//Py_DECREF(fc); Py_DECREF(color_obj);
} else { } else {
self->data->text.setFillColor(sf::Color(0,0,0,255)); self->data->text.setFillColor(sf::Color(255, 255, 255, 255)); // Default: white
} }
if (outline_color) { // Handle outline_color
auto oc = PyColor::from_arg(outline_color); if (outline_color && outline_color != Py_None) {
if (!oc) { PyColorObject* color_obj = PyColor::from_arg(outline_color);
PyErr_SetString(PyExc_TypeError, "outline_color must be mcrfpy.Color or arguments to mcrfpy.Color.__init__"); if (!color_obj) {
PyErr_SetString(PyExc_TypeError, "outline_color must be a Color or color tuple");
return -1; return -1;
} }
self->data->text.setOutlineColor(PyColor::fromPy(oc)); self->data->text.setOutlineColor(color_obj->data);
//Py_DECREF(oc); Py_DECREF(color_obj);
} else { } else {
self->data->text.setOutlineColor(sf::Color(128,128,128,255)); self->data->text.setOutlineColor(sf::Color(0, 0, 0, 255)); // Default: black
} }
// Process click handler if provided // Set other properties
self->data->visible = visible;
self->data->opacity = opacity;
self->data->z_index = z_index;
if (name) {
self->data->name = std::string(name);
}
// Handle click handler
if (click_handler && click_handler != Py_None) { if (click_handler && click_handler != Py_None) {
if (!PyCallable_Check(click_handler)) { if (!PyCallable_Check(click_handler)) {
PyErr_SetString(PyExc_TypeError, "click must be callable"); PyErr_SetString(PyExc_TypeError, "click must be callable");
@ -487,10 +438,11 @@ int UICaption::init(PyUICaptionObject* self, PyObject* args, PyObject* kwds)
} }
self->data->click_register(click_handler); self->data->click_register(click_handler);
} }
return 0; return 0;
} }
// Property system implementation for animations // Property system implementation for animations
bool UICaption::setProperty(const std::string& name, float value) { bool UICaption::setProperty(const std::string& name, float value) {
if (name == "x") { if (name == "x") {

View File

@ -65,26 +65,37 @@ namespace mcrfpydef {
//.tp_iter //.tp_iter
//.tp_iternext //.tp_iternext
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Caption(text='', x=0, y=0, font=None, fill_color=None, outline_color=None, outline=0, click=None)\n\n" .tp_doc = PyDoc_STR("Caption(pos=None, font=None, text='', **kwargs)\n\n"
"A text display UI element with customizable font and styling.\n\n" "A text display UI element with customizable font and styling.\n\n"
"Args:\n" "Args:\n"
" text (str): The text content to display. Default: ''\n" " pos (tuple, optional): Position as (x, y) tuple. Default: (0, 0)\n"
" x (float): X position in pixels. Default: 0\n" " font (Font, optional): Font object for text rendering. Default: engine default font\n"
" y (float): Y position in pixels. Default: 0\n" " text (str, optional): The text content to display. Default: ''\n\n"
" font (Font): Font object for text rendering. Default: engine default font\n" "Keyword Args:\n"
" fill_color (Color): Text fill color. Default: (255, 255, 255, 255)\n" " fill_color (Color): Text fill color. Default: (255, 255, 255, 255)\n"
" outline_color (Color): Text outline color. Default: (0, 0, 0, 255)\n" " outline_color (Color): Text outline color. Default: (0, 0, 0, 255)\n"
" outline (float): Text outline thickness. Default: 0\n" " outline (float): Text outline thickness. Default: 0\n"
" click (callable): Click event handler. Default: None\n\n" " font_size (float): Font size in points. Default: 16\n"
" click (callable): Click event handler. Default: None\n"
" visible (bool): Visibility state. Default: True\n"
" opacity (float): Opacity (0.0-1.0). Default: 1.0\n"
" z_index (int): Rendering order. Default: 0\n"
" name (str): Element name for finding. Default: None\n"
" x (float): X position override. Default: 0\n"
" y (float): Y position override. Default: 0\n\n"
"Attributes:\n" "Attributes:\n"
" text (str): The displayed text content\n" " text (str): The displayed text content\n"
" x, y (float): Position in pixels\n" " x, y (float): Position in pixels\n"
" pos (Vector): Position as a Vector object\n"
" font (Font): Font used for rendering\n" " font (Font): Font used for rendering\n"
" font_size (float): Font size in points\n"
" fill_color, outline_color (Color): Text appearance\n" " fill_color, outline_color (Color): Text appearance\n"
" outline (float): Outline thickness\n" " outline (float): Outline thickness\n"
" click (callable): Click event handler\n" " click (callable): Click event handler\n"
" visible (bool): Visibility state\n" " visible (bool): Visibility state\n"
" opacity (float): Opacity value\n"
" z_index (int): Rendering order\n" " z_index (int): Rendering order\n"
" name (str): Element name\n"
" w, h (float): Read-only computed size based on text and font"), " w, h (float): Read-only computed size based on text and font"),
.tp_methods = UICaption_methods, .tp_methods = UICaption_methods,
//.tp_members = PyUIFrame_members, //.tp_members = PyUIFrame_members,

View File

@ -4,7 +4,6 @@
#include <algorithm> #include <algorithm>
#include "PyObjectUtils.h" #include "PyObjectUtils.h"
#include "PyVector.h" #include "PyVector.h"
#include "PyArgHelpers.h"
// UIDrawable methods now in UIBase.h // UIDrawable methods now in UIBase.h
#include "UIEntityPyMethods.h" #include "UIEntityPyMethods.h"
@ -121,81 +120,57 @@ PyObject* UIEntity::index(PyUIEntityObject* self, PyObject* Py_UNUSED(ignored))
} }
int UIEntity::init(PyUIEntityObject* self, PyObject* args, PyObject* kwds) { int UIEntity::init(PyUIEntityObject* self, PyObject* args, PyObject* kwds) {
// Try parsing with PyArgHelpers for grid position // Define all parameters with defaults
int arg_idx = 0; PyObject* grid_pos_obj = nullptr;
auto grid_pos_result = PyArgHelpers::parseGridPosition(args, kwds, &arg_idx);
// Default values
float grid_x = 0.0f, grid_y = 0.0f;
int sprite_index = 0;
PyObject* texture = nullptr; PyObject* texture = nullptr;
int sprite_index = 0;
PyObject* grid_obj = nullptr; PyObject* grid_obj = nullptr;
int visible = 1;
float opacity = 1.0f;
const char* name = nullptr;
float x = 0.0f, y = 0.0f;
// Case 1: Got grid position from helpers (tuple format) // Keywords list matches the new spec: positional args first, then all keyword args
if (grid_pos_result.valid) { static const char* kwlist[] = {
grid_x = grid_pos_result.grid_x; "grid_pos", "texture", "sprite_index", // Positional args (as per spec)
grid_y = grid_pos_result.grid_y; // Keyword-only args
"grid", "visible", "opacity", "name", "x", "y",
// Parse remaining arguments nullptr
static const char* remaining_keywords[] = { };
"texture", "sprite_index", "grid", nullptr
}; // Parse arguments with | for optional positional args
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOiOifzff", const_cast<char**>(kwlist),
// Create new tuple with remaining args &grid_pos_obj, &texture, &sprite_index, // Positional
Py_ssize_t total_args = PyTuple_Size(args); &grid_obj, &visible, &opacity, &name, &x, &y)) {
PyObject* remaining_args = PyTuple_GetSlice(args, arg_idx, total_args); return -1;
if (!PyArg_ParseTupleAndKeywords(remaining_args, kwds, "|OiO",
const_cast<char**>(remaining_keywords),
&texture, &sprite_index, &grid_obj)) {
Py_DECREF(remaining_args);
if (grid_pos_result.error) PyErr_SetString(PyExc_TypeError, grid_pos_result.error);
return -1;
}
Py_DECREF(remaining_args);
} }
// Case 2: Traditional format
else { // Handle grid position argument (can be tuple or use x/y keywords)
PyErr_Clear(); // Clear any errors from helpers if (grid_pos_obj) {
if (PyTuple_Check(grid_pos_obj) && PyTuple_Size(grid_pos_obj) == 2) {
static const char* keywords[] = { PyObject* x_val = PyTuple_GetItem(grid_pos_obj, 0);
"grid_x", "grid_y", "texture", "sprite_index", "grid", "grid_pos", nullptr PyObject* y_val = PyTuple_GetItem(grid_pos_obj, 1);
}; if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
PyObject* grid_pos_obj = nullptr; (PyFloat_Check(y_val) || PyLong_Check(y_val))) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ffOiOO", y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
const_cast<char**>(keywords),
&grid_x, &grid_y, &texture, &sprite_index,
&grid_obj, &grid_pos_obj)) {
return -1;
}
// Handle grid_pos keyword override
if (grid_pos_obj && grid_pos_obj != Py_None) {
if (PyTuple_Check(grid_pos_obj) && PyTuple_Size(grid_pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(grid_pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(grid_pos_obj, 1);
if ((PyFloat_Check(x_val) || PyLong_Check(x_val)) &&
(PyFloat_Check(y_val) || PyLong_Check(y_val))) {
grid_x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
grid_y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
}
} else { } else {
PyErr_SetString(PyExc_TypeError, "grid_pos must be a tuple (x, y)"); PyErr_SetString(PyExc_TypeError, "grid_pos tuple must contain numbers");
return -1; return -1;
} }
} else {
PyErr_SetString(PyExc_TypeError, "grid_pos must be a tuple (x, y)");
return -1;
} }
} }
// check types for texture // Handle texture argument
//
// Set Texture - allow None or use default
//
std::shared_ptr<PyTexture> texture_ptr = nullptr; std::shared_ptr<PyTexture> texture_ptr = nullptr;
if (texture != NULL && texture != Py_None && !PyObject_IsInstance(texture, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture"))){ if (texture && texture != Py_None) {
PyErr_SetString(PyExc_TypeError, "texture must be a mcrfpy.Texture instance or None"); if (!PyObject_IsInstance(texture, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture"))) {
return -1; PyErr_SetString(PyExc_TypeError, "texture must be a mcrfpy.Texture instance or None");
} else if (texture != NULL && texture != Py_None) { return -1;
}
auto pytexture = (PyTextureObject*)texture; auto pytexture = (PyTextureObject*)texture;
texture_ptr = pytexture->data; texture_ptr = pytexture->data;
} else { } else {
@ -203,25 +178,20 @@ int UIEntity::init(PyUIEntityObject* self, PyObject* args, PyObject* kwds) {
texture_ptr = McRFPy_API::default_texture; texture_ptr = McRFPy_API::default_texture;
} }
// Allow creation without texture for testing purposes // Handle grid argument
// if (!texture_ptr) { if (grid_obj && !PyObject_IsInstance(grid_obj, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
// PyErr_SetString(PyExc_RuntimeError, "No texture provided and no default texture available");
// return -1;
// }
if (grid_obj != NULL && !PyObject_IsInstance(grid_obj, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid"))) {
PyErr_SetString(PyExc_TypeError, "grid must be a mcrfpy.Grid instance"); PyErr_SetString(PyExc_TypeError, "grid must be a mcrfpy.Grid instance");
return -1; return -1;
} }
// Always use default constructor for lazy initialization // Create the entity
self->data = std::make_shared<UIEntity>(); self->data = std::make_shared<UIEntity>();
// Store reference to Python object // Store reference to Python object
self->data->self = (PyObject*)self; self->data->self = (PyObject*)self;
Py_INCREF(self); Py_INCREF(self);
// TODO - PyTextureObjects and IndexTextures are a little bit of a mess with shared/unshared pointers // Set texture and sprite index
if (texture_ptr) { if (texture_ptr) {
self->data->sprite = UISprite(texture_ptr, sprite_index, sf::Vector2f(0,0), 1.0); self->data->sprite = UISprite(texture_ptr, sprite_index, sf::Vector2f(0,0), 1.0);
} else { } else {
@ -230,12 +200,20 @@ int UIEntity::init(PyUIEntityObject* self, PyObject* args, PyObject* kwds) {
} }
// Set position using grid coordinates // Set position using grid coordinates
self->data->position = sf::Vector2f(grid_x, grid_y); self->data->position = sf::Vector2f(x, y);
if (grid_obj != NULL) { // Set other properties (delegate to sprite)
self->data->sprite.visible = visible;
self->data->sprite.opacity = opacity;
if (name) {
self->data->sprite.name = std::string(name);
}
// Handle grid attachment
if (grid_obj) {
PyUIGridObject* pygrid = (PyUIGridObject*)grid_obj; PyUIGridObject* pygrid = (PyUIGridObject*)grid_obj;
self->data->grid = pygrid->data; self->data->grid = pygrid->data;
// todone - on creation of Entity with Grid assignment, also append it to the entity list // Append entity to grid's entity list
pygrid->data->entities->push_back(self->data); pygrid->data->entities->push_back(self->data);
// Don't initialize gridstate here - lazy initialization to support large numbers of entities // Don't initialize gridstate here - lazy initialization to support large numbers of entities

View File

@ -88,7 +88,28 @@ namespace mcrfpydef {
.tp_itemsize = 0, .tp_itemsize = 0,
.tp_repr = (reprfunc)UIEntity::repr, .tp_repr = (reprfunc)UIEntity::repr,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, .tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_doc = "UIEntity objects", .tp_doc = PyDoc_STR("Entity(grid_pos=None, texture=None, sprite_index=0, **kwargs)\n\n"
"A game entity that exists on a grid with sprite rendering.\n\n"
"Args:\n"
" grid_pos (tuple, optional): Grid position as (x, y) tuple. Default: (0, 0)\n"
" texture (Texture, optional): Texture object for sprite. Default: default texture\n"
" sprite_index (int, optional): Index into texture atlas. Default: 0\n\n"
"Keyword Args:\n"
" grid (Grid): Grid to attach entity to. Default: None\n"
" visible (bool): Visibility state. Default: True\n"
" opacity (float): Opacity (0.0-1.0). Default: 1.0\n"
" name (str): Element name for finding. Default: None\n"
" x (float): X grid position override. Default: 0\n"
" y (float): Y grid position override. Default: 0\n\n"
"Attributes:\n"
" pos (tuple): Grid position as (x, y) tuple\n"
" x, y (float): Grid position coordinates\n"
" draw_pos (tuple): Pixel position for rendering\n"
" gridstate (GridPointState): Visibility state for grid points\n"
" sprite_index (int): Current sprite index\n"
" visible (bool): Visibility state\n"
" opacity (float): Opacity value\n"
" name (str): Element name"),
.tp_methods = UIEntity_all_methods, .tp_methods = UIEntity_all_methods,
.tp_getset = UIEntity::getsetters, .tp_getset = UIEntity::getsetters,
.tp_base = &mcrfpydef::PyDrawableType, .tp_base = &mcrfpydef::PyDrawableType,

View File

@ -6,7 +6,6 @@
#include "UISprite.h" #include "UISprite.h"
#include "UIGrid.h" #include "UIGrid.h"
#include "McRFPy_API.h" #include "McRFPy_API.h"
#include "PyArgHelpers.h"
// UIDrawable methods now in UIBase.h // UIDrawable methods now in UIBase.h
UIDrawable* UIFrame::click_at(sf::Vector2f point) UIDrawable* UIFrame::click_at(sf::Vector2f point)
@ -432,67 +431,47 @@ int UIFrame::init(PyUIFrameObject* self, PyObject* args, PyObject* kwds)
// Initialize children first // Initialize children first
self->data->children = std::make_shared<std::vector<std::shared_ptr<UIDrawable>>>(); self->data->children = std::make_shared<std::vector<std::shared_ptr<UIDrawable>>>();
// Try parsing with PyArgHelpers // Define all parameters with defaults
int arg_idx = 0; PyObject* pos_obj = nullptr;
auto pos_result = PyArgHelpers::parsePosition(args, kwds, &arg_idx); PyObject* size_obj = nullptr;
auto size_result = PyArgHelpers::parseSize(args, kwds, &arg_idx);
// Default values
float x = 0.0f, y = 0.0f, w = 0.0f, h = 0.0f, outline = 0.0f;
PyObject* fill_color = nullptr; PyObject* fill_color = nullptr;
PyObject* outline_color = nullptr; PyObject* outline_color = nullptr;
float outline = 0.0f;
PyObject* children_arg = nullptr; PyObject* children_arg = nullptr;
PyObject* click_handler = nullptr; PyObject* click_handler = nullptr;
int visible = 1;
float opacity = 1.0f;
int z_index = 0;
const char* name = nullptr;
float x = 0.0f, y = 0.0f, w = 0.0f, h = 0.0f;
int clip_children = 0;
// Case 1: Got position and size from helpers (tuple format) // Keywords list matches the new spec: positional args first, then all keyword args
if (pos_result.valid && size_result.valid) { static const char* kwlist[] = {
x = pos_result.x; "pos", "size", // Positional args (as per spec)
y = pos_result.y; // Keyword-only args
w = size_result.w; "fill_color", "outline_color", "outline", "children", "click",
h = size_result.h; "visible", "opacity", "z_index", "name", "x", "y", "w", "h", "clip_children",
nullptr
// Parse remaining arguments };
static const char* remaining_keywords[] = {
"fill_color", "outline_color", "outline", "children", "click", nullptr // Parse arguments with | for optional positional args
}; if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOOOfOOifizffffi", const_cast<char**>(kwlist),
&pos_obj, &size_obj, // Positional
// Create new tuple with remaining args &fill_color, &outline_color, &outline, &children_arg, &click_handler,
Py_ssize_t total_args = PyTuple_Size(args); &visible, &opacity, &z_index, &name, &x, &y, &w, &h, &clip_children)) {
PyObject* remaining_args = PyTuple_GetSlice(args, arg_idx, total_args); return -1;
if (!PyArg_ParseTupleAndKeywords(remaining_args, kwds, "|OOfOO",
const_cast<char**>(remaining_keywords),
&fill_color, &outline_color, &outline,
&children_arg, &click_handler)) {
Py_DECREF(remaining_args);
if (pos_result.error) PyErr_SetString(PyExc_TypeError, pos_result.error);
else if (size_result.error) PyErr_SetString(PyExc_TypeError, size_result.error);
return -1;
}
Py_DECREF(remaining_args);
} }
// Case 2: Traditional format (x, y, w, h, ...)
else { // Handle position argument (can be tuple, Vector, or use x/y keywords)
PyErr_Clear(); // Clear any errors from helpers if (pos_obj) {
PyVectorObject* vec = PyVector::from_arg(pos_obj);
static const char* keywords[] = { if (vec) {
"x", "y", "w", "h", "fill_color", "outline_color", "outline", x = vec->data.x;
"children", "click", "pos", "size", nullptr y = vec->data.y;
}; Py_DECREF(vec);
} else {
PyObject* pos_obj = nullptr; PyErr_Clear();
PyObject* size_obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ffffOOfOOOO",
const_cast<char**>(keywords),
&x, &y, &w, &h, &fill_color, &outline_color,
&outline, &children_arg, &click_handler,
&pos_obj, &size_obj)) {
return -1;
}
// Handle pos keyword override
if (pos_obj && pos_obj != Py_None) {
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) { if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0); PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1); PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
@ -500,47 +479,87 @@ int UIFrame::init(PyUIFrameObject* self, PyObject* args, PyObject* kwds)
(PyFloat_Check(y_val) || PyLong_Check(y_val))) { (PyFloat_Check(y_val) || PyLong_Check(y_val))) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val); x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val); y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
} else {
PyErr_SetString(PyExc_TypeError, "pos tuple must contain numbers");
return -1;
} }
} else if (PyObject_TypeCheck(pos_obj, (PyTypeObject*)PyObject_GetAttrString(
PyImport_ImportModule("mcrfpy"), "Vector"))) {
PyVectorObject* vec = (PyVectorObject*)pos_obj;
x = vec->data.x;
y = vec->data.y;
} else { } else {
PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector"); PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector");
return -1; return -1;
} }
} }
}
// Handle size keyword override // If no pos_obj but x/y keywords were provided, they're already in x, y variables
if (size_obj && size_obj != Py_None) {
if (PyTuple_Check(size_obj) && PyTuple_Size(size_obj) == 2) { // Handle size argument (can be tuple or use w/h keywords)
PyObject* w_val = PyTuple_GetItem(size_obj, 0); if (size_obj) {
PyObject* h_val = PyTuple_GetItem(size_obj, 1); if (PyTuple_Check(size_obj) && PyTuple_Size(size_obj) == 2) {
if ((PyFloat_Check(w_val) || PyLong_Check(w_val)) && PyObject* w_val = PyTuple_GetItem(size_obj, 0);
(PyFloat_Check(h_val) || PyLong_Check(h_val))) { PyObject* h_val = PyTuple_GetItem(size_obj, 1);
w = PyFloat_Check(w_val) ? PyFloat_AsDouble(w_val) : PyLong_AsLong(w_val); if ((PyFloat_Check(w_val) || PyLong_Check(w_val)) &&
h = PyFloat_Check(h_val) ? PyFloat_AsDouble(h_val) : PyLong_AsLong(h_val); (PyFloat_Check(h_val) || PyLong_Check(h_val))) {
} w = PyFloat_Check(w_val) ? PyFloat_AsDouble(w_val) : PyLong_AsLong(w_val);
h = PyFloat_Check(h_val) ? PyFloat_AsDouble(h_val) : PyLong_AsLong(h_val);
} else { } else {
PyErr_SetString(PyExc_TypeError, "size must be a tuple (w, h)"); PyErr_SetString(PyExc_TypeError, "size tuple must contain numbers");
return -1; return -1;
} }
} else {
PyErr_SetString(PyExc_TypeError, "size must be a tuple (w, h)");
return -1;
} }
} }
// If no size_obj but w/h keywords were provided, they're already in w, h variables
self->data->position = sf::Vector2f(x, y); // Set base class position // Set the position and size
self->data->box.setPosition(self->data->position); // Sync box position self->data->position = sf::Vector2f(x, y);
self->data->box.setPosition(self->data->position);
self->data->box.setSize(sf::Vector2f(w, h)); self->data->box.setSize(sf::Vector2f(w, h));
self->data->box.setOutlineThickness(outline); self->data->box.setOutlineThickness(outline);
// getsetter abuse because I haven't standardized Color object parsing (TODO)
int err_val = 0; // Handle fill_color
if (fill_color && fill_color != Py_None) err_val = UIFrame::set_color_member(self, fill_color, (void*)0); if (fill_color && fill_color != Py_None) {
else self->data->box.setFillColor(sf::Color(0,0,0,255)); PyColorObject* color_obj = PyColor::from_arg(fill_color);
if (err_val) return err_val; if (!color_obj) {
if (outline_color && outline_color != Py_None) err_val = UIFrame::set_color_member(self, outline_color, (void*)1); PyErr_SetString(PyExc_TypeError, "fill_color must be a Color or color tuple");
else self->data->box.setOutlineColor(sf::Color(128,128,128,255)); return -1;
if (err_val) return err_val; }
self->data->box.setFillColor(color_obj->data);
Py_DECREF(color_obj);
} else {
self->data->box.setFillColor(sf::Color(0, 0, 0, 128)); // Default: semi-transparent black
}
// Handle outline_color
if (outline_color && outline_color != Py_None) {
PyColorObject* color_obj = PyColor::from_arg(outline_color);
if (!color_obj) {
PyErr_SetString(PyExc_TypeError, "outline_color must be a Color or color tuple");
return -1;
}
self->data->box.setOutlineColor(color_obj->data);
Py_DECREF(color_obj);
} else {
self->data->box.setOutlineColor(sf::Color(255, 255, 255, 255)); // Default: white
}
// Set other properties
self->data->visible = visible;
self->data->opacity = opacity;
self->data->z_index = z_index;
self->data->clip_children = clip_children;
if (name) {
self->data->name = std::string(name);
}
// Handle click handler
if (click_handler && click_handler != Py_None) {
if (!PyCallable_Check(click_handler)) {
PyErr_SetString(PyExc_TypeError, "click must be callable");
return -1;
}
self->data->click_register(click_handler);
}
// Process children argument if provided // Process children argument if provided
if (children_arg && children_arg != Py_None) { if (children_arg && children_arg != Py_None) {

View File

@ -86,27 +86,38 @@ namespace mcrfpydef {
//.tp_iter //.tp_iter
//.tp_iternext //.tp_iternext
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Frame(x=0, y=0, w=0, h=0, fill_color=None, outline_color=None, outline=0, click=None, children=None)\n\n" .tp_doc = PyDoc_STR("Frame(pos=None, size=None, **kwargs)\n\n"
"A rectangular frame UI element that can contain other drawable elements.\n\n" "A rectangular frame UI element that can contain other drawable elements.\n\n"
"Args:\n" "Args:\n"
" x (float): X position in pixels. Default: 0\n" " pos (tuple, optional): Position as (x, y) tuple. Default: (0, 0)\n"
" y (float): Y position in pixels. Default: 0\n" " size (tuple, optional): Size as (width, height) tuple. Default: (0, 0)\n\n"
" w (float): Width in pixels. Default: 0\n" "Keyword Args:\n"
" h (float): Height in pixels. Default: 0\n"
" fill_color (Color): Background fill color. Default: (0, 0, 0, 128)\n" " fill_color (Color): Background fill color. Default: (0, 0, 0, 128)\n"
" outline_color (Color): Border outline color. Default: (255, 255, 255, 255)\n" " outline_color (Color): Border outline color. Default: (255, 255, 255, 255)\n"
" outline (float): Border outline thickness. Default: 0\n" " outline (float): Border outline thickness. Default: 0\n"
" click (callable): Click event handler. Default: None\n" " click (callable): Click event handler. Default: None\n"
" children (list): Initial list of child drawable elements. Default: None\n\n" " children (list): Initial list of child drawable elements. Default: None\n"
" visible (bool): Visibility state. Default: True\n"
" opacity (float): Opacity (0.0-1.0). Default: 1.0\n"
" z_index (int): Rendering order. Default: 0\n"
" name (str): Element name for finding. Default: None\n"
" x (float): X position override. Default: 0\n"
" y (float): Y position override. Default: 0\n"
" w (float): Width override. Default: 0\n"
" h (float): Height override. Default: 0\n"
" clip_children (bool): Whether to clip children to frame bounds. Default: False\n\n"
"Attributes:\n" "Attributes:\n"
" x, y (float): Position in pixels\n" " x, y (float): Position in pixels\n"
" w, h (float): Size in pixels\n" " w, h (float): Size in pixels\n"
" pos (Vector): Position as a Vector object\n"
" fill_color, outline_color (Color): Visual appearance\n" " fill_color, outline_color (Color): Visual appearance\n"
" outline (float): Border thickness\n" " outline (float): Border thickness\n"
" click (callable): Click event handler\n" " click (callable): Click event handler\n"
" children (list): Collection of child drawable elements\n" " children (list): Collection of child drawable elements\n"
" visible (bool): Visibility state\n" " visible (bool): Visibility state\n"
" opacity (float): Opacity value\n"
" z_index (int): Rendering order\n" " z_index (int): Rendering order\n"
" name (str): Element name\n"
" clip_children (bool): Whether to clip children to frame bounds"), " clip_children (bool): Whether to clip children to frame bounds"),
.tp_methods = UIFrame_methods, .tp_methods = UIFrame_methods,
//.tp_members = PyUIFrame_members, //.tp_members = PyUIFrame_members,

View File

@ -1,7 +1,6 @@
#include "UIGrid.h" #include "UIGrid.h"
#include "GameEngine.h" #include "GameEngine.h"
#include "McRFPy_API.h" #include "McRFPy_API.h"
#include "PyArgHelpers.h"
#include <algorithm> #include <algorithm>
// UIDrawable methods now in UIBase.h // UIDrawable methods now in UIBase.h
@ -518,102 +517,49 @@ UIDrawable* UIGrid::click_at(sf::Vector2f point)
int UIGrid::init(PyUIGridObject* self, PyObject* args, PyObject* kwds) { int UIGrid::init(PyUIGridObject* self, PyObject* args, PyObject* kwds) {
// Default values // Define all parameters with defaults
int grid_x = 0, grid_y = 0; PyObject* pos_obj = nullptr;
float x = 0.0f, y = 0.0f, w = 0.0f, h = 0.0f; PyObject* size_obj = nullptr;
PyObject* grid_size_obj = nullptr;
PyObject* textureObj = nullptr; PyObject* textureObj = nullptr;
PyObject* fill_color = nullptr;
PyObject* click_handler = nullptr;
float center_x = 0.0f, center_y = 0.0f;
float zoom = 1.0f;
int perspective = -1; // perspective is a difficult __init__ arg; needs an entity in collection to work
int visible = 1;
float opacity = 1.0f;
int z_index = 0;
const char* name = nullptr;
float x = 0.0f, y = 0.0f, w = 0.0f, h = 0.0f;
int grid_x = 2, grid_y = 2; // Default to 2x2 grid
// Check if first argument is a tuple (for tuple-based initialization) // Keywords list matches the new spec: positional args first, then all keyword args
bool has_tuple_first_arg = false; static const char* kwlist[] = {
if (args && PyTuple_Size(args) > 0) { "pos", "size", "grid_size", "texture", // Positional args (as per spec)
PyObject* first_arg = PyTuple_GetItem(args, 0); // Keyword-only args
if (PyTuple_Check(first_arg)) { "fill_color", "click", "center_x", "center_y", "zoom", "perspective",
has_tuple_first_arg = true; "visible", "opacity", "z_index", "name", "x", "y", "w", "h", "grid_x", "grid_y",
} nullptr
};
// Parse arguments with | for optional positional args
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOOOOOfffiifizffffii", const_cast<char**>(kwlist),
&pos_obj, &size_obj, &grid_size_obj, &textureObj, // Positional
&fill_color, &click_handler, &center_x, &center_y, &zoom, &perspective,
&visible, &opacity, &z_index, &name, &x, &y, &w, &h, &grid_x, &grid_y)) {
return -1;
} }
// Try tuple-based parsing if we have a tuple as first argument // Handle position argument (can be tuple, Vector, or use x/y keywords)
if (has_tuple_first_arg) { if (pos_obj) {
int arg_idx = 0; PyVectorObject* vec = PyVector::from_arg(pos_obj);
auto grid_size_result = PyArgHelpers::parseGridSize(args, kwds, &arg_idx); if (vec) {
x = vec->data.x;
// If grid size parsing failed with an error, report it y = vec->data.y;
if (!grid_size_result.valid) { Py_DECREF(vec);
if (grid_size_result.error) {
PyErr_SetString(PyExc_TypeError, grid_size_result.error);
} else {
PyErr_SetString(PyExc_TypeError, "Invalid grid size tuple");
}
return -1;
}
// We got a valid grid size
grid_x = grid_size_result.grid_w;
grid_y = grid_size_result.grid_h;
// Try to parse position and size
auto pos_result = PyArgHelpers::parsePosition(args, kwds, &arg_idx);
if (pos_result.valid) {
x = pos_result.x;
y = pos_result.y;
}
auto size_result = PyArgHelpers::parseSize(args, kwds, &arg_idx);
if (size_result.valid) {
w = size_result.w;
h = size_result.h;
} else { } else {
// Default size based on grid dimensions PyErr_Clear();
w = grid_x * 16.0f;
h = grid_y * 16.0f;
}
// Parse remaining arguments (texture)
static const char* remaining_keywords[] = { "texture", nullptr };
Py_ssize_t total_args = PyTuple_Size(args);
PyObject* remaining_args = PyTuple_GetSlice(args, arg_idx, total_args);
PyArg_ParseTupleAndKeywords(remaining_args, kwds, "|O",
const_cast<char**>(remaining_keywords),
&textureObj);
Py_DECREF(remaining_args);
}
// Traditional format parsing
else {
static const char* keywords[] = {
"grid_x", "grid_y", "texture", "pos", "size", "grid_size", nullptr
};
PyObject* pos_obj = nullptr;
PyObject* size_obj = nullptr;
PyObject* grid_size_obj = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|iiOOOO",
const_cast<char**>(keywords),
&grid_x, &grid_y, &textureObj,
&pos_obj, &size_obj, &grid_size_obj)) {
return -1;
}
// Handle grid_size override
if (grid_size_obj && grid_size_obj != Py_None) {
if (PyTuple_Check(grid_size_obj) && PyTuple_Size(grid_size_obj) == 2) {
PyObject* x_obj = PyTuple_GetItem(grid_size_obj, 0);
PyObject* y_obj = PyTuple_GetItem(grid_size_obj, 1);
if (PyLong_Check(x_obj) && PyLong_Check(y_obj)) {
grid_x = PyLong_AsLong(x_obj);
grid_y = PyLong_AsLong(y_obj);
} else {
PyErr_SetString(PyExc_TypeError, "grid_size must contain integers");
return -1;
}
} else {
PyErr_SetString(PyExc_TypeError, "grid_size must be a tuple of two integers");
return -1;
}
}
// Handle position
if (pos_obj && pos_obj != Py_None) {
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) { if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0); PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1); PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
@ -622,36 +568,50 @@ int UIGrid::init(PyUIGridObject* self, PyObject* args, PyObject* kwds) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val); x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val); y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
} else { } else {
PyErr_SetString(PyExc_TypeError, "pos must contain numbers"); PyErr_SetString(PyExc_TypeError, "pos tuple must contain numbers");
return -1; return -1;
} }
} else { } else {
PyErr_SetString(PyExc_TypeError, "pos must be a tuple of two numbers"); PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector");
return -1; return -1;
} }
} }
}
// Handle size
if (size_obj && size_obj != Py_None) { // Handle size argument (can be tuple or use w/h keywords)
if (PyTuple_Check(size_obj) && PyTuple_Size(size_obj) == 2) { if (size_obj) {
PyObject* w_val = PyTuple_GetItem(size_obj, 0); if (PyTuple_Check(size_obj) && PyTuple_Size(size_obj) == 2) {
PyObject* h_val = PyTuple_GetItem(size_obj, 1); PyObject* w_val = PyTuple_GetItem(size_obj, 0);
if ((PyFloat_Check(w_val) || PyLong_Check(w_val)) && PyObject* h_val = PyTuple_GetItem(size_obj, 1);
(PyFloat_Check(h_val) || PyLong_Check(h_val))) { if ((PyFloat_Check(w_val) || PyLong_Check(w_val)) &&
w = PyFloat_Check(w_val) ? PyFloat_AsDouble(w_val) : PyLong_AsLong(w_val); (PyFloat_Check(h_val) || PyLong_Check(h_val))) {
h = PyFloat_Check(h_val) ? PyFloat_AsDouble(h_val) : PyLong_AsLong(h_val); w = PyFloat_Check(w_val) ? PyFloat_AsDouble(w_val) : PyLong_AsLong(w_val);
} else { h = PyFloat_Check(h_val) ? PyFloat_AsDouble(h_val) : PyLong_AsLong(h_val);
PyErr_SetString(PyExc_TypeError, "size must contain numbers");
return -1;
}
} else { } else {
PyErr_SetString(PyExc_TypeError, "size must be a tuple of two numbers"); PyErr_SetString(PyExc_TypeError, "size tuple must contain numbers");
return -1; return -1;
} }
} else { } else {
// Default size based on grid PyErr_SetString(PyExc_TypeError, "size must be a tuple (w, h)");
w = grid_x * 16.0f; return -1;
h = grid_y * 16.0f; }
}
// Handle grid_size argument (can be tuple or use grid_x/grid_y keywords)
if (grid_size_obj) {
if (PyTuple_Check(grid_size_obj) && PyTuple_Size(grid_size_obj) == 2) {
PyObject* gx_val = PyTuple_GetItem(grid_size_obj, 0);
PyObject* gy_val = PyTuple_GetItem(grid_size_obj, 1);
if (PyLong_Check(gx_val) && PyLong_Check(gy_val)) {
grid_x = PyLong_AsLong(gx_val);
grid_y = PyLong_AsLong(gy_val);
} else {
PyErr_SetString(PyExc_TypeError, "grid_size tuple must contain integers");
return -1;
}
} else {
PyErr_SetString(PyExc_TypeError, "grid_size must be a tuple (grid_x, grid_y)");
return -1;
} }
} }
@ -661,12 +621,8 @@ int UIGrid::init(PyUIGridObject* self, PyObject* args, PyObject* kwds) {
return -1; return -1;
} }
// At this point we have x, y, w, h values from either parsing method // Handle texture argument
// Convert PyObject texture to shared_ptr<PyTexture>
std::shared_ptr<PyTexture> texture_ptr = nullptr; std::shared_ptr<PyTexture> texture_ptr = nullptr;
// Allow None or NULL for texture - use default texture in that case
if (textureObj && textureObj != Py_None) { if (textureObj && textureObj != Py_None) {
if (!PyObject_IsInstance(textureObj, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture"))) { if (!PyObject_IsInstance(textureObj, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture"))) {
PyErr_SetString(PyExc_TypeError, "texture must be a mcrfpy.Texture instance or None"); PyErr_SetString(PyExc_TypeError, "texture must be a mcrfpy.Texture instance or None");
@ -679,14 +635,51 @@ int UIGrid::init(PyUIGridObject* self, PyObject* args, PyObject* kwds) {
texture_ptr = McRFPy_API::default_texture; texture_ptr = McRFPy_API::default_texture;
} }
// Adjust size based on texture if available and size not explicitly set // If size wasn't specified, calculate based on grid dimensions and texture
if (texture_ptr && w == grid_x * 16.0f && h == grid_y * 16.0f) { if (!size_obj && texture_ptr) {
w = grid_x * texture_ptr->sprite_width; w = grid_x * texture_ptr->sprite_width;
h = grid_y * texture_ptr->sprite_height; h = grid_y * texture_ptr->sprite_height;
} else if (!size_obj) {
w = grid_x * 16.0f; // Default tile size
h = grid_y * 16.0f;
} }
// Create the grid
self->data = std::make_shared<UIGrid>(grid_x, grid_y, texture_ptr, self->data = std::make_shared<UIGrid>(grid_x, grid_y, texture_ptr,
sf::Vector2f(x, y), sf::Vector2f(w, h)); sf::Vector2f(x, y), sf::Vector2f(w, h));
// Set additional properties
self->data->center_x = center_x;
self->data->center_y = center_y;
self->data->zoom = zoom;
self->data->perspective = perspective;
self->data->visible = visible;
self->data->opacity = opacity;
self->data->z_index = z_index;
if (name) {
self->data->name = std::string(name);
}
// Handle fill_color
if (fill_color && fill_color != Py_None) {
PyColorObject* color_obj = PyColor::from_arg(fill_color);
if (!color_obj) {
PyErr_SetString(PyExc_TypeError, "fill_color must be a Color or color tuple");
return -1;
}
self->data->box.setFillColor(color_obj->data);
Py_DECREF(color_obj);
}
// Handle click handler
if (click_handler && click_handler != Py_None) {
if (!PyCallable_Check(click_handler)) {
PyErr_SetString(PyExc_TypeError, "click must be callable");
return -1;
}
self->data->click_register(click_handler);
}
return 0; // Success return 0; // Success
} }

View File

@ -184,29 +184,49 @@ namespace mcrfpydef {
//.tp_iter //.tp_iter
//.tp_iternext //.tp_iternext
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Grid(x=0, y=0, grid_size=(20, 20), texture=None, tile_width=16, tile_height=16, scale=1.0, click=None)\n\n" .tp_doc = PyDoc_STR("Grid(pos=None, size=None, grid_size=None, texture=None, **kwargs)\n\n"
"A grid-based tilemap UI element for rendering tile-based levels and game worlds.\n\n" "A grid-based UI element for tile-based rendering and entity management.\n\n"
"Args:\n" "Args:\n"
" x (float): X position in pixels. Default: 0\n" " pos (tuple, optional): Position as (x, y) tuple. Default: (0, 0)\n"
" y (float): Y position in pixels. Default: 0\n" " size (tuple, optional): Size as (width, height) tuple. Default: auto-calculated from grid_size\n"
" grid_size (tuple): Grid dimensions as (width, height) in tiles. Default: (20, 20)\n" " grid_size (tuple, optional): Grid dimensions as (grid_x, grid_y) tuple. Default: (2, 2)\n"
" texture (Texture): Texture atlas containing tile sprites. Default: None\n" " texture (Texture, optional): Texture containing tile sprites. Default: default texture\n\n"
" tile_width (int): Width of each tile in pixels. Default: 16\n" "Keyword Args:\n"
" tile_height (int): Height of each tile in pixels. Default: 16\n" " fill_color (Color): Background fill color. Default: None\n"
" scale (float): Grid scaling factor. Default: 1.0\n" " click (callable): Click event handler. Default: None\n"
" click (callable): Click event handler. Default: None\n\n" " center_x (float): X coordinate of center point. Default: 0\n"
" center_y (float): Y coordinate of center point. Default: 0\n"
" zoom (float): Zoom level for rendering. Default: 1.0\n"
" perspective (int): Entity perspective index (-1 for omniscient). Default: -1\n"
" visible (bool): Visibility state. Default: True\n"
" opacity (float): Opacity (0.0-1.0). Default: 1.0\n"
" z_index (int): Rendering order. Default: 0\n"
" name (str): Element name for finding. Default: None\n"
" x (float): X position override. Default: 0\n"
" y (float): Y position override. Default: 0\n"
" w (float): Width override. Default: auto-calculated\n"
" h (float): Height override. Default: auto-calculated\n"
" grid_x (int): Grid width override. Default: 2\n"
" grid_y (int): Grid height override. Default: 2\n\n"
"Attributes:\n" "Attributes:\n"
" x, y (float): Position in pixels\n" " x, y (float): Position in pixels\n"
" w, h (float): Size in pixels\n"
" pos (Vector): Position as a Vector object\n"
" size (tuple): Size as (width, height) tuple\n"
" center (tuple): Center point as (x, y) tuple\n"
" center_x, center_y (float): Center point coordinates\n"
" zoom (float): Zoom level for rendering\n"
" grid_size (tuple): Grid dimensions (width, height) in tiles\n" " grid_size (tuple): Grid dimensions (width, height) in tiles\n"
" tile_width, tile_height (int): Tile dimensions in pixels\n" " grid_x, grid_y (int): Grid dimensions\n"
" texture (Texture): Tile texture atlas\n" " texture (Texture): Tile texture atlas\n"
" scale (float): Scale multiplier\n" " fill_color (Color): Background color\n"
" points (list): 2D array of GridPoint objects for tile data\n" " entities (EntityCollection): Collection of entities in the grid\n"
" entities (list): Collection of Entity objects in the grid\n" " perspective (int): Entity perspective index\n"
" background_color (Color): Grid background color\n"
" click (callable): Click event handler\n" " click (callable): Click event handler\n"
" visible (bool): Visibility state\n" " visible (bool): Visibility state\n"
" z_index (int): Rendering order"), " opacity (float): Opacity value\n"
" z_index (int): Rendering order\n"
" name (str): Element name"),
.tp_methods = UIGrid_all_methods, .tp_methods = UIGrid_all_methods,
//.tp_members = UIGrid::members, //.tp_members = UIGrid::members,
.tp_getset = UIGrid::getsetters, .tp_getset = UIGrid::getsetters,

View File

@ -1,7 +1,6 @@
#include "UISprite.h" #include "UISprite.h"
#include "GameEngine.h" #include "GameEngine.h"
#include "PyVector.h" #include "PyVector.h"
#include "PyArgHelpers.h"
// UIDrawable methods now in UIBase.h // UIDrawable methods now in UIBase.h
UIDrawable* UISprite::click_at(sf::Vector2f point) UIDrawable* UISprite::click_at(sf::Vector2f point)
@ -327,57 +326,46 @@ PyObject* UISprite::repr(PyUISpriteObject* self)
int UISprite::init(PyUISpriteObject* self, PyObject* args, PyObject* kwds) int UISprite::init(PyUISpriteObject* self, PyObject* args, PyObject* kwds)
{ {
// Try parsing with PyArgHelpers // Define all parameters with defaults
int arg_idx = 0; PyObject* pos_obj = nullptr;
auto pos_result = PyArgHelpers::parsePosition(args, kwds, &arg_idx);
// Default values
float x = 0.0f, y = 0.0f, scale = 1.0f;
int sprite_index = 0;
PyObject* texture = nullptr; PyObject* texture = nullptr;
int sprite_index = 0;
float scale = 1.0f;
float scale_x = 1.0f;
float scale_y = 1.0f;
PyObject* click_handler = nullptr; PyObject* click_handler = nullptr;
int visible = 1;
float opacity = 1.0f;
int z_index = 0;
const char* name = nullptr;
float x = 0.0f, y = 0.0f;
// Case 1: Got position from helpers (tuple format) // Keywords list matches the new spec: positional args first, then all keyword args
if (pos_result.valid) { static const char* kwlist[] = {
x = pos_result.x; "pos", "texture", "sprite_index", // Positional args (as per spec)
y = pos_result.y; // Keyword-only args
"scale", "scale_x", "scale_y", "click",
// Parse remaining arguments "visible", "opacity", "z_index", "name", "x", "y",
static const char* remaining_keywords[] = { nullptr
"texture", "sprite_index", "scale", "click", nullptr };
};
// Parse arguments with | for optional positional args
// Create new tuple with remaining args if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OOifffOifizff", const_cast<char**>(kwlist),
Py_ssize_t total_args = PyTuple_Size(args); &pos_obj, &texture, &sprite_index, // Positional
PyObject* remaining_args = PyTuple_GetSlice(args, arg_idx, total_args); &scale, &scale_x, &scale_y, &click_handler,
&visible, &opacity, &z_index, &name, &x, &y)) {
if (!PyArg_ParseTupleAndKeywords(remaining_args, kwds, "|OifO", return -1;
const_cast<char**>(remaining_keywords),
&texture, &sprite_index, &scale, &click_handler)) {
Py_DECREF(remaining_args);
if (pos_result.error) PyErr_SetString(PyExc_TypeError, pos_result.error);
return -1;
}
Py_DECREF(remaining_args);
} }
// Case 2: Traditional format
else { // Handle position argument (can be tuple, Vector, or use x/y keywords)
PyErr_Clear(); // Clear any errors from helpers if (pos_obj) {
PyVectorObject* vec = PyVector::from_arg(pos_obj);
static const char* keywords[] = { if (vec) {
"x", "y", "texture", "sprite_index", "scale", "click", "pos", nullptr x = vec->data.x;
}; y = vec->data.y;
PyObject* pos_obj = nullptr; Py_DECREF(vec);
} else {
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|ffOifOO", PyErr_Clear();
const_cast<char**>(keywords),
&x, &y, &texture, &sprite_index, &scale,
&click_handler, &pos_obj)) {
return -1;
}
// Handle pos keyword override
if (pos_obj && pos_obj != Py_None) {
if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) { if (PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0); PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1); PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
@ -385,12 +373,10 @@ int UISprite::init(PyUISpriteObject* self, PyObject* args, PyObject* kwds)
(PyFloat_Check(y_val) || PyLong_Check(y_val))) { (PyFloat_Check(y_val) || PyLong_Check(y_val))) {
x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val); x = PyFloat_Check(x_val) ? PyFloat_AsDouble(x_val) : PyLong_AsLong(x_val);
y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val); y = PyFloat_Check(y_val) ? PyFloat_AsDouble(y_val) : PyLong_AsLong(y_val);
} else {
PyErr_SetString(PyExc_TypeError, "pos tuple must contain numbers");
return -1;
} }
} else if (PyObject_TypeCheck(pos_obj, (PyTypeObject*)PyObject_GetAttrString(
PyImport_ImportModule("mcrfpy"), "Vector"))) {
PyVectorObject* vec = (PyVectorObject*)pos_obj;
x = vec->data.x;
y = vec->data.y;
} else { } else {
PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector"); PyErr_SetString(PyExc_TypeError, "pos must be a tuple (x, y) or Vector");
return -1; return -1;
@ -400,10 +386,11 @@ int UISprite::init(PyUISpriteObject* self, PyObject* args, PyObject* kwds)
// Handle texture - allow None or use default // Handle texture - allow None or use default
std::shared_ptr<PyTexture> texture_ptr = nullptr; std::shared_ptr<PyTexture> texture_ptr = nullptr;
if (texture != NULL && texture != Py_None && !PyObject_IsInstance(texture, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture"))){ if (texture && texture != Py_None) {
PyErr_SetString(PyExc_TypeError, "texture must be a mcrfpy.Texture instance or None"); if (!PyObject_IsInstance(texture, PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture"))) {
return -1; PyErr_SetString(PyExc_TypeError, "texture must be a mcrfpy.Texture instance or None");
} else if (texture != NULL && texture != Py_None) { return -1;
}
auto pytexture = (PyTextureObject*)texture; auto pytexture = (PyTextureObject*)texture;
texture_ptr = pytexture->data; texture_ptr = pytexture->data;
} else { } else {
@ -416,9 +403,27 @@ int UISprite::init(PyUISpriteObject* self, PyObject* args, PyObject* kwds)
return -1; return -1;
} }
// Create the sprite
self->data = std::make_shared<UISprite>(texture_ptr, sprite_index, sf::Vector2f(x, y), scale); self->data = std::make_shared<UISprite>(texture_ptr, sprite_index, sf::Vector2f(x, y), scale);
// Set scale properties
if (scale_x != 1.0f || scale_y != 1.0f) {
// If scale_x or scale_y were explicitly set, use them
self->data->setScale(sf::Vector2f(scale_x, scale_y));
} else if (scale != 1.0f) {
// Otherwise use uniform scale
self->data->setScale(sf::Vector2f(scale, scale));
}
// Set other properties
self->data->visible = visible;
self->data->opacity = opacity;
self->data->z_index = z_index;
if (name) {
self->data->name = std::string(name);
}
// Process click handler if provided // Handle click handler
if (click_handler && click_handler != Py_None) { if (click_handler && click_handler != Py_None) {
if (!PyCallable_Check(click_handler)) { if (!PyCallable_Check(click_handler)) {
PyErr_SetString(PyExc_TypeError, "click must be callable"); PyErr_SetString(PyExc_TypeError, "click must be callable");

View File

@ -92,23 +92,35 @@ namespace mcrfpydef {
//.tp_iter //.tp_iter
//.tp_iternext //.tp_iternext
.tp_flags = Py_TPFLAGS_DEFAULT, .tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Sprite(x=0, y=0, texture=None, sprite_index=0, scale=1.0, click=None)\n\n" .tp_doc = PyDoc_STR("Sprite(pos=None, texture=None, sprite_index=0, **kwargs)\n\n"
"A sprite UI element that displays a texture or portion of a texture atlas.\n\n" "A sprite UI element that displays a texture or portion of a texture atlas.\n\n"
"Args:\n" "Args:\n"
" x (float): X position in pixels. Default: 0\n" " pos (tuple, optional): Position as (x, y) tuple. Default: (0, 0)\n"
" y (float): Y position in pixels. Default: 0\n" " texture (Texture, optional): Texture object to display. Default: default texture\n"
" texture (Texture): Texture object to display. Default: None\n" " sprite_index (int, optional): Index into texture atlas. Default: 0\n\n"
" sprite_index (int): Index into texture atlas (if applicable). Default: 0\n" "Keyword Args:\n"
" scale (float): Sprite scaling factor. Default: 1.0\n" " scale (float): Uniform scale factor. Default: 1.0\n"
" click (callable): Click event handler. Default: None\n\n" " scale_x (float): Horizontal scale factor. Default: 1.0\n"
" scale_y (float): Vertical scale factor. Default: 1.0\n"
" click (callable): Click event handler. Default: None\n"
" visible (bool): Visibility state. Default: True\n"
" opacity (float): Opacity (0.0-1.0). Default: 1.0\n"
" z_index (int): Rendering order. Default: 0\n"
" name (str): Element name for finding. Default: None\n"
" x (float): X position override. Default: 0\n"
" y (float): Y position override. Default: 0\n\n"
"Attributes:\n" "Attributes:\n"
" x, y (float): Position in pixels\n" " x, y (float): Position in pixels\n"
" pos (Vector): Position as a Vector object\n"
" texture (Texture): The texture being displayed\n" " texture (Texture): The texture being displayed\n"
" sprite_index (int): Current sprite index in texture atlas\n" " sprite_index (int): Current sprite index in texture atlas\n"
" scale (float): Scale multiplier\n" " scale (float): Uniform scale factor\n"
" scale_x, scale_y (float): Individual scale factors\n"
" click (callable): Click event handler\n" " click (callable): Click event handler\n"
" visible (bool): Visibility state\n" " visible (bool): Visibility state\n"
" opacity (float): Opacity value\n"
" z_index (int): Rendering order\n" " z_index (int): Rendering order\n"
" name (str): Element name\n"
" w, h (float): Read-only computed size based on texture and scale"), " w, h (float): Read-only computed size based on texture and scale"),
.tp_methods = UISprite_methods, .tp_methods = UISprite_methods,
//.tp_members = PyUIFrame_members, //.tp_members = PyUIFrame_members,

View File

@ -67,10 +67,10 @@ class COSEntity(): #mcrfpy.Entity): # Fake mcrfpy.Entity integration; engine bu
self.draw_pos = (tx, ty) self.draw_pos = (tx, ty)
for e in self.game.entities: for e in self.game.entities:
if e is self: continue if e is self: continue
if e.draw_pos == old_pos: e.ev_exit(self) if e.draw_pos.x == old_pos.x and e.draw_pos.y == old_pos.y: e.ev_exit(self)
for e in self.game.entities: for e in self.game.entities:
if e is self: continue if e is self: continue
if e.draw_pos == (tx, ty): e.ev_enter(self) if e.draw_pos.x == tx and e.draw_pos.y == ty: e.ev_enter(self)
def act(self): def act(self):
pass pass
@ -83,12 +83,12 @@ class COSEntity(): #mcrfpy.Entity): # Fake mcrfpy.Entity integration; engine bu
def try_move(self, dx, dy, test=False): def try_move(self, dx, dy, test=False):
x_max, y_max = self.grid.grid_size x_max, y_max = self.grid.grid_size
tx, ty = int(self.draw_pos[0] + dx), int(self.draw_pos[1] + dy) tx, ty = int(self.draw_pos.x + dx), int(self.draw_pos.y + dy)
#for e in iterable_entities(self.grid): #for e in iterable_entities(self.grid):
# sorting entities to test against the boulder instead of the button when they overlap. # sorting entities to test against the boulder instead of the button when they overlap.
for e in sorted(self.game.entities, key = lambda i: i.draw_order, reverse = True): for e in sorted(self.game.entities, key = lambda i: i.draw_order, reverse = True):
if e.draw_pos == (tx, ty): if e.draw_pos.x == tx and e.draw_pos.y == ty:
#print(f"bumping {e}") #print(f"bumping {e}")
return e.bump(self, dx, dy) return e.bump(self, dx, dy)
@ -106,7 +106,7 @@ class COSEntity(): #mcrfpy.Entity): # Fake mcrfpy.Entity integration; engine bu
return False return False
def _relative_move(self, dx, dy): def _relative_move(self, dx, dy):
tx, ty = int(self.draw_pos[0] + dx), int(self.draw_pos[1] + dy) tx, ty = int(self.draw_pos.x + dx), int(self.draw_pos.y + dy)
#self.draw_pos = (tx, ty) #self.draw_pos = (tx, ty)
self.do_move(tx, ty) self.do_move(tx, ty)
@ -181,7 +181,7 @@ class Equippable:
if self.zap_cooldown_remaining != 0: if self.zap_cooldown_remaining != 0:
print("zap is cooling down.") print("zap is cooling down.")
return False return False
fx, fy = caster.draw_pos fx, fy = caster.draw_pos.x, caster.draw_pos.y
x, y = int(fx), int (fy) x, y = int(fx), int (fy)
dist = lambda tx, ty: abs(int(tx) - x) + abs(int(ty) - y) dist = lambda tx, ty: abs(int(tx) - x) + abs(int(ty) - y)
targets = [] targets = []
@ -293,7 +293,7 @@ class PlayerEntity(COSEntity):
## TODO - find other entities to avoid spawning on top of ## TODO - find other entities to avoid spawning on top of
for spawn in spawn_points: for spawn in spawn_points:
for e in avoid or []: for e in avoid or []:
if e.draw_pos == spawn: break if e.draw_pos.x == spawn[0] and e.draw_pos.y == spawn[1]: break
else: else:
break break
self.draw_pos = spawn self.draw_pos = spawn
@ -314,9 +314,9 @@ class BoulderEntity(COSEntity):
elif type(other) == EnemyEntity: elif type(other) == EnemyEntity:
if not other.can_push: return False if not other.can_push: return False
#tx, ty = int(self.e.position[0] + dx), int(self.e.position[1] + dy) #tx, ty = int(self.e.position[0] + dx), int(self.e.position[1] + dy)
tx, ty = int(self.draw_pos[0] + dx), int(self.draw_pos[1] + dy) tx, ty = int(self.draw_pos.x + dx), int(self.draw_pos.y + dy)
# Is the boulder blocked the same direction as the bumper? If not, let's both move # Is the boulder blocked the same direction as the bumper? If not, let's both move
old_pos = int(self.draw_pos[0]), int(self.draw_pos[1]) old_pos = int(self.draw_pos.x), int(self.draw_pos.y)
if self.try_move(dx, dy, test=test): if self.try_move(dx, dy, test=test):
if not test: if not test:
other.do_move(*old_pos) other.do_move(*old_pos)
@ -342,7 +342,7 @@ class ButtonEntity(COSEntity):
# self.exit.unlock() # self.exit.unlock()
# TODO: unlock, and then lock again, when player steps on/off # TODO: unlock, and then lock again, when player steps on/off
if not test: if not test:
pos = int(self.draw_pos[0]), int(self.draw_pos[1]) pos = int(self.draw_pos.x), int(self.draw_pos.y)
other.do_move(*pos) other.do_move(*pos)
return True return True
@ -393,7 +393,7 @@ class EnemyEntity(COSEntity):
def bump(self, other, dx, dy, test=False): def bump(self, other, dx, dy, test=False):
if self.hp == 0: if self.hp == 0:
if not test: if not test:
old_pos = int(self.draw_pos[0]), int(self.draw_pos[1]) old_pos = int(self.draw_pos.x), int(self.draw_pos.y)
other.do_move(*old_pos) other.do_move(*old_pos)
return True return True
if type(other) == PlayerEntity: if type(other) == PlayerEntity:
@ -415,7 +415,7 @@ class EnemyEntity(COSEntity):
print("Ouch, my entire body!!") print("Ouch, my entire body!!")
self._entity.sprite_number = self.base_sprite + 246 self._entity.sprite_number = self.base_sprite + 246
self.hp = 0 self.hp = 0
old_pos = int(self.draw_pos[0]), int(self.draw_pos[1]) old_pos = int(self.draw_pos.x), int(self.draw_pos.y)
if not test: if not test:
other.do_move(*old_pos) other.do_move(*old_pos)
return True return True
@ -423,8 +423,8 @@ class EnemyEntity(COSEntity):
def act(self): def act(self):
if self.hp > 0: if self.hp > 0:
# if player nearby: attack # if player nearby: attack
x, y = self.draw_pos x, y = self.draw_pos.x, self.draw_pos.y
px, py = self.game.player.draw_pos px, py = self.game.player.draw_pos.x, self.game.player.draw_pos.y
for d in ((1, 0), (0, 1), (-1, 0), (1, 0)): for d in ((1, 0), (0, 1), (-1, 0), (1, 0)):
if int(x + d[0]) == int(px) and int(y + d[1]) == int(py): if int(x + d[0]) == int(px) and int(y + d[1]) == int(py):
self.try_move(*d) self.try_move(*d)

View File

@ -22,12 +22,13 @@ class TileInfo:
@staticmethod @staticmethod
def from_grid(grid, xy:tuple): def from_grid(grid, xy:tuple):
values = {} values = {}
x_max, y_max = grid.grid_size
for d in deltas: for d in deltas:
tx, ty = d[0] + xy[0], d[1] + xy[1] tx, ty = d[0] + xy[0], d[1] + xy[1]
try: if tx < 0 or tx >= x_max or ty < 0 or ty >= y_max:
values[d] = grid.at((tx, ty)).walkable
except ValueError:
values[d] = True values[d] = True
else:
values[d] = grid.at((tx, ty)).walkable
return TileInfo(values) return TileInfo(values)
@staticmethod @staticmethod
@ -70,10 +71,10 @@ def special_rule_verify(rule, grid, xy, unverified_tiles, pass_unverified=False)
tx, ty = xy[0] + dxy[0], xy[1] + dxy[1] tx, ty = xy[0] + dxy[0], xy[1] + dxy[1]
#print(f"Special rule: {cardinal} {allowed_tile} {type(allowed_tile)} -> ({tx}, {ty}) [{grid.at((tx, ty)).tilesprite}]{'*' if (tx, ty) in unverified_tiles else ''}") #print(f"Special rule: {cardinal} {allowed_tile} {type(allowed_tile)} -> ({tx}, {ty}) [{grid.at((tx, ty)).tilesprite}]{'*' if (tx, ty) in unverified_tiles else ''}")
if (tx, ty) in unverified_tiles and cardinal in "nsew": return pass_unverified if (tx, ty) in unverified_tiles and cardinal in "nsew": return pass_unverified
try: x_max, y_max = grid.grid_size
return grid.at((tx, ty)).tilesprite == allowed_tile if tx < 0 or tx >= x_max or ty < 0 or ty >= y_max:
except ValueError:
return False return False
return grid.at((tx, ty)).tilesprite == allowed_tile
import random import random
tile_of_last_resort = 431 tile_of_last_resort = 431

View File

@ -87,7 +87,7 @@ class Crypt:
# Side Bar (inventory, level info) config # Side Bar (inventory, level info) config
self.level_caption = mcrfpy.Caption((5,5), "Level: 1", font, fill_color=(255, 255, 255)) self.level_caption = mcrfpy.Caption((5,5), "Level: 1", font, fill_color=(255, 255, 255))
self.level_caption.size = 26 self.level_caption.font_size = 26
self.level_caption.outline = 3 self.level_caption.outline = 3
self.level_caption.outline_color = (0, 0, 0) self.level_caption.outline_color = (0, 0, 0)
self.sidebar.children.append(self.level_caption) self.sidebar.children.append(self.level_caption)
@ -103,7 +103,7 @@ class Crypt:
mcrfpy.Caption((25, 130 + 95 * i), "x", font, fill_color=(255, 255, 255)) for i in range(5) mcrfpy.Caption((25, 130 + 95 * i), "x", font, fill_color=(255, 255, 255)) for i in range(5)
] ]
for i in self.inv_captions: for i in self.inv_captions:
i.size = 16 i.font_size = 16
self.sidebar.children.append(i) self.sidebar.children.append(i)
liminal_void = mcrfpy.Grid(1, 1, t, (0, 0), (16, 16)) liminal_void = mcrfpy.Grid(1, 1, t, (0, 0), (16, 16))
@ -382,7 +382,7 @@ class Crypt:
def pull_boulder_search(self): def pull_boulder_search(self):
for dx, dy in ( (0, -1), (-1, 0), (1, 0), (0, 1) ): for dx, dy in ( (0, -1), (-1, 0), (1, 0), (0, 1) ):
for e in self.entities: for e in self.entities:
if e.draw_pos != (self.player.draw_pos[0] + dx, self.player.draw_pos[1] + dy): continue if e.draw_pos.x != self.player.draw_pos.x + dx or e.draw_pos.y != self.player.draw_pos.y + dy: continue
if type(e) == ce.BoulderEntity: if type(e) == ce.BoulderEntity:
self.pull_boulder_move((dx, dy), e) self.pull_boulder_move((dx, dy), e)
return self.enemy_turn() return self.enemy_turn()
@ -395,7 +395,7 @@ class Crypt:
if self.player.try_move(-p[0], -p[1], test=True): if self.player.try_move(-p[0], -p[1], test=True):
old_pos = self.player.draw_pos old_pos = self.player.draw_pos
self.player.try_move(-p[0], -p[1]) self.player.try_move(-p[0], -p[1])
target_boulder.do_move(*old_pos) target_boulder.do_move(old_pos.x, old_pos.y)
def swap_level(self, new_level, spawn_point): def swap_level(self, new_level, spawn_point):
self.level = new_level self.level = new_level
@ -451,7 +451,7 @@ class SweetButton:
# main button caption # main button caption
self.caption = mcrfpy.Caption((40, 3), caption, font, fill_color=font_color) self.caption = mcrfpy.Caption((40, 3), caption, font, fill_color=font_color)
self.caption.size = font_size self.caption.font_size = font_size
self.caption.outline_color=font_outline_color self.caption.outline_color=font_outline_color
self.caption.outline=font_outline_width self.caption.outline=font_outline_width
self.main_button.children.append(self.caption) self.main_button.children.append(self.caption)
@ -548,20 +548,20 @@ class MainMenu:
# title text # title text
drop_shadow = mcrfpy.Caption((150, 10), "Crypt Of Sokoban", font, fill_color=(96, 96, 96), outline_color=(192, 0, 0)) drop_shadow = mcrfpy.Caption((150, 10), "Crypt Of Sokoban", font, fill_color=(96, 96, 96), outline_color=(192, 0, 0))
drop_shadow.outline = 3 drop_shadow.outline = 3
drop_shadow.size = 64 drop_shadow.font_size = 64
components.append( components.append(
drop_shadow drop_shadow
) )
title_txt = mcrfpy.Caption((158, 18), "Crypt Of Sokoban", font, fill_color=(255, 255, 255)) title_txt = mcrfpy.Caption((158, 18), "Crypt Of Sokoban", font, fill_color=(255, 255, 255))
title_txt.size = 64 title_txt.font_size = 64
components.append( components.append(
title_txt title_txt
) )
# toast: text over the demo grid that fades out on a timer # toast: text over the demo grid that fades out on a timer
self.toast = mcrfpy.Caption((150, 400), "", font, fill_color=(0, 0, 0)) self.toast = mcrfpy.Caption((150, 400), "", font, fill_color=(0, 0, 0))
self.toast.size = 28 self.toast.font_size = 28
self.toast.outline = 2 self.toast.outline = 2
self.toast.outline_color = (255, 255, 255) self.toast.outline_color = (255, 255, 255)
self.toast_event = None self.toast_event = None
@ -626,6 +626,7 @@ class MainMenu:
def play(self, sweet_btn, args): def play(self, sweet_btn, args):
#if args[3] == "start": return # DRAMATIC on release action! #if args[3] == "start": return # DRAMATIC on release action!
if args[3] == "end": return if args[3] == "end": return
mcrfpy.delTimer("demo_motion") # Clean up the demo timer
self.crypt = Crypt() self.crypt = Crypt()
#mcrfpy.setScene("play") #mcrfpy.setScene("play")
self.crypt.start() self.crypt.start()

View File

@ -0,0 +1,81 @@
#!/usr/bin/env python3
"""
Demonstration of animation callbacks solving race conditions.
Shows how callbacks enable direct causality for game state changes.
"""
import mcrfpy
# Game state
player_moving = False
move_queue = []
def movement_complete(anim, target):
"""Called when player movement animation completes"""
global player_moving, move_queue
print("Movement animation completed!")
player_moving = False
# Process next move if queued
if move_queue:
next_pos = move_queue.pop(0)
move_player_to(next_pos)
else:
print("Player is now idle and ready for input")
def move_player_to(new_pos):
"""Move player with animation and proper state management"""
global player_moving
if player_moving:
print(f"Queueing move to {new_pos}")
move_queue.append(new_pos)
return
player_moving = True
print(f"Moving player to {new_pos}")
# Get player entity (placeholder for demo)
ui = mcrfpy.sceneUI("game")
player = ui[0] # Assume first element is player
# Animate movement with callback
x, y = new_pos
anim_x = mcrfpy.Animation("x", float(x), 0.5, "easeInOutQuad", callback=movement_complete)
anim_y = mcrfpy.Animation("y", float(y), 0.5, "easeInOutQuad")
anim_x.start(player)
anim_y.start(player)
def setup_demo():
"""Set up the demo scene"""
# Create scene
mcrfpy.createScene("game")
mcrfpy.setScene("game")
# Create player sprite
player = mcrfpy.Frame((100, 100), (32, 32), fill_color=(0, 255, 0))
ui = mcrfpy.sceneUI("game")
ui.append(player)
print("Demo: Animation callbacks for movement queue")
print("=" * 40)
# Simulate rapid movement commands
mcrfpy.setTimer("move1", lambda r: move_player_to((200, 100)), 100)
mcrfpy.setTimer("move2", lambda r: move_player_to((200, 200)), 200) # Will be queued
mcrfpy.setTimer("move3", lambda r: move_player_to((100, 200)), 300) # Will be queued
# Exit after demo
mcrfpy.setTimer("exit", lambda r: exit_demo(), 3000)
def exit_demo():
"""Exit the demo"""
print("\nDemo completed successfully!")
print("Callbacks ensure proper movement sequencing without race conditions")
import sys
sys.exit(0)
# Run the demo
setup_demo()

View File

@ -258,8 +258,9 @@ def demo_grid_animations(ui):
except: except:
texture = None texture = None
grid = Grid(100, 150, grid_size=(20, 15), texture=texture, # Grid constructor: Grid(grid_x, grid_y, texture, position, size)
tile_width=24, tile_height=24) # Note: tile dimensions are determined by texture's grid_size
grid = Grid(20, 15, texture, (100, 150), (480, 360)) # 20x24, 15x24
grid.fill_color = Color(20, 20, 40) grid.fill_color = Color(20, 20, 40)
ui.append(grid) ui.append(grid)
@ -282,7 +283,7 @@ def demo_grid_animations(ui):
# Create entities in the grid # Create entities in the grid
if texture: if texture:
entity1 = Entity(5.0, 5.0, texture, sprite_index=8) entity1 = Entity((5.0, 5.0), texture, 8) # position tuple, texture, sprite_index
entity1.scale = 1.5 entity1.scale = 1.5
grid.entities.append(entity1) grid.entities.append(entity1)
@ -291,7 +292,7 @@ def demo_grid_animations(ui):
entity_pos.start(entity1) entity_pos.start(entity1)
# Create patrolling entity # Create patrolling entity
entity2 = Entity(10.0, 2.0, texture, sprite_index=12) entity2 = Entity((10.0, 2.0), texture, 12) # position tuple, texture, sprite_index
grid.entities.append(entity2) grid.entities.append(entity2)
# Animate sprite changes # Animate sprite changes

View File

@ -183,7 +183,7 @@ def clear_scene():
# Keep only the first two elements (title and subtitle) # Keep only the first two elements (title and subtitle)
while len(ui) > 2: while len(ui) > 2:
ui.remove(ui[2]) ui.remove(2)
def run_demo_sequence(runtime): def run_demo_sequence(runtime):
"""Run through all demos""" """Run through all demos"""

View File

@ -268,8 +268,6 @@ def run_next_demo(runtime):
# Clean up timers from previous demo # Clean up timers from previous demo
for timer in ["opacity_0", "opacity_1", "opacity_2", "opacity_3", for timer in ["opacity_0", "opacity_1", "opacity_2", "opacity_3",
"c_green", "c_blue", "c_white"]: "c_green", "c_blue", "c_white"]:
if not mcrfpy.getTimer(timer):
continue
try: try:
mcrfpy.delTimer(timer) mcrfpy.delTimer(timer)
except: except:

File diff suppressed because it is too large Load Diff

View File

@ -48,6 +48,10 @@ mode = "CHASE"
show_dijkstra = False show_dijkstra = False
animation_speed = 3.0 animation_speed = 3.0
# Track waypoints separately since Entity doesn't have custom attributes
entity_waypoints = {} # entity -> [(x, y), ...]
entity_waypoint_indices = {} # entity -> current index
def create_dungeon(): def create_dungeon():
"""Create a dungeon-like map""" """Create a dungeon-like map"""
global grid global grid
@ -126,37 +130,34 @@ def spawn_entities():
global player, enemies, treasures, patrol_entities global player, enemies, treasures, patrol_entities
# Clear existing entities # Clear existing entities
grid.entities.clear() #grid.entities.clear()
enemies = [] enemies = []
treasures = [] treasures = []
patrol_entities = [] patrol_entities = []
# Spawn player in center room # Spawn player in center room
player = mcrfpy.Entity(15, 11) player = mcrfpy.Entity((15, 11), mcrfpy.default_texture, PLAYER)
player.sprite_index = PLAYER
grid.entities.append(player) grid.entities.append(player)
# Spawn enemies in corners # Spawn enemies in corners
enemy_positions = [(4, 4), (24, 4), (4, 16), (24, 16)] enemy_positions = [(4, 4), (24, 4), (4, 16), (24, 16)]
for x, y in enemy_positions: for x, y in enemy_positions:
enemy = mcrfpy.Entity(x, y) enemy = mcrfpy.Entity((x, y), mcrfpy.default_texture, ENEMY)
enemy.sprite_index = ENEMY
grid.entities.append(enemy) grid.entities.append(enemy)
enemies.append(enemy) enemies.append(enemy)
# Spawn treasures # Spawn treasures
treasure_positions = [(6, 5), (24, 5), (15, 10)] treasure_positions = [(6, 5), (24, 5), (15, 10)]
for x, y in treasure_positions: for x, y in treasure_positions:
treasure = mcrfpy.Entity(x, y) treasure = mcrfpy.Entity((x, y), mcrfpy.default_texture, TREASURE)
treasure.sprite_index = TREASURE
grid.entities.append(treasure) grid.entities.append(treasure)
treasures.append(treasure) treasures.append(treasure)
# Spawn patrol entities # Spawn patrol entities
patrol = mcrfpy.Entity(10, 10) patrol = mcrfpy.Entity((10, 10), mcrfpy.default_texture, PATROL)
patrol.sprite_index = PATROL # Store waypoints separately since Entity doesn't support custom attributes
patrol.waypoints = [(10, 10), (19, 10), (19, 16), (10, 16)] # Square patrol entity_waypoints[patrol] = [(10, 10), (19, 10), (19, 16), (10, 16)] # Square patrol
patrol.waypoint_index = 0 entity_waypoint_indices[patrol] = 0
grid.entities.append(patrol) grid.entities.append(patrol)
patrol_entities.append(patrol) patrol_entities.append(patrol)
@ -222,18 +223,21 @@ def move_enemies(dt):
def move_patrols(dt): def move_patrols(dt):
"""Move patrol entities along waypoints""" """Move patrol entities along waypoints"""
for patrol in patrol_entities: for patrol in patrol_entities:
if not hasattr(patrol, 'waypoints'): if patrol not in entity_waypoints:
continue continue
# Get current waypoint # Get current waypoint
target_x, target_y = patrol.waypoints[patrol.waypoint_index] waypoints = entity_waypoints[patrol]
waypoint_index = entity_waypoint_indices[patrol]
target_x, target_y = waypoints[waypoint_index]
# Check if reached waypoint # Check if reached waypoint
dist = abs(patrol.x - target_x) + abs(patrol.y - target_y) dist = abs(patrol.x - target_x) + abs(patrol.y - target_y)
if dist < 0.5: if dist < 0.5:
# Move to next waypoint # Move to next waypoint
patrol.waypoint_index = (patrol.waypoint_index + 1) % len(patrol.waypoints) entity_waypoint_indices[patrol] = (waypoint_index + 1) % len(waypoints)
target_x, target_y = patrol.waypoints[patrol.waypoint_index] waypoint_index = entity_waypoint_indices[patrol]
target_x, target_y = waypoints[waypoint_index]
# Path to waypoint # Path to waypoint
path = patrol.path_to(target_x, target_y) path = patrol.path_to(target_x, target_y)
@ -370,4 +374,4 @@ mcrfpy.setTimer("entities", update_entities, 16) # 60 FPS
# Show scene # Show scene
mcrfpy.setScene("pathfinding_showcase") mcrfpy.setScene("pathfinding_showcase")
print("\nShowcase ready! Move with WASD and watch entities react.") print("\nShowcase ready! Move with WASD and watch entities react.")

View File

@ -28,11 +28,11 @@ class TextInput:
# Label # Label
if self.label: if self.label:
self.label_caption = mcrfpy.Caption(self.label, self.x, self.y - 20) self.label_caption = mcrfpy.Caption(self.label, self.x, self.y - 20)
self.label_caption.color = (255, 255, 255, 255) self.label_caption.fill_color = (255, 255, 255, 255)
# Text display # Text display
self.text_caption = mcrfpy.Caption("", self.x + 4, self.y + 4) self.text_caption = mcrfpy.Caption("", self.x + 4, self.y + 4)
self.text_caption.color = (0, 0, 0, 255) self.text_caption.fill_color = (0, 0, 0, 255)
# Cursor (a simple vertical line using a frame) # Cursor (a simple vertical line using a frame)
self.cursor = mcrfpy.Frame(self.x + 4, self.y + 4, 2, 16) self.cursor = mcrfpy.Frame(self.x + 4, self.y + 4, 2, 16)
@ -176,7 +176,7 @@ def create_scene():
# Title # Title
title = mcrfpy.Caption("Text Input Widget Demo", 10, 10) title = mcrfpy.Caption("Text Input Widget Demo", 10, 10)
title.color = (255, 255, 255, 255) title.fill_color = (255, 255, 255, 255)
scene.append(title) scene.append(title)
# Create input fields # Create input fields
@ -194,7 +194,7 @@ def create_scene():
# Status text # Status text
status = mcrfpy.Caption("Click to focus, type to enter text", 50, 280) status = mcrfpy.Caption("Click to focus, type to enter text", 50, 280)
status.color = (200, 200, 200, 255) status.fill_color = (200, 200, 200, 255)
scene.append(status) scene.append(status)
# Keyboard handler # Keyboard handler

View File

@ -5,12 +5,19 @@ McRogueFace Animation Sizzle Reel - Final Version
Complete demonstration of all animation capabilities. Complete demonstration of all animation capabilities.
This version works properly with the game loop and avoids API issues. This version works properly with the game loop and avoids API issues.
WARNING: This demo causes a segmentation fault due to a bug in the
AnimationManager. When UI elements with active animations are removed
from the scene, the AnimationManager crashes when trying to update them.
Use sizzle_reel_final_fixed.py instead, which works around this issue
by hiding objects off-screen instead of removing them.
""" """
import mcrfpy import mcrfpy
# Configuration # Configuration
DEMO_DURATION = 4.0 # Duration for each demo DEMO_DURATION = 6.0 # Duration for each demo
# All available easing functions # All available easing functions
EASING_FUNCTIONS = [ EASING_FUNCTIONS = [
@ -41,6 +48,7 @@ def create_scene():
title = mcrfpy.Caption("Animation Sizzle Reel", 500, 20) title = mcrfpy.Caption("Animation Sizzle Reel", 500, 20)
title.fill_color = mcrfpy.Color(255, 255, 0) title.fill_color = mcrfpy.Color(255, 255, 0)
title.outline = 2 title.outline = 2
title.font_size = 28
ui.append(title) ui.append(title)
# Subtitle # Subtitle
@ -79,18 +87,21 @@ def demo2_caption_animations():
# Moving caption # Moving caption
c1 = mcrfpy.Caption("Bouncing Text!", 100, 200) c1 = mcrfpy.Caption("Bouncing Text!", 100, 200)
c1.fill_color = mcrfpy.Color(255, 255, 255) c1.fill_color = mcrfpy.Color(255, 255, 255)
c1.font_size = 28
ui.append(c1) ui.append(c1)
mcrfpy.Animation("x", 800.0, 3.0, "easeOutBounce").start(c1) mcrfpy.Animation("x", 800.0, 3.0, "easeOutBounce").start(c1)
# Color cycling # Color cycling
c2 = mcrfpy.Caption("Color Cycle", 400, 300) c2 = mcrfpy.Caption("Color Cycle", 400, 300)
c2.outline = 2 c2.outline = 2
c2.font_size = 28
ui.append(c2) ui.append(c2)
mcrfpy.Animation("fill_color", (255, 0, 0, 255), 1.0, "linear").start(c2) mcrfpy.Animation("fill_color", (255, 0, 0, 255), 1.0, "linear").start(c2)
# Typewriter effect # Typewriter effect
c3 = mcrfpy.Caption("", 100, 400) c3 = mcrfpy.Caption("", 100, 400)
c3.fill_color = mcrfpy.Color(0, 255, 255) c3.fill_color = mcrfpy.Color(0, 255, 255)
c3.font_size = 28
ui.append(c3) ui.append(c3)
mcrfpy.Animation("text", "Typewriter effect animation...", 3.0, "linear").start(c3) mcrfpy.Animation("text", "Typewriter effect animation...", 3.0, "linear").start(c3)
@ -147,7 +158,7 @@ def clear_demo_objects():
# Keep removing items after the first 2 (title and subtitle) # Keep removing items after the first 2 (title and subtitle)
while len(ui) > 2: while len(ui) > 2:
# Remove the last item # Remove the last item
ui.remove(ui[len(ui)-1]) ui.remove(len(ui)-1)
def next_demo(runtime): def next_demo(runtime):
"""Run the next demo""" """Run the next demo"""
@ -167,11 +178,13 @@ def next_demo(runtime):
current_demo += 1 current_demo += 1
if current_demo < len(demos): if current_demo < len(demos):
mcrfpy.setTimer("next", next_demo, int(DEMO_DURATION * 1000)) #mcrfpy.setTimer("next", next_demo, int(DEMO_DURATION * 1000))
pass
else: else:
subtitle.text = "Demo Complete!" subtitle.text = "Demo Complete!"
# Initialize # Initialize
print("Starting Animation Sizzle Reel...") print("Starting Animation Sizzle Reel...")
create_scene() create_scene()
mcrfpy.setTimer("start", next_demo, 500) mcrfpy.setTimer("start", next_demo, int(DEMO_DURATION * 1000))
next_demo(0)

View File

@ -0,0 +1,193 @@
#!/usr/bin/env python3
"""
McRogueFace Animation Sizzle Reel - Fixed Version
=================================================
This version works around the animation crash by:
1. Using shorter demo durations to ensure animations complete before clearing
2. Adding a delay before clearing to let animations finish
3. Not removing objects, just hiding them off-screen instead
"""
import mcrfpy
# Configuration
DEMO_DURATION = 3.5 # Slightly shorter to ensure animations complete
CLEAR_DELAY = 0.5 # Extra delay before clearing
# All available easing functions
EASING_FUNCTIONS = [
"linear", "easeIn", "easeOut", "easeInOut",
"easeInQuad", "easeOutQuad", "easeInOutQuad",
"easeInCubic", "easeOutCubic", "easeInOutCubic",
"easeInQuart", "easeOutQuart", "easeInOutQuart",
"easeInSine", "easeOutSine", "easeInOutSine",
"easeInExpo", "easeOutExpo", "easeInOutExpo",
"easeInCirc", "easeOutCirc", "easeInOutCirc",
"easeInElastic", "easeOutElastic", "easeInOutElastic",
"easeInBack", "easeOutBack", "easeInOutBack",
"easeInBounce", "easeOutBounce", "easeInOutBounce"
]
# Track demo state
current_demo = 0
subtitle = None
demo_objects = [] # Track objects to hide instead of remove
def create_scene():
"""Create the demo scene"""
mcrfpy.createScene("demo")
mcrfpy.setScene("demo")
ui = mcrfpy.sceneUI("demo")
# Title
title = mcrfpy.Caption("Animation Sizzle Reel", 500, 20)
title.fill_color = mcrfpy.Color(255, 255, 0)
title.outline = 2
ui.append(title)
# Subtitle
global subtitle
subtitle = mcrfpy.Caption("Starting...", 450, 60)
subtitle.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(subtitle)
return ui
def hide_demo_objects():
"""Hide demo objects by moving them off-screen instead of removing"""
global demo_objects
# Move all demo objects far off-screen
for obj in demo_objects:
obj.x = -1000
obj.y = -1000
demo_objects = []
def demo1_frame_animations():
"""Frame position, size, and color animations"""
global demo_objects
ui = mcrfpy.sceneUI("demo")
subtitle.text = "Demo 1: Frame Animations"
# Create frame
f = mcrfpy.Frame(100, 150, 200, 100)
f.fill_color = mcrfpy.Color(50, 50, 150)
f.outline = 3
f.outline_color = mcrfpy.Color(255, 255, 255)
ui.append(f)
demo_objects.append(f)
# Animate properties with shorter durations
mcrfpy.Animation("x", 600.0, 2.0, "easeInOutBack").start(f)
mcrfpy.Animation("y", 300.0, 2.0, "easeInOutElastic").start(f)
mcrfpy.Animation("w", 300.0, 2.5, "easeInOutCubic").start(f)
mcrfpy.Animation("h", 150.0, 2.5, "easeInOutCubic").start(f)
mcrfpy.Animation("fill_color", (255, 100, 50, 200), 3.0, "easeInOutSine").start(f)
mcrfpy.Animation("outline", 8.0, 3.0, "easeInOutQuad").start(f)
def demo2_caption_animations():
"""Caption movement and text effects"""
global demo_objects
ui = mcrfpy.sceneUI("demo")
subtitle.text = "Demo 2: Caption Animations"
# Moving caption
c1 = mcrfpy.Caption("Bouncing Text!", 100, 200)
c1.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(c1)
demo_objects.append(c1)
mcrfpy.Animation("x", 800.0, 3.0, "easeOutBounce").start(c1)
# Color cycling
c2 = mcrfpy.Caption("Color Cycle", 400, 300)
c2.outline = 2
ui.append(c2)
demo_objects.append(c2)
mcrfpy.Animation("fill_color", (255, 0, 0, 255), 1.0, "linear").start(c2)
# Static text (no typewriter effect to avoid issues)
c3 = mcrfpy.Caption("Animation Demo", 100, 400)
c3.fill_color = mcrfpy.Color(0, 255, 255)
ui.append(c3)
demo_objects.append(c3)
def demo3_easing_showcase():
"""Show all 30 easing functions"""
global demo_objects
ui = mcrfpy.sceneUI("demo")
subtitle.text = "Demo 3: All 30 Easing Functions"
# Create a small frame for each easing
for i, easing in enumerate(EASING_FUNCTIONS[:15]): # First 15
row = i // 5
col = i % 5
x = 100 + col * 200
y = 150 + row * 100
# Frame
f = mcrfpy.Frame(x, y, 20, 20)
f.fill_color = mcrfpy.Color(100, 150, 255)
ui.append(f)
demo_objects.append(f)
# Label
label = mcrfpy.Caption(easing[:10], x, y - 20)
label.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(label)
demo_objects.append(label)
# Animate with this easing
mcrfpy.Animation("x", float(x + 150), 3.0, easing).start(f)
def demo4_performance():
"""Many simultaneous animations"""
global demo_objects
ui = mcrfpy.sceneUI("demo")
subtitle.text = "Demo 4: 50+ Simultaneous Animations"
for i in range(50):
x = 100 + (i % 10) * 80
y = 150 + (i // 10) * 80
f = mcrfpy.Frame(x, y, 30, 30)
f.fill_color = mcrfpy.Color((i*37)%256, (i*73)%256, (i*113)%256)
ui.append(f)
demo_objects.append(f)
# Animate to random position
target_x = 150 + (i % 8) * 90
target_y = 200 + (i // 8) * 70
easing = EASING_FUNCTIONS[i % len(EASING_FUNCTIONS)]
mcrfpy.Animation("x", float(target_x), 2.5, easing).start(f)
mcrfpy.Animation("y", float(target_y), 2.5, easing).start(f)
def next_demo(runtime):
"""Run the next demo with proper cleanup"""
global current_demo
# First hide old objects
hide_demo_objects()
demos = [
demo1_frame_animations,
demo2_caption_animations,
demo3_easing_showcase,
demo4_performance
]
if current_demo < len(demos):
demos[current_demo]()
current_demo += 1
if current_demo < len(demos):
mcrfpy.setTimer("next", next_demo, int(DEMO_DURATION * 1000))
else:
subtitle.text = "Demo Complete!"
mcrfpy.setTimer("exit", lambda t: mcrfpy.exit(), 2000)
# Initialize
print("Starting Animation Sizzle Reel (Fixed)...")
create_scene()
mcrfpy.setTimer("start", next_demo, 500)

View File

@ -60,12 +60,12 @@ def create_demo():
scene.append(bg) scene.append(bg)
# Title # Title
title = mcrfpy.Caption(10, 10, "Text Input Widget Demo - Auto Test", font_size=24) title = mcrfpy.Caption(10, 10, "Text Input Widget Demo - Auto Test")
title.color = (255, 255, 255, 255) title.color = (255, 255, 255, 255)
scene.append(title) scene.append(title)
# Instructions # Instructions
instructions = mcrfpy.Caption(10, 50, "This will automatically test the text input system", font_size=14) instructions = mcrfpy.Caption(10, 50, "This will automatically test the text input system")
instructions.color = (200, 200, 200, 255) instructions.color = (200, 200, 200, 255)
scene.append(instructions) scene.append(instructions)
@ -109,7 +109,7 @@ def create_demo():
fields.append(comment_input) fields.append(comment_input)
# Result display # Result display
result_text = mcrfpy.Caption(50, 320, "Values will appear here as you type...", font_size=14) result_text = mcrfpy.Caption(50, 320, "Values will appear here as you type...")
result_text.color = (150, 255, 150, 255) result_text.color = (150, 255, 150, 255)
scene.append(result_text) scene.append(result_text)

View File

@ -79,8 +79,7 @@ class TextInput:
self.label_text = mcrfpy.Caption( self.label_text = mcrfpy.Caption(
self.x - 5, self.x - 5,
self.y - self.font_size - 5, self.y - self.font_size - 5,
self.label, self.label
font_size=self.font_size
) )
self.label_text.color = (255, 255, 255, 255) self.label_text.color = (255, 255, 255, 255)
@ -88,8 +87,7 @@ class TextInput:
self.text_display = mcrfpy.Caption( self.text_display = mcrfpy.Caption(
self.x + 4, self.x + 4,
self.y + 4, self.y + 4,
"", ""
font_size=self.font_size
) )
self.text_display.color = (0, 0, 0, 255) self.text_display.color = (0, 0, 0, 255)
@ -260,12 +258,12 @@ def create_demo():
scene.append(bg) scene.append(bg)
# Title # Title
title = mcrfpy.Caption(10, 10, "Text Input Widget System", font_size=24) title = mcrfpy.Caption(10, 10, "Text Input Widget System")
title.color = (255, 255, 255, 255) title.color = (255, 255, 255, 255)
scene.append(title) scene.append(title)
# Instructions # Instructions
info = mcrfpy.Caption(10, 50, "Click to focus | Tab to switch fields | Type to enter text", font_size=14) info = mcrfpy.Caption(10, 50, "Click to focus | Tab to switch fields | Type to enter text")
info.color = (200, 200, 200, 255) info.color = (200, 200, 200, 255)
scene.append(info) scene.append(info)
@ -289,7 +287,7 @@ def create_demo():
comment_input.add_to_scene(scene) comment_input.add_to_scene(scene)
# Status display # Status display
status = mcrfpy.Caption(50, 320, "Ready for input...", font_size=14) status = mcrfpy.Caption(50, 320, "Ready for input...")
status.color = (150, 255, 150, 255) status.color = (150, 255, 150, 255)
scene.append(status) scene.append(status)

View File

@ -95,8 +95,7 @@ class TextInput:
self.label_text = mcrfpy.Caption( self.label_text = mcrfpy.Caption(
self.x - 5, self.x - 5,
self.y - self.font_size - 5, self.y - self.font_size - 5,
self.label, self.label
font_size=self.font_size
) )
self.label_text.color = (255, 255, 255, 255) self.label_text.color = (255, 255, 255, 255)
@ -104,8 +103,7 @@ class TextInput:
self.text_display = mcrfpy.Caption( self.text_display = mcrfpy.Caption(
self.x + 4, self.x + 4,
self.y + 4, self.y + 4,
"", ""
font_size=self.font_size
) )
self.text_display.color = (0, 0, 0, 255) self.text_display.color = (0, 0, 0, 255)
@ -227,12 +225,12 @@ def create_demo():
scene.append(bg) scene.append(bg)
# Title # Title
title = mcrfpy.Caption(10, 10, "Text Input Widget Demo", font_size=24) title = mcrfpy.Caption(10, 10, "Text Input Widget Demo")
title.color = (255, 255, 255, 255) title.color = (255, 255, 255, 255)
scene.append(title) scene.append(title)
# Instructions # Instructions
instructions = mcrfpy.Caption(10, 50, "Click to focus, Tab to switch fields, Type to enter text", font_size=14) instructions = mcrfpy.Caption(10, 50, "Click to focus, Tab to switch fields, Type to enter text")
instructions.color = (200, 200, 200, 255) instructions.color = (200, 200, 200, 255)
scene.append(instructions) scene.append(instructions)
@ -276,7 +274,7 @@ def create_demo():
fields.append(comment_input) fields.append(comment_input)
# Result display # Result display
result_text = mcrfpy.Caption(50, 320, "Type in the fields above...", font_size=14) result_text = mcrfpy.Caption(50, 320, "Type in the fields above...")
result_text.color = (150, 255, 150, 255) result_text.color = (150, 255, 150, 255)
scene.append(result_text) scene.append(result_text)