Compare commits

..

28 Commits

Author SHA1 Message Date
John McCardle bd6407db29 hotfix: bad documentation links... ...because of trailing slash?! 2025-07-17 23:49:03 -04:00
John McCardle f4343e1e82 Squashed commit of the following: [alpha_presentable]
Author: John McCardle <mccardle.john@gmail.com>
Co-Authored-By: Claude <noreply@anthropic.com>

commit dc47f2474c7b2642d368f9772894aed857527807
    the UIEntity rant

commit 673ca8e1b089ea670257fc04ae1a676ed95a40ed
    I forget when these tests were written, but I want them in the squash merge

commit 70c71565c684fa96e222179271ecb13a156d80ad
    Fix UI object segfault by switching from managed to manual weakref management

    The UI types (Frame, Caption, Sprite, Grid, Entity) were using
    Py_TPFLAGS_MANAGED_WEAKREF while also trying to manually create weakrefs
    for the PythonObjectCache. This is fundamentally incompatible - when
    Python manages weakrefs internally, PyWeakref_NewRef() cannot access the
    weakref list properly, causing segfaults.

    Changed all UI types to use manual weakref management (like PyTimer):
    - Restored weakreflist field in all UI type structures
    - Removed Py_TPFLAGS_MANAGED_WEAKREF from all UI type flags
    - Added tp_weaklistoffset for all UI types in module initialization
    - Initialize weakreflist=NULL in tp_new and init methods
    - Call PyObject_ClearWeakRefs() in dealloc functions

    This allows the PythonObjectCache to continue working correctly,
    maintaining Python object identity for C++ objects across the boundary.

    Fixes segfault when creating UI objects (e.g., Caption, Grid) that was
    preventing tutorial scripts from running.

This is the bulk of the required behavior for Issue #126.
that issure isn't ready for closure yet; several other sub-issues left.
    closes #110
    mention issue #109 - resolves some __init__ related nuisances

commit 3dce3ec539ae99e32d869007bf3f49d03e4e2f89
    Refactor timer system for cleaner architecture and enhanced functionality

    Major improvements to the timer system:
    - Unified all timer logic in the Timer class (C++)
    - Removed PyTimerCallable subclass, now using PyCallable directly
    - Timer objects are now passed to callbacks as first argument
    - Added 'once' parameter for one-shot timers that auto-stop
    - Implemented proper PythonObjectCache integration with weakref support

    API enhancements:
    - New callback signature: callback(timer, runtime) instead of just (runtime)
    - Timer objects expose: name, interval, remaining, paused, active, once properties
    - Methods: pause(), resume(), cancel(), restart()
    - Comprehensive documentation with examples
    - Enhanced repr showing timer state (active/paused/once/remaining time)

    This cleanup follows the UIEntity/PyUIEntity pattern and makes the timer
    system more Pythonic while maintaining backward compatibility through
    the legacy setTimer/delTimer API.

    closes #121

commit 145834cfc31b8dabc4cb3591b9cb4ed99fc8b964
    Implement Python object cache to preserve derived types in collections

    Add a global cache system that maintains weak references to Python objects,
    ensuring that derived Python classes maintain their identity when stored in
    and retrieved from C++ collections.

    Key changes:
    - Add PythonObjectCache singleton with serial number system
    - Each cacheable object (UIDrawable, UIEntity, Timer, Animation) gets unique ID
    - Cache stores weak references to prevent circular reference memory leaks
    - Update all UI type definitions to support weak references (Py_TPFLAGS_MANAGED_WEAKREF)
    - Enable subclassing for all UI types (Py_TPFLAGS_BASETYPE)
    - Collections check cache before creating new Python wrappers
    - Register objects in cache during __init__ methods
    - Clean up cache entries in C++ destructors

    This ensures that Python code like:
    ```python
    class MyFrame(mcrfpy.Frame):
        def __init__(self):
            super().__init__()
            self.custom_data = "preserved"

    frame = MyFrame()
    scene.ui.append(frame)
    retrieved = scene.ui[0]  # Same MyFrame instance with custom_data intact
    ```

    Works correctly, with retrieved maintaining the derived type and custom attributes.

    Closes #112

commit c5e7e8e298
    Update test demos for new Python API and entity system

    - Update all text input demos to use new Entity constructor signature
    - Fix pathfinding showcase to work with new entity position handling
    - Remove entity_waypoints tracking in favor of simplified movement
    - Delete obsolete exhaustive_api_demo.py (superseded by newer demos)
    - Adjust entity creation calls to match Entity((x, y), texture, sprite_index) pattern

commit 6d29652ae7
    Update animation demo suite with crash fixes and improvements

    - Add warnings about AnimationManager segfault bug in sizzle_reel_final.py
    - Create sizzle_reel_final_fixed.py that works around the crash by hiding objects instead of removing them
    - Increase font sizes for better visibility in demos
    - Extend demo durations for better showcase of animations
    - Remove debug prints from animation_sizzle_reel_working.py
    - Minor cleanup and improvements to all animation demos

commit a010e5fa96
    Update game scripts for new Python API

    - Convert entity position access from tuple to x/y properties
    - Update caption size property to font_size
    - Fix grid boundary checks to use grid_size instead of exceptions
    - Clean up demo timer on menu exit to prevent callbacks

    These changes adapt the game scripts to work with the new standardized
    Python API constructors and property names.

commit 9c8d6c4591
    Fix click event z-order handling in PyScene

    Changed click detection to properly respect z-index by:
    - Sorting ui_elements in-place when needed (same as render order)
    - Using reverse iterators to check highest z-index elements first
    - This ensures top-most elements receive clicks before lower ones

commit dcd1b0ca33
    Add roguelike tutorial implementation files

    Implement Parts 0-2 of the classic roguelike tutorial adapted for McRogueFace:
    - Part 0: Basic grid setup and tile rendering
    - Part 1: Drawing '@' symbol and basic movement
    - Part 1b: Variant with sprite-based player
    - Part 2: Entity system and NPC implementation with three movement variants:
      - part_2.py: Standard implementation
      - part_2-naive.py: Naive movement approach
      - part_2-onemovequeued.py: Queued movement system

    Includes tutorial assets:
    - tutorial2.png: Tileset for dungeon tiles
    - tutorial_hero.png: Player sprite sheet

commit 6813fb5129
    Standardize Python API constructors and remove PyArgHelpers

    - Remove PyArgHelpers.h and all macro-based argument parsing
    - Convert all UI class constructors to use PyArg_ParseTupleAndKeywords
    - Standardize constructor signatures across UICaption, UIEntity, UIFrame, UIGrid, and UISprite
    - Replace PYARGHELPER_SINGLE/MULTI macros with explicit argument parsing
    - Improve error messages and argument validation
    - Maintain backward compatibility with existing Python code

    This change improves code maintainability and consistency across the Python API.

commit 6f67fbb51e
    Fix animation callback crashes from iterator invalidation (#119)

    Resolved segfaults caused by creating new animations from within
    animation callbacks. The issue was iterator invalidation in
    AnimationManager::update() when callbacks modified the active
    animations vector.

    Changes:
    - Add deferred animation queue to AnimationManager
    - New animations created during update are queued and added after
    - Set isUpdating flag to track when in update loop
    - Properly handle Animation destructor during callback execution
    - Add clearCallback() method for safe cleanup scenarios

    This fixes the "free(): invalid pointer" and "malloc(): unaligned
    fastbin chunk detected" errors that occurred with rapid animation
    creation in callbacks.

commit eb88c7b3aa
    Add animation completion callbacks (#119)

    Implement callbacks that fire when animations complete, enabling direct
    causality between animation end and game state changes. This eliminates
    race conditions from parallel timer workarounds.

    - Add optional callback parameter to Animation constructor
    - Callbacks execute synchronously when animation completes
    - Proper Python reference counting with GIL safety
    - Callbacks receive (anim, target) parameters (currently None)
    - Exception handling prevents crashes from Python errors

    Example usage:
    ```python
    def on_complete(anim, target):
        player_moving = False

    anim = mcrfpy.Animation("x", 300.0, 1.0, "easeOut", callback=on_complete)
    anim.start(player)
    ```

    closes #119

commit 9fb428dd01
    Update ROADMAP with GitHub issue numbers (#111-#125)

    Added issue numbers from GitHub tracker to roadmap items:
    - #111: Grid Click Events Broken in Headless
    - #112: Object Splitting Bug (Python type preservation)
    - #113: Batch Operations for Grid
    - #114: CellView API
    - #115: SpatialHash Implementation
    - #116: Dirty Flag System
    - #117: Memory Pool for Entities
    - #118: Scene as Drawable
    - #119: Animation Completion Callbacks
    - #120: Animation Property Locking
    - #121: Timer Object System
    - #122: Parent-Child UI System
    - #123: Grid Subgrid System
    - #124: Grid Point Animation
    - #125: GitHub Issues Automation

    Also updated existing references:
    - #101/#110: Constructor standardization
    - #109: Vector class indexing

    Note: Tutorial-specific items and Python-implementable features
    (input queue, collision reservation) are not tracked as engine issues.

commit 062e4dadc4
    Fix animation segfaults with RAII weak_ptr implementation

    Resolved two critical segmentation faults in AnimationManager:
    1. Race condition when creating multiple animations in timer callbacks
    2. Exit crash when animations outlive their target objects

    Changes:
    - Replace raw pointers with std::weak_ptr for automatic target invalidation
    - Add Animation::complete() to jump animations to final value
    - Add Animation::hasValidTarget() to check if target still exists
    - Update AnimationManager to auto-remove invalid animations
    - Add AnimationManager::clear() call to GameEngine::cleanup()
    - Update Python bindings to pass shared_ptr instead of raw pointers

    This ensures animations can never reference destroyed objects, following
    proper RAII principles. Tested with sizzle_reel_final.py and stress
    tests creating/destroying hundreds of animated objects.

commit 98fc49a978
    Directory structure cleanup and organization overhaul
2025-07-15 21:30:49 -04:00
John McCardle 1a143982e1 hotfix: Windows build, no longer console mode 2025-07-10 17:01:03 -04:00
John McCardle 234551b9fd hotfix: findows build 2025-07-10 16:50:42 -04:00
John McCardle 93a55c6468 hotfix: windows build fixes 2025-07-10 16:43:05 -04:00
John McCardle 96857a41c6 hotfix: windows build, fresh docs 2025-07-10 16:34:46 -04:00
John McCardle 4144cdf067 draft lessons 2025-07-10 00:14:56 -04:00
John McCardle 665689c550 hotfix: Windows build attempt 2025-07-09 23:33:09 -04:00
John McCardle d11f76ac43 Squashed commit of 53 Commits: [alpha_streamline_2]
* Field of View, Pathing courtesy of libtcod
* python-tcod emulation at `mcrfpy.libtcod` - partial implementation
* documentation, tutorial drafts: in middling to good shape

┌────────────┬────────────────────┬───────────┬────────────┬───────────────┬────────────────┬────────────────┬─────────────┐
│ Date       │ Models             │     Input │     Output │  Cache Create │     Cache Read │   Total Tokens │  Cost (USD) │
├────────────┼────────────────────┼───────────┼────────────┼───────────────┼────────────────┼────────────────┼─────────────┤
│ 2025-07-05 │ - opus-4           │    13,630 │    159,500 │     3,854,900 │     84,185,034 │     88,213,064 │     $210.72 │
├────────────┼────────────────────┼───────────┼────────────┼───────────────┼────────────────┼────────────────┼─────────────┤
│ 2025-07-06 │ - opus-4           │     5,814 │    113,190 │     4,242,407 │    150,191,183 │    154,552,594 │     $313.41 │
├────────────┼────────────────────┼───────────┼────────────┼───────────────┼────────────────┼────────────────┼─────────────┤
│ 2025-07-07 │ - opus-4           │     7,244 │    104,599 │     3,894,453 │     81,781,179 │     85,787,475 │     $184.46 │
│            │ - sonnet-4         │           │            │               │                │                │             │
├────────────┼────────────────────┼───────────┼────────────┼───────────────┼────────────────┼────────────────┼─────────────┤
│ 2025-07-08 │ - opus-4           │    50,312 │    158,599 │     5,021,189 │     60,028,561 │     65,258,661 │     $167.05 │
│            │ - sonnet-4         │           │            │               │                │                │             │
├────────────┼────────────────────┼───────────┼────────────┼───────────────┼────────────────┼────────────────┼─────────────┤
│ 2025-07-09 │ - opus-4           │     6,311 │    109,653 │     4,171,140 │     80,092,875 │     84,379,979 │     $193.09 │
│            │ - sonnet-4         │           │            │               │                │                │             │
└────────────┴────────────────────┴───────────┴────────────┴───────────────┴────────────────┴────────────────┴─────────────┘

    🤖 Generated with [Claude Code](https://claude.ai/code)
    Co-Authored-By: Claude <noreply@anthropic.com>

Author: John McCardle <mccardle.john@gmail.com>

    Draft tutorials

Author: John McCardle <mccardle.john@gmail.com>

    docs: update ROADMAP with FOV, A* pathfinding, and GUI text widget completions

    - Mark TCOD Integration Sprint as complete
    - Document FOV system with perspective rendering implementation
    - Update UIEntity pathfinding status to complete with A* and caching
    - Add comprehensive achievement entry for July 10 work
    - Reflect current engine capabilities accurately

    The engine now has all core roguelike mechanics:
    - Field of View with per-entity visibility
    - Pathfinding (both Dijkstra and A*)
    - Text input for in-game consoles
    - Performance optimizations throughout

Author: John McCardle <mccardle.john@gmail.com>

    feat(engine): implement perspective FOV, pathfinding, and GUI text widgets

    Major Engine Enhancements:
    - Complete FOV (Field of View) system with perspective rendering
      - UIGrid.perspective property for entity-based visibility
      - Three-layer overlay colors (unexplored, explored, visible)
      - Per-entity visibility state tracking
      - Perfect knowledge updates only for explored areas

    - Advanced Pathfinding Integration
      - A* pathfinding implementation in UIGrid
      - Entity.path_to() method for direct pathfinding
      - Dijkstra maps for multi-target pathfinding
      - Path caching for performance optimization

    - GUI Text Input Widgets
      - TextInputWidget class with cursor, selection, scrolling
      - Improved widget with proper text rendering and input handling
      - Example showcase of multiple text input fields
      - Foundation for in-game console and chat systems

    - Performance & Architecture Improvements
      - PyTexture copy operations optimized
      - GameEngine update cycle refined
      - UIEntity property handling enhanced
      - UITestScene modernized

    Test Suite:
    - Interactive visibility demos showing FOV in action
    - Pathfinding comparison (A* vs Dijkstra)
    - Debug utilities for visibility and empty path handling
    - Sizzle reel demo combining pathfinding and vision
    - Multiple text input test scenarios

    This commit brings McRogueFace closer to a complete roguelike engine
    with essential features like line-of-sight, intelligent pathfinding,
    and interactive text input capabilities.

Author: John McCardle <mccardle.john@gmail.com>

    feat(demos): enhance interactive pathfinding demos with entity.path_to()

    - dijkstra_interactive_enhanced.py: Animation along paths with smooth movement
      - M key to start movement animation
      - P to pause/resume
      - R to reset positions
      - Visual path gradient for better clarity

    - pathfinding_showcase.py: Advanced multi-entity behaviors
      - Chase mode: enemies pursue player
      - Flee mode: enemies avoid player
      - Patrol mode: entities follow waypoints
      - WASD player movement
      - Dijkstra distance field visualization (D key)
      - Larger dungeon map with multiple rooms

    - Both demos use new entity.path_to() method
    - Smooth interpolated movement animations
    - Real-time pathfinding recalculation
    - Comprehensive test coverage

    These demos showcase the power of integrated pathfinding for game AI.

Author: John McCardle <mccardle.john@gmail.com>

    feat(entity): implement path_to() method for entity pathfinding

    - Add path_to(target_x, target_y) method to UIEntity class
    - Uses existing Dijkstra pathfinding implementation from UIGrid
    - Returns list of (x, y) coordinate tuples for complete path
    - Supports both positional and keyword argument formats
    - Proper error handling for out-of-bounds and no-grid scenarios
    - Comprehensive test suite covering normal and edge cases

    Part of TCOD integration sprint - gives entities immediate pathfinding capabilities.

Author: John McCardle <mccardle.john@gmail.com>

    docs: update roadmap with Dijkstra pathfinding progress

    - Mark UIGrid TCOD Integration as completed
    - Document critical PyArg bug fix achievement
    - Update UIEntity Pathfinding to 50% complete
    - Add detailed progress notes for July 9 sprint work

Author: John McCardle <mccardle.john@gmail.com>

    feat(tcod): complete Dijkstra pathfinding implementation with critical PyArg fix

    - Add complete Dijkstra pathfinding to UIGrid class
      - compute_dijkstra(), get_dijkstra_distance(), get_dijkstra_path()
      - Full TCODMap and TCODDijkstra integration
      - Proper memory management in constructors/destructors

    - Create mcrfpy.libtcod submodule with Python bindings
      - dijkstra_compute(), dijkstra_get_distance(), dijkstra_get_path()
      - line() function for drawing corridors
      - Foundation for future FOV and pathfinding algorithms

    - Fix critical PyArg bug in UIGridPoint color setter
      - PyObject_to_sfColor() now handles both Color objects and tuples
      - Prevents "SystemError: new style getargs format but argument is not a tuple"
      - Proper error handling and exception propagation

    - Add comprehensive test suite
      - test_dijkstra_simple.py validates all pathfinding operations
      - dijkstra_test.py for headless testing with screenshots
      - dijkstra_interactive.py for full user interaction demos

    - Consolidate and clean up test files
      - Removed 6 duplicate/broken demo attempts
      - Two clean versions: headless test + interactive demo

    Part of TCOD integration sprint for RoguelikeDev Tutorial Event.

Author: John McCardle <mccardle.john@gmail.com>

    Roguelike Tutorial Planning + Prep

Author: John McCardle <mccardle.john@gmail.com>

    feat(docs): complete markdown API documentation export

    - Created comprehensive markdown documentation matching HTML completeness
    - Documented all 75 functions, 20 classes, 56 methods, and 20 automation methods
    - Zero ellipsis instances - complete coverage with no missing documentation
    - Added proper markdown formatting with code blocks and navigation
    - Included full parameter documentation, return values, and examples

    Key features:
    - 23KB GitHub-compatible markdown documentation
    - 47 argument sections with detailed parameters
    - 35 return value specifications
    - 23 code examples with syntax highlighting
    - 38 explanatory notes and 10 exception specifications
    - Full table of contents with anchor links
    - Professional markdown formatting

    Both export formats now available:
    - HTML: docs/api_reference_complete.html (54KB, rich styling)
    - Markdown: docs/API_REFERENCE_COMPLETE.md (23KB, GitHub-compatible)

Author: John McCardle <mccardle.john@gmail.com>

    feat(docs): complete API documentation with zero missing methods

    - Eliminated ALL ellipsis instances (0 remaining)
    - Documented 40 functions with complete signatures and examples
    - Documented 21 classes with full method and property documentation
    - Added 56 method descriptions with detailed parameters and return values
    - Included 15 complete property specifications
    - Added 24 code examples and 38 explanatory notes
    - Comprehensive coverage of all collection methods, system classes, and functions

    Key highlights:
    - EntityCollection/UICollection: Complete method docs (append, remove, extend, count, index)
    - Animation: Full property and method documentation with examples
    - Color: All manipulation methods (from_hex, to_hex, lerp) with examples
    - Vector: Complete mathematical operations (magnitude, normalize, dot, distance_to, angle, copy)
    - Scene: All management methods including register_keyboard
    - Timer: Complete control methods (pause, resume, cancel, restart)
    - Window: All management methods (get, center, screenshot)
    - System functions: Complete audio, scene, UI, and system function documentation

Author: John McCardle <mccardle.john@gmail.com>

    feat(docs): create professional HTML API documentation

    - Fixed all formatting issues from original HTML output
    - Added comprehensive constructor documentation for all classes
    - Enhanced visual design with modern styling and typography
    - Fixed literal newline display and markdown link conversion
    - Added proper semantic HTML structure and navigation
    - Includes detailed documentation for Entity, collections, and system types

Author: John McCardle <mccardle.john@gmail.com>

    feat: complete API reference generator and finish Phase 7 documentation

    Implemented comprehensive API documentation generator that:
    - Introspects live mcrfpy module for accurate documentation
    - Generates organized Markdown reference (docs/API_REFERENCE.md)
    - Categorizes classes and functions by type
    - Includes full automation module documentation
    - Provides summary statistics

    Results:
    - 20 classes documented
    - 19 module functions documented
    - 20 automation methods documented
    - 100% coverage of public API
    - Clean, readable Markdown output

    Phase 7 Summary:
    - Completed 4/5 tasks (1 cancelled as architecturally inappropriate)
    - All documentation tasks successful
    - Type stubs, docstrings, and API reference all complete

Author: John McCardle <mccardle.john@gmail.com>

    docs: cancel PyPI wheel task and add future vision for Python extension architecture

    Task #70 Analysis:
    - Discovered fundamental incompatibility with PyPI distribution
    - McRogueFace embeds CPython rather than being loaded by it
    - Traditional wheels expect to extend existing Python interpreter
    - Current architecture is application-with-embedded-Python

    Decisions:
    - Cancelled PyPI wheel preparation as out of scope for Alpha
    - Cleaned up attempted packaging files (pyproject.toml, setup.py, etc.)
    - Identified better distribution methods (installers, package managers)

    Added Future Vision:
    - Comprehensive plan for pure Python extension architecture
    - Would allow true "pip install mcrogueface" experience
    - Requires major refactoring to invert control flow
    - Python would drive main loop with C++ performance extensions
    - Unscheduled but documented as long-term possibility

    This clarifies the architectural boundaries and sets realistic
    expectations for distribution methods while preserving the vision
    of what McRogueFace could become with significant rework.

Author: John McCardle <mccardle.john@gmail.com>

    feat: generate comprehensive .pyi type stubs for IDE support (#108)

    Created complete type stub files for the mcrfpy module to enable:
    - Full IntelliSense/autocomplete in IDEs
    - Static type checking with mypy/pyright
    - Better documentation tooltips
    - Parameter hints and return types

    Implementation details:
    - Manually crafted stubs for accuracy (15KB, 533 lines)
    - Complete coverage: 19 classes, 112 functions/methods
    - Proper type annotations using typing module
    - @overload decorators for multiple signatures
    - Type aliases for common patterns (UIElement union)
    - Preserved all docstrings for IDE help
    - Automation module fully typed
    - PEP 561 compliant with py.typed marker

    Testing:
    - Validated Python syntax with ast.parse()
    - Verified all expected classes and functions
    - Confirmed type annotations are well-formed
    - Checked docstring preservation (80 docstrings)

    Usage:
    - VS Code: Add stubs/ to python.analysis.extraPaths
    - PyCharm: Mark stubs/ directory as Sources Root
    - Other IDEs will auto-detect .pyi files

    This significantly improves the developer experience when using
    McRogueFace as a Python game engine.

Author: John McCardle <mccardle.john@gmail.com>

    docs: add comprehensive parameter documentation to all API methods (#86)

    Enhanced documentation for the mcrfpy module with:
    - Detailed docstrings for all API methods
    - Type hints in documentation (name: type format)
    - Return type specifications
    - Exception documentation where applicable
    - Usage examples for complex methods
    - Module-level documentation with overview and example code

    Specific improvements:
    - Audio API: Added parameter types and return values
    - Scene API: Documented transition types and error conditions
    - Timer API: Clarified handler signature and runtime parameter
    - UI Search: Added wildcard pattern examples for findAll()
    - Metrics API: Documented all dictionary keys returned

    Also fixed method signatures:
    - Changed METH_VARARGS to METH_NOARGS for parameterless methods
    - Ensures proper Python calling conventions

    Test coverage included - all documentation is accessible via Python's
    __doc__ attributes and shows correctly formatted information.

Author: John McCardle <mccardle.john@gmail.com>

    docs: mark issue #85 as completed in Phase 7

Author: John McCardle <mccardle.john@gmail.com>

    docs: replace all 'docstring' placeholders with comprehensive documentation (#85)

    Added proper Python docstrings for all UI component classes:

    UIFrame:
    - Container element that can hold child drawables
    - Documents position, size, colors, outline, and clip_children
    - Includes constructor signature with all parameters

    UICaption:
    - Text display element with font and styling
    - Documents text content, position, font, colors, outline
    - Notes that w/h are computed from text content

    UISprite:
    - Texture/sprite display element
    - Documents position, texture, sprite_index, scale
    - Notes that w/h are computed from texture and scale

    UIGrid:
    - Tile-based grid for game worlds
    - Documents grid dimensions, tile size, texture atlas
    - Includes entities collection and background_color

    All docstrings follow consistent format:
    - Constructor signature with defaults
    - Brief description
    - Args section with types and defaults
    - Attributes section with all properties

    This completes Phase 7 task #85 for documentation improvements.

Author: John McCardle <mccardle.john@gmail.com>

    docs: update ROADMAP with PyArgHelpers infrastructure completion

Author: John McCardle <mccardle.john@gmail.com>

    refactor: implement PyArgHelpers for standardized Python argument parsing

    This major refactoring standardizes how position, size, and other arguments
    are parsed across all UI components. PyArgHelpers provides consistent handling
    for various argument patterns:

    - Position as (x, y) tuple or separate x, y args
    - Size as (w, h) tuple or separate width, height args
    - Grid position and size with proper validation
    - Color parsing with PyColorObject support

    Changes across UI components:
    - UICaption: Migrated to PyArgHelpers, improved resize() for future multiline support
    - UIFrame: Uses standardized position parsing
    - UISprite: Consistent position handling
    - UIGrid: Grid-specific position/size helpers
    - UIEntity: Unified argument parsing

    Also includes:
    - Improved error messages for type mismatches (int or float accepted)
    - Reduced code duplication across constructors
    - Better handling of keyword/positional argument conflicts
    - Maintains backward compatibility with existing API

    This addresses the inconsistent argument handling patterns discovered during
    the inheritance hierarchy work and prepares for Phase 7 documentation.

Author: John McCardle <mccardle.john@gmail.com>

    feat(Python): establish proper inheritance hierarchy for UI types

    All UIDrawable-derived Python types now properly inherit from the Drawable
    base class in Python, matching the C++ inheritance structure.

    Changes:
    - Add Py_TPFLAGS_BASETYPE to PyDrawableType to allow inheritance
    - Set tp_base = &mcrfpydef::PyDrawableType for all UI types
    - Add PyDrawable.h include to UI type headers
    - Rename _Drawable to Drawable and update error message

    This enables proper Python inheritance: Frame, Caption, Sprite, Grid,
    and Entity all inherit from Drawable, allowing shared functionality
    and isinstance() checks.

Author: John McCardle <mccardle.john@gmail.com>

    refactor: move position property to UIDrawable base class (UISprite)

    - Update UISprite to use base class position instead of sprite position
    - Synchronize sprite position with base class position for rendering
    - Implement onPositionChanged() for position synchronization
    - Update all UISprite methods to use base position consistently
    - Add comprehensive test coverage for UISprite position handling

    This is part 3 of moving position to the base class. UIGrid is the final
    class that needs to be updated.

Author: John McCardle <mccardle.john@gmail.com>

    refactor: move position property to UIDrawable base class (UICaption)

    - Update UICaption to use base class position instead of text position
    - Synchronize text position with base class position for rendering
    - Add onPositionChanged() virtual method for position synchronization
    - Update all UICaption methods to use base position consistently
    - Add comprehensive test coverage for UICaption position handling

    This is part 2 of moving position to the base class. UISprite and UIGrid
    will be updated in subsequent commits.

Author: John McCardle <mccardle.john@gmail.com>

    refactor: move position property to UIDrawable base class (UIFrame)

    - Add position member to UIDrawable base class
    - Add common position getters/setters (x, y, pos) to base class
    - Update UIFrame to use base class position instead of box position
    - Synchronize box position with base class position for rendering
    - Update all UIFrame methods to use base position consistently
    - Add comprehensive test coverage for UIFrame position handling

    This is part 1 of moving position to the base class. Other derived classes
    (UICaption, UISprite, UIGrid) will be updated in subsequent commits.

Author: John McCardle <mccardle.john@gmail.com>

    refactor: remove UIEntity collision_pos field

    - Remove redundant collision_pos field from UIEntity
    - Update position getters/setters to use integer-cast position when needed
    - Remove all collision_pos synchronization code
    - Simplify entity position handling to use single float position field
    - Add comprehensive test coverage proving functionality is preserved

    This removes technical debt and simplifies the codebase without changing API behavior.

Author: John McCardle <mccardle.john@gmail.com>

    feat: add PyArgHelpers infrastructure for standardized argument parsing

    - Create PyArgHelpers.h with parsing functions for position, size, grid coordinates, and color
    - Support tuple-based vector arguments with conflict detection
    - Provide consistent error messages and validation
    - Add comprehensive test coverage for infrastructure

    This sets the foundation for standardizing all Python API constructors.

Author: John McCardle <mccardle.john@gmail.com>

    docs: mark Phase 6 (Rendering Revolution) as complete

    Phase 6 is now complete with all core rendering features implemented:

    Completed Features:
    - Grid background colors (#50) - customizable backgrounds with animation
    - RenderTexture overhaul (#6) - UIFrame clipping with opt-in architecture
    - Viewport-based rendering (#8) - three scaling modes with coordinate transform

    Strategic Decisions:
    - UIGrid already has optimal RenderTexture implementation for its viewport needs
    - UICaption/UISprite clipping deemed unnecessary (no children to clip)
    - Effects/Shader/Particle systems deferred to post-Phase 7 for focused delivery

    The rendering foundation is now solid and ready for Phase 7: Documentation & Distribution.

Author: John McCardle <mccardle.john@gmail.com>

    feat(viewport): complete viewport-based rendering system (#8)

    Implements a comprehensive viewport system that allows fixed game resolution
    with flexible window scaling, addressing the primary wishes for issues #34, #49, and #8.

    Key Features:
    - Fixed game resolution independent of window size (window.game_resolution property)
    - Three scaling modes accessible via window.scaling_mode:
      - "center": 1:1 pixels, viewport centered in window
      - "stretch": viewport fills window, ignores aspect ratio
      - "fit": maintains aspect ratio with black bars
    - Automatic window-to-game coordinate transformation for mouse input
    - Full Python API integration with PyWindow properties

    Technical Implementation:
    - GameEngine::ViewportMode enum with Center, Stretch, Fit modes
    - SFML View system for efficient GPU-based viewport scaling
    - updateViewport() recalculates on window resize or mode change
    - windowToGameCoords() transforms mouse coordinates correctly
    - PyScene mouse input automatically uses transformed coordinates

    Tests:
    - test_viewport_simple.py: Basic API functionality
    - test_viewport_visual.py: Visual verification with screenshots
    - test_viewport_scaling.py: Interactive mode switching and resizing

    This completes the viewport-based rendering task and provides the foundation
    for resolution-independent game development as requested for Crypt of Sokoban.

Author: John McCardle <mccardle.john@gmail.com>

    docs: update ROADMAP for Phase 6 progress

    - Marked Phase 6 as IN PROGRESS
    - Updated RenderTexture overhaul (#6) as PARTIALLY COMPLETE
    - Marked Grid background colors (#50) as COMPLETED
    - Added technical notes from implementation experience
    - Identified viewport rendering (#8) as next priority

Author: John McCardle <mccardle.john@gmail.com>

    feat(rendering): implement RenderTexture base infrastructure and UIFrame clipping (#6)

    - Added RenderTexture support to UIDrawable base class
      - std::unique_ptr<sf::RenderTexture> for opt-in rendering
      - Dirty flag system for optimization
      - enableRenderTexture() and markDirty() methods

    - Implemented clip_children property for UIFrame
      - Python-accessible boolean property
      - Automatic RenderTexture creation when enabled
      - Proper coordinate transformation for nested frames

    - Updated UIFrame::render() for clipping support
      - Renders to RenderTexture when clip_children=true
      - Handles nested clipping correctly
      - Only re-renders when dirty flag is set

    - Added comprehensive dirty flag propagation
      - All property setters mark frame as dirty
      - Size changes recreate RenderTexture
      - Animation system integration

    - Created tests for clipping functionality
      - Basic clipping test with visual verification
      - Advanced nested clipping test
      - Dynamic resize handling test

    This is Phase 1 of the RenderTexture overhaul, providing the foundation
    for advanced rendering effects like blur, glow, and viewport rendering.

Author: John McCardle <mccardle.john@gmail.com>

    docs: create RenderTexture overhaul design document

    - Comprehensive design for Issue #6 implementation
    - Opt-in architecture to maintain backward compatibility
    - Phased implementation plan with clear milestones
    - Performance considerations and risk mitigation
    - API design for clipping and future effects

    Also includes Grid background color test

Author: John McCardle <mccardle.john@gmail.com>

    feat(Grid): add customizable background_color property (#50)

    - Added sf::Color background_color member with default dark gray
    - Python property getter/setter for background_color
    - Animation support for individual color components (r/g/b/a)
    - Replaces hardcoded clear color in render method
    - Test demonstrates color changes and property access

    Closes #50

Author: John McCardle <mccardle.john@gmail.com>

    docs: update roadmap for Phase 6 preparation

    - Mark Phase 5 (Window/Scene Architecture) as complete
    - Update issue statuses (#34, #61, #1, #105 completed)
    - Add Phase 6 implementation strategy for RenderTexture overhaul
    - Archive Phase 5 test files to .archive/
    - Identify quick wins and technical approach for rendering work

Author: John McCardle <mccardle.john@gmail.com>

    feat(Phase 5): Complete Window/Scene Architecture

    - Window singleton with properties (resolution, fullscreen, vsync, title)
    - OOP Scene support with lifecycle methods (on_enter, on_exit, on_keypress, update)
    - Window resize events trigger scene.on_resize callbacks
    - Scene transitions (fade, slide_left/right/up/down) with smooth animations
    - Full integration of Python Scene objects with C++ engine

    All Phase 5 tasks (#34, #1, #61, #105) completed successfully.

Author: John McCardle <mccardle.john@gmail.com>

    research: SFML 3.0 migration analysis

    - Analyzed SFML 3.0 breaking changes (event system, scoped enums, C++17)
    - Assessed migration impact on McRogueFace (40+ files affected)
    - Evaluated timing relative to mcrfpy.sfml module plans
    - Recommended deferring migration until after mcrfpy.sfml implementation
    - Created SFML_3_MIGRATION_RESEARCH.md with comprehensive strategy

Author: John McCardle <mccardle.john@gmail.com>

    research: SFML exposure options analysis (#14)

    - Analyzed current SFML 2.6.1 usage throughout codebase
    - Evaluated python-sfml (abandoned, only supports SFML 2.3.2)
    - Recommended direct integration as mcrfpy.sfml module
    - Created comprehensive SFML_EXPOSURE_RESEARCH.md with implementation plan
    - Identified opportunity to provide modern SFML 2.6+ Python bindings

Author: John McCardle <mccardle.john@gmail.com>

    feat: add basic profiling/metrics system (#104)

    - Add ProfilingMetrics struct to track performance data
    - Track frame time (current and 60-frame rolling average)
    - Calculate FPS from average frame time
    - Count draw calls, UI elements, and visible elements per frame
    - Track total runtime and current frame number
    - PyScene counts elements during render
    - Expose metrics via mcrfpy.getMetrics() returning dict

    This provides basic performance monitoring capabilities for
    identifying bottlenecks and optimizing rendering performance.

Author: John McCardle <mccardle.john@gmail.com>

    fix: improve click handling with proper z-order and coordinate transforms

    - UIFrame: Fix coordinate transformation (subtract parent pos, not add)
    - UIFrame: Check children in reverse order (highest z-index first)
    - UIFrame: Skip invisible elements entirely
    - PyScene: Sort elements by z-index before checking clicks
    - PyScene: Stop at first element that handles the click
    - UIGrid: Implement entity click detection with grid coordinate transform
    - UIGrid: Check entities in reverse order, return sprite as target

    Click events now correctly respect z-order (top elements get priority),
    handle coordinate transforms for nested frames, and support clicking
    on grid entities. Elements without click handlers are transparent to
    clicks, allowing elements below to receive them.

    Note: Click testing requires non-headless mode due to PyScene limitation.

    feat: implement name system for finding UI elements (#39/40/41)

    - Add 'name' property to UIDrawable base class
    - All UI elements (Frame, Caption, Sprite, Grid, Entity) support .name
    - Entity delegates name to its sprite member
    - Add find(name, scene=None) function for exact match search
    - Add findAll(pattern, scene=None) with wildcard support (* matches any sequence)
    - Both functions search recursively through Frame children and Grid entities
    - Comprehensive test coverage for all functionality

    This provides a simple way to find UI elements by name in Python scripts,
    supporting both exact matches and wildcard patterns.

Author: John McCardle <mccardle.john@gmail.com>

    fix: prevent segfault when closing window via X button

    - Add cleanup() method to GameEngine to clear Python references before destruction
    - Clear timers and McRFPy_API references in proper order
    - Call cleanup() at end of run loop and in destructor
    - Ensure cleanup is only called once per GameEngine instance

    Also includes:
    - Fix audio ::stop() calls (already in place, OpenAL warning is benign)
    - Add Caption support for x, y keywords (e.g. Caption("text", x=5, y=10))
    - Refactor UIDrawable_methods.h into UIBase.h for better organization
    - Move UIEntity-specific implementations to UIEntityPyMethods.h

Author: John McCardle <mccardle.john@gmail.com>

    feat: stabilize test suite and add UIDrawable methods

    - Add visible, opacity properties to all UI classes (#87, #88)
    - Add get_bounds(), move(), resize() methods to UIDrawable (#89, #98)
    - Create UIDrawable_methods.h with template implementations
    - Fix test termination issues - all tests now exit properly
    - Fix test_sprite_texture_swap.py click handler signature
    - Fix test_drawable_base.py segfault in headless mode
    - Convert audio objects to pointers for cleanup (OpenAL warning persists)
    - Remove debug print statements from UICaption
    - Special handling for UIEntity to delegate drawable methods to sprite

    All test files are now "airtight" - they complete successfully,
    terminate on their own, and handle edge cases properly.

Author: John McCardle <mccardle.john@gmail.com>

    docs: add Phase 1-3 completion summary

    - Document all completed tasks across three phases
    - Show before/after API improvements
    - Highlight technical achievements
    - Outline next steps for Phase 4-7

Author: John McCardle <mccardle.john@gmail.com>

    feat: implement mcrfpy.Timer object with pause/resume/cancel capabilities closes #103

    - Created PyTimer.h/cpp with object-oriented timer interface
    - Enhanced PyTimerCallable with pause/resume state tracking
    - Added timer control methods: pause(), resume(), cancel(), restart()
    - Added timer properties: interval, remaining, paused, active, callback
    - Fixed timing logic to prevent rapid catch-up after resume
    - Timer objects automatically register with game engine
    - Added comprehensive test demonstrating all functionality

Author: John McCardle <mccardle.john@gmail.com>

    feat(Color): add helper methods from_hex, to_hex, lerp closes #94

    - Add Color.from_hex(hex_string) class method for creating colors from hex
    - Support formats: #RRGGBB, RRGGBB, #RRGGBBAA, RRGGBBAA
    - Add color.to_hex() to convert Color to hex string
    - Add color.lerp(other, t) for smooth color interpolation
    - Comprehensive test coverage for all methods

Author: John McCardle <mccardle.john@gmail.com>

    fix: properly configure UTF-8 encoding for Python stdio

    - Use PyConfig to set stdio_encoding="UTF-8" during initialization
    - Set stdio_errors="surrogateescape" for robust handling
    - Configure in both init_python() and init_python_with_config()
    - Cleaner solution than wrapping streams after initialization
    - Fixes UnicodeEncodeError when printing unicode characters

Author: John McCardle <mccardle.john@gmail.com>

    feat(Vector): implement arithmetic operations closes #93

    - Add PyNumberMethods with add, subtract, multiply, divide, negate, absolute
    - Add rich comparison for equality/inequality checks
    - Add boolean check (zero vector is False)
    - Implement vector methods: magnitude(), normalize(), dot(), distance_to(), angle(), copy()
    - Fix UIDrawable::get_click() segfault when click_callable is null
    - Comprehensive test coverage for all arithmetic operations

Author: John McCardle <mccardle.john@gmail.com>

    feat: Complete position argument standardization for all UI classes

    - Frame and Sprite now support pos keyword override
    - Entity now accepts x,y arguments (was pos-only before)
    - All UI classes now consistently support:
      - (x, y) positional
      - ((x, y)) tuple
      - x=x, y=y keywords
      - pos=(x,y) keyword
      - pos=Vector keyword
    - Improves API consistency and flexibility

Author: John McCardle <mccardle.john@gmail.com>

    feat: Standardize position arguments across all UI classes

    - Create PyPositionHelper for consistent position parsing
    - Grid.at() now accepts (x,y), ((x,y)), x=x, y=y, pos=(x,y)
    - Caption now accepts x,y args in addition to pos
    - Grid init fully supports keyword arguments
    - Maintain backward compatibility for all formats
    - Consistent error messages across classes

Author: John McCardle <mccardle.john@gmail.com>

    feat: Add Entity.die() method for lifecycle management closes #30

    - Remove entity from its grid's entity list
    - Clear grid reference after removal
    - Safe to call multiple times (no-op if not on grid)
    - Works with shared_ptr entity management

Author: John McCardle <mccardle.john@gmail.com>

    perf: Skip out-of-bounds entities during Grid rendering closes #52

    - Add visibility bounds check in entity render loop
    - Skip entities outside view with 1 cell margin
    - Improves performance for large grids with many entities
    - Bounds check considers zoom and pan settings

Author: John McCardle <mccardle.john@gmail.com>

    verify: Sprite texture swapping functionality closes #19

    - Texture property getter/setter already implemented
    - Position/scale preservation during swap confirmed
    - Type validation for texture assignment working
    - Tests verify functionality is complete

Author: John McCardle <mccardle.john@gmail.com>

    feat: Grid size tuple support closes #90

    - Add grid_size keyword parameter to Grid.__init__
    - Accept tuple or list of two integers
    - Override grid_x/grid_y if grid_size provided
    - Maintain backward compatibility
    - Add comprehensive test coverage

Author: John McCardle <mccardle.john@gmail.com>

    feat: Phase 1 - safe constructors and _Drawable foundation

    Closes #7 - Make all UI class constructors safe:
    - Added safe default constructors for UISprite, UIGrid, UIEntity, UICaption
    - Initialize all members to predictable values
    - Made Python init functions accept no arguments
    - Added x,y properties to UIEntity

    Closes #71 - Create _Drawable Python base class:
    - Created PyDrawable.h/cpp with base type (not yet inherited by UI types)
    - Registered in module initialization

    Closes #87 - Add visible property:
    - Added bool visible=true to UIDrawable base class
    - All render methods check visibility before drawing

    Closes #88 - Add opacity property:
    - Added float opacity=1.0 to UIDrawable base class
    - UICaption and UISprite apply opacity to alpha channel

    Closes #89 - Add get_bounds() method:
    - Virtual method returns sf::FloatRect(x,y,w,h)
    - Implemented in Frame, Caption, Sprite, Grid

    Closes #98 - Add move() and resize() methods:
    - move(dx,dy) for relative movement
    - resize(w,h) for absolute sizing
    - Caption resize is no-op (size controlled by font)

Author: John McCardle <mccardle.john@gmail.com>

    docs: comprehensive alpha_streamline_2 plan and strategic vision

    - Add 7-phase development plan for alpha_streamline_2 branch
    - Define architectural dependencies and critical path
    - Identify new issues needed (Timer objects, event system, etc.)
    - Add strategic vision document with 3 transformative directions
    - Timeline: 10-12 weeks to solid Beta foundation

Author: John McCardle <mccardle.john@gmail.com>

    feat(Grid): flexible at() method arguments

    - Support tuple argument: grid.at((x, y))
    - Support keyword arguments: grid.at(x=5, y=3)
    - Support pos keyword: grid.at(pos=(2, 8))
    - Maintain backward compatibility with grid.at(x, y)
    - Add comprehensive error handling for invalid arguments

    Improves API ergonomics and Python-like flexibility
2025-07-09 22:41:15 -04:00
John McCardle cd0bd5468b Squashed commit of the following: [alpha_streamline_1]
the low-hanging fruit of pre-existing issues and standardizing the
Python interfaces

Special thanks to Claude Code, ~100k output tokens for this merge

    🤖 Generated with [Claude Code](https://claude.ai/code)
    Co-Authored-By: Claude <noreply@anthropic.com>

commit 99f301e3a0
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Jul 5 16:25:32 2025 -0400

    Add position tuple support and pos property to UI elements

    closes #83, closes #84

    - Issue #83: Add position tuple support to constructors
      - Frame and Sprite now accept both (x, y) and ((x, y)) forms
      - Also accept Vector objects as position arguments
      - Caption and Entity already supported tuple/Vector forms
      - Uses PyVector::from_arg for flexible position parsing

    - Issue #84: Add pos property to Frame and Sprite
      - Added pos getter that returns a Vector
      - Added pos setter that accepts Vector or tuple
      - Provides consistency with Caption and Entity which already had pos properties
      - All UI elements now have a uniform way to get/set positions as Vectors

    Both features improve API consistency and make it easier to work with positions.

commit 2f2b488fb5
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Jul 5 16:18:10 2025 -0400

    Standardize sprite_index property and add scale_x/scale_y to UISprite

    closes #81, closes #82

    - Issue #81: Standardized property name to sprite_index across UISprite and UIEntity
      - Added sprite_index as the primary property name
      - Kept sprite_number as a deprecated alias for backward compatibility
      - Updated repr() methods to use sprite_index
      - Updated animation system to recognize both names

    - Issue #82: Added scale_x and scale_y properties to UISprite
      - Enables non-uniform scaling of sprites
      - scale property still works for uniform scaling
      - Both properties work with the animation system

    All existing code using sprite_number continues to work due to backward compatibility.

commit 5a003a9aa5
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Jul 5 16:09:52 2025 -0400

    Fix multiple low priority issues

    closes #12, closes #80, closes #95, closes #96, closes #99

    - Issue #12: Set tp_new to NULL for GridPoint and GridPointState to prevent instantiation from Python
    - Issue #80: Renamed Caption.size to Caption.font_size for semantic clarity
    - Issue #95: Fixed UICollection repr to show actual derived types instead of generic UIDrawable
    - Issue #96: Added extend() method to UICollection for API consistency with UIEntityCollection
    - Issue #99: Exposed read-only properties for Texture (sprite_width, sprite_height, sheet_width, sheet_height, sprite_count, source) and Font (family, source)

    All issues have corresponding tests that verify the fixes work correctly.

commit e5affaf317
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Jul 5 15:50:09 2025 -0400

    Fix critical issues: script loading, entity types, and color properties

    - Issue #37: Fix Windows scripts subdirectory not checked
      - Updated executeScript() to use executable_path() from platform.h
      - Scripts now load correctly when working directory differs from executable

    - Issue #76: Fix UIEntityCollection returns wrong type
      - Updated UIEntityCollectionIter::next() to check for stored Python object
      - Derived Entity classes now preserve their type when retrieved from collections

    - Issue #9: Recreate RenderTexture when resized (already fixed)
      - Confirmed RenderTexture recreation already implemented in set_size() and set_float_member()
      - Uses 1.5x padding and 4096 max size limit

    - Issue #79: Fix Color r, g, b, a properties return None
      - Implemented get_member() and set_member() in PyColor.cpp
      - Color component properties now work correctly with proper validation

    - Additional fix: Grid.at() method signature
      - Changed from METH_O to METH_VARARGS to accept two arguments

    All fixes include comprehensive tests to verify functionality.

    closes #37, closes #76, closes #9, closes #79
2025-07-05 18:56:02 -04:00
John McCardle e6dbb2d560 Squashed commit of the following: [interpreter_mode]
closes #63
closes #69
closes #59
closes #47
closes #2
closes #3
closes #33
closes #27
closes #73
closes #74
closes #78

  I'd like to thank Claude Code for ~200-250M total tokens and 500-700k output tokens

    🤖 Generated with [Claude Code](https://claude.ai/code)
    Co-Authored-By: Claude <noreply@anthropic.com>

commit 9bd1561bfc
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Jul 5 11:20:07 2025 -0400

    Alpha 0.1 release
    - Move RenderTexture (#6) out of alpha requirements, I don't need it
      that badly
    - alpha blockers resolved:
      * Animation system (#59)
      * Z-order rendering (#63)
      * Python Sequence Protocol (#69)
      * New README (#47)
      * Removed deprecated methods (#2, #3)

    🍾 McRogueFace 0.1.0

commit 43321487eb
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Jul 5 10:36:09 2025 -0400

    Issue #63 (z-order rendering) complete
    - Archive z-order test files

commit 90c318104b
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Jul 5 10:34:06 2025 -0400

    Fix Issue #63: Implement z-order rendering with dirty flag optimization

    - Add dirty flags to PyScene and UIFrame to track when sorting is needed
    - Implement lazy sorting - only sort when z_index changes or elements are added/removed
    - Make Frame children respect z_index (previously rendered in insertion order only)
    - Update UIDrawable::set_int to notify when z_index changes
    - Mark collections dirty on append, remove, setitem, and slice operations
    - Remove per-frame vector copy in PyScene::render for better performance

commit e4482e7189
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Jul 5 01:58:03 2025 -0400

    Implement complete Python Sequence Protocol for collections (closes #69)

    Major implementation of the full sequence protocol for both UICollection
    and UIEntityCollection, making them behave like proper Python sequences.

    Core Features Implemented:
    - __setitem__ (collection[i] = value) with type validation
    - __delitem__ (del collection[i]) with proper cleanup
    - __contains__ (item in collection) by C++ pointer comparison
    - __add__ (collection + other) returns Python list
    - __iadd__ (collection += other) with full validation before modification
    - Negative indexing support throughout
    - Complete slice support (getting, setting, deletion)
    - Extended slices with step \!= 1
    - index() and count() methods
    - Type safety enforced for all operations

    UICollection specifics:
    - Accepts Frame, Caption, Sprite, and Grid objects only
    - Preserves z_index when replacing items
    - Auto-assigns z_index on append (existing behavior maintained)

    UIEntityCollection specifics:
    - Accepts Entity objects only
    - Manages grid references on add/remove/replace
    - Uses std::list iteration with std::advance()

    Also includes:
    - Default value support for constructors:
      - Caption accepts None for font (uses default_font)
      - Grid accepts None for texture (uses default_texture)
      - Sprite accepts None for texture (uses default_texture)
      - Entity accepts None for texture (uses default_texture)

    This completes Issue #69, removing it as an Alpha Blocker.

commit 70cf44f8f0
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Jul 5 00:56:42 2025 -0400

    Implement comprehensive animation system (closes #59)

    - Add Animation class with 30+ easing functions (linear, ease in/out, quad, cubic, elastic, bounce, etc.)
    - Add property system to all UI classes for animation support:
      - UIFrame: position, size, colors (including individual r/g/b/a components)
      - UICaption: position, size, text, colors
      - UISprite: position, scale, sprite_number (with sequence support)
      - UIGrid: position, size, camera center, zoom
      - UIEntity: position, sprite properties
    - Create AnimationManager singleton for frame-based updates
    - Add Python bindings through PyAnimation wrapper
    - Support for delta animations (relative values)
    - Fix segfault when running scripts directly (mcrf_module initialization)
    - Fix headless/windowed mode behavior to respect --headless flag
    - Animations run purely in C++ without Python callbacks per frame

    All UI properties are now animatable with smooth interpolation and professional easing curves.

commit 05bddae511
Author: John McCardle <mccardle.john@gmail.com>
Date:   Fri Jul 4 06:59:02 2025 -0400

    Update comprehensive documentation for Alpha release (Issue #47)

    - Completely rewrote README.md to reflect current features
    - Updated GitHub Pages documentation site with:
      - Modern landing page highlighting Crypt of Sokoban
      - Comprehensive API reference (2700+ lines) with exhaustive examples
      - Updated getting-started guide with installation and first game tutorial
      - 8 detailed tutorials covering all major game systems
      - Quick reference cheat sheet for common operations
    - Generated documentation screenshots showing UI elements
    - Fixed deprecated API references and added new features
    - Added automation API documentation
    - Included Python 3.12 requirement and platform-specific instructions

    Note: Text rendering in headless mode has limitations for screenshots

commit af6a5e090b
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 21:43:58 2025 -0400

    Update ROADMAP.md to reflect completion of Issues #2 and #3

    - Marked both issues as completed with the removal of deprecated action system
    - Updated open issue count from ~50 to ~48
    - These were both Alpha blockers, bringing us closer to release

commit 281800cd23
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 21:43:22 2025 -0400

    Remove deprecated registerPyAction/registerInputAction system (closes #2, closes #3)

    This is our largest net-negative commit yet\! Removed the entire deprecated
    action registration system that provided unnecessary two-step indirection:
    keyboard → action string → Python callback

    Removed components:
    - McRFPy_API::_registerPyAction() and _registerInputAction() methods
    - McRFPy_API::callbacks map for storing Python callables
    - McRFPy_API::doAction() method for executing callbacks
    - ACTIONPY macro from Scene.h for detecting "_py" suffixed actions
    - Scene::registerActionInjected() and unregisterActionInjected() methods
    - tests/api_registerPyAction_issue2_test.py (tested deprecated functionality)

    The game now exclusively uses keypressScene() for keyboard input handling,
    which is simpler and more direct. Also commented out the unused _camFollow
    function that referenced non-existent do_camfollow variable.

commit cc8a7d20e8
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 21:13:59 2025 -0400

    Clean up temporary test files

commit ff83fd8bb1
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 21:13:46 2025 -0400

    Update ROADMAP.md to reflect massive progress today

    - Fixed 12+ critical bugs in a single session
    - Implemented 3 missing features (Entity.index, EntityCollection.extend, sprite validation)
    - Updated Phase 1 progress showing 11 of 12 items complete
    - Added detailed summary of today's achievements with issue numbers
    - Emphasized test-driven development approach used throughout

commit dae400031f
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 21:12:29 2025 -0400

    Remove deprecated player_input and turn-based functions for Issue #3

    Removed the commented-out player_input(), computerTurn(), and playerTurn()
    functions that were part of the old turn-based system. These are no longer
    needed as input is now handled through Scene callbacks.

    Partial fix for #3

commit cb0130b46e
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 21:09:06 2025 -0400

    Implement sprite index validation for Issue #33

    Added validation to prevent setting sprite indices outside the valid
    range for a texture. The implementation:
    - Adds getSpriteCount() method to PyTexture to expose total sprites
    - Validates sprite_number setter to ensure index is within bounds
    - Provides clear error messages showing valid range
    - Works for both Sprite and Entity objects

    closes #33

commit 1e7f5e9e7e
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 21:05:47 2025 -0400

    Implement EntityCollection.extend() method for Issue #27

    Added extend() method to EntityCollection that accepts any iterable
    of Entity objects and adds them all to the collection. The method:
    - Accepts lists, tuples, generators, or any iterable
    - Validates all items are Entity objects
    - Sets the grid association for each added entity
    - Properly handles errors and empty iterables

    closes #27

commit 923350137d
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 21:02:14 2025 -0400

    Implement Entity.index() method for Issue #73

    Added index() method to Entity class that returns the entity's
    position in its parent grid's entity collection. This enables
    proper entity removal patterns using entity.index().

commit 6134869371
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 20:41:03 2025 -0400

    Add validation to keypressScene() for non-callable arguments

    Added PyCallable_Check validation to ensure keypressScene() only
    accepts callable objects. Now properly raises TypeError with a
    clear error message when passed non-callable arguments like
    strings, numbers, None, or dicts.

commit 4715356b5e
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 20:31:36 2025 -0400

    Fix Sprite texture setter 'error return without exception set'

    Implemented the missing UISprite::set_texture method to properly:
    - Validate the input is a Texture instance
    - Update the sprite's texture using setTexture()
    - Return appropriate error messages for invalid inputs

    The setter now works correctly and no longer returns -1 without
    setting an exception.

commit 6dd1cec600
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 20:27:32 2025 -0400

    Fix Entity property setters and PyVector implementation

    Fixed the 'new style getargs format' error in Entity property setters by:
    - Implementing PyObject_to_sfVector2f/2i using PyVector::from_arg
    - Adding proper error checking in Entity::set_position
    - Implementing PyVector get_member/set_member for x/y properties
    - Fixing PyVector::from_arg to handle non-tuple arguments correctly

    Now Entity.pos and Entity.sprite_number setters work correctly with
    proper type validation.

commit f82b861bcd
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 19:48:33 2025 -0400

    Fix Issue #74: Add missing Grid.grid_y property

    Added individual grid_x and grid_y getter properties to the Grid class
    to complement the existing grid_size property. This allows direct access
    to grid dimensions and fixes error messages that referenced these
    properties before they existed.

    closes #74

commit 59e6f8d53d
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 19:42:32 2025 -0400

    Fix Issue #78: Middle mouse click no longer sends 'C' keyboard event

    The bug was caused by accessing event.key.code on a mouse event without
    checking the event type first. Since SFML uses a union for events, this
    read garbage data. The middle mouse button value (2) coincidentally matched
    the keyboard 'C' value (2), causing the spurious keyboard event.

    Fixed by adding event type check before accessing key-specific fields.
    Only keyboard events (KeyPressed/KeyReleased) now trigger key callbacks.

    Test added to verify middle clicks no longer generate keyboard events.

    Closes #78

commit 1c71d8d4f7
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 19:36:15 2025 -0400

    Fix Grid to support None/null texture and fix error message bug

    - Allow Grid to be created with None as texture parameter
    - Use default cell dimensions (16x16) when no texture provided
    - Skip sprite rendering when texture is null, but still render colors
    - Fix issue #77: Corrected copy/paste error in Grid.at() error messages
    - Grid now functional for color-only rendering and entity positioning

    Test created to verify Grid works without texture, showing colored cells.

    Closes #77

commit 18cfe93a44
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 19:25:49 2025 -0400

    Fix --exec interactive prompt bug and create comprehensive test suite

    Major fixes:
    - Fixed --exec entering Python REPL instead of game loop
    - Resolved screenshot transparency issue (requires timer callbacks)
    - Added debug output to trace Python initialization

    Test suite created:
    - 13 comprehensive tests covering all Python-exposed methods
    - Tests use timer callback pattern for proper game loop interaction
    - Discovered multiple critical bugs and missing features

    Critical bugs found:
    - Grid class segfaults on instantiation (blocks all Grid functionality)
    - Issue #78 confirmed: Middle mouse click sends 'C' keyboard event
    - Entity property setters have argument parsing errors
    - Sprite texture setter returns improper error
    - keypressScene() segfaults on non-callable arguments

    Documentation updates:
    - Updated CLAUDE.md with testing guidelines and TDD practices
    - Created test reports documenting all findings
    - Updated ROADMAP.md with test results and new priorities

    The Grid segfault is now the highest priority as it blocks all Grid-based functionality.

commit 9ad0b6850d
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 15:55:24 2025 -0400

    Update ROADMAP.md to reflect Python interpreter and automation API progress

    - Mark #32 (Python interpreter behavior) as 90% complete
      - All major Python flags implemented: -h, -V, -c, -m, -i
      - Script execution with proper sys.argv handling works
      - Only stdin (-) support missing

    - Note that new automation API enables:
      - Automated UI testing capabilities
      - Demo recording and playback
      - Accessibility testing support

    - Flag issues #53 and #45 as potentially aided by automation API

commit 7ec4698653
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 14:57:59 2025 -0400

    Update ROADMAP.md to remove closed issues

    - Remove #72 (iterator improvements - closed)
    - Remove #51 (UIEntity derive from UIDrawable - closed)
    - Update issue counts: 64 open issues from original 78
    - Update dependencies and references to reflect closed issues
    - Clarify that core iterators are complete, only grid points remain

commit 68c1a016b0
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 14:27:01 2025 -0400

    Implement --exec flag and PyAutoGUI-compatible automation API

    - Add --exec flag to execute multiple scripts before main program
    - Scripts are executed in order and share Python interpreter state
    - Implement full PyAutoGUI-compatible automation API in McRFPy_Automation
    - Add screenshot, mouse control, keyboard input capabilities
    - Fix Python initialization issues when multiple scripts are loaded
    - Update CommandLineParser to handle --exec with proper sys.argv management
    - Add comprehensive examples and documentation

    This enables automation testing by allowing test scripts to run alongside
    games using the same Python environment. The automation API provides
    event injection into the SFML render loop for UI testing.

    Closes #32 partially (Python interpreter emulation)
    References automation testing requirements

commit 763fa201f0
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 10:43:17 2025 -0400

    Python command emulation

commit a44b8c93e9
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Jul 3 09:42:46 2025 -0400

    Prep: Cleanup for interpreter mode
2025-07-05 17:23:09 -04:00
John McCardle 167636ce8c Iterators, other Python C API improvements
closes #72
ref #69 - this resolves the "UICollection" (not "UIEntityCollection", perhaps renamed since the issue opened) and "UIEntityCollection" portion. The Grid point based iterators were not updated.
**RPATH updates**
Will this RPATH setting allow McRogueFace to execute using its included "lib" subdirectory after being unzipped on a new computer?

The change from "./lib" to "$ORIGIN/./lib" improves portability. The $ORIGIN token is a special Linux/Unix convention that refers to the directory containing the executable itself. This makes the path relative to the executable's location rather than the current working directory, which means McRogueFace will correctly find its libraries in the lib subdirectory regardless of where it's run from after being unzipped on a new computer.

**New standard object initialization**
PyColor, PyVector
  - Fixed all 15 PyTypeObject definitions to use proper designated initializer syntax
  - Replaced PyType_GenericAlloc usage in PyColor.cpp and PyVector.cpp
  - Updated PyObject_New usage in UIEntity.cpp
  - All object creation now uses module-based type lookups instead of static references
  - Created centralized utilities in PyObjectUtils.h

**RAII Wrappers**
automatic reference counting via C++ object lifecycle
  - Created PyRAII.h with PyObjectRef and PyTypeRef classes
  - These provide automatic reference counting management
  - Updated PyColor::from_arg() to demonstrate RAII usage
  - Prevents memory leaks and reference counting errors

**Python object base in type defs:**
`.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0}`
PyColor, PyTexture, PyVector, UICaption, UICollection, UIEntity, UIFrame, UIGrid

**convertDrawableToPython**
replace crazy macro to detect the correct Python type of a UIDrawable instance

  - Removed the problematic macro from UIDrawable.h
  - Created template-based functions in PyObjectUtils.h
  - Updated UICollection.cpp to use local helper function
  - The new approach is cleaner, more debuggable, and avoids static type references

**Iterator fixes**
tp_iter on UICollection, UIGrid, UIGridPoint, UISprite
UIGrid logic improved, standard

**List vs Vector usage analysis**
there are different use cases that weren't standardized:
  - UICollection (for Frame children) uses std::vector<std::shared_ptr<UIDrawable>>
  - UIEntityCollection (for Grid entities) uses std::list<std::shared_ptr<UIEntity>>

The rationale is currently connected to frequency of expected changes.
* A "UICollection" is likely either all visible or not; it's also likely to be created once and have a static set of contents. They should be contiguous in memory in hopes that this helps rendering speed.
* A "UIEntityCollection" is expected to be rendered as a subset within the visible rectangle of the UIGrid. Scrolling the grid or gameplay logic is likely to frequently create and destroy entities. In general I expect Entity collections to have a much higher common size than UICollections. For these reasons I've made them Lists in hopes that they never have to be reallocated or moved during a frame.
2025-05-31 09:11:51 -04:00
John McCardle f594998dc3 Final day of changes for 7DRL 2025 - Crypt of Sokoban game code 2025-03-12 22:42:26 -04:00
John McCardle 5b259d0b38 Moving console access to python side, so Windows users won't brick their session. 2025-03-08 21:12:40 -05:00
John McCardle cea084bddf Whoops, never commited the UI icons spritesheet 2025-03-08 20:33:55 -05:00
John McCardle dd2db1586e Whoops, never committed the tile config 2025-03-08 20:31:34 -05:00
John McCardle 6be474da08 7DRL 2025 progress 2025-03-08 10:42:17 -05:00
John McCardle e928dda4b3 Squashed: grid-entity-integration partial features for 7DRL 2025 deployment
This squash commit includes changes from April 21st through 28th, 2024, and the past 3 days of work at 7DRL.
Rather than resume my feature branch work, I made minor changes to safe the C++ functionality and wrote workarounds in Python.

I'm very likely to delete this commit from history by rolling master back to the previous commit, and squash merging a finished feature branch.
2025-03-05 20:26:04 -05:00
John McCardle 232105a893 Squashed commit of the following: [reprs_and_member_names]
Closes #22
Closes #23
Closes #24
Closes #25
Closes #31
Closes #56

commit 43fac8f4f3
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Apr 20 18:32:52 2024 -0400

    Typo in UIFrame repr

commit 3fd5ad93e2
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Apr 20 18:32:30 2024 -0400

    Add UIGridPoint and UIGridPointState repr

commit 03376897b8
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Apr 20 18:32:17 2024 -0400

    Add UIGrid repr

commit 48af072a33
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Apr 20 18:32:05 2024 -0400

    Add UIEntity repr
2024-04-20 18:33:18 -04:00
John McCardle c2de9b08d6 Refactor: remove "s" prefix from "sRender" method ( -> "render") Closes #44 2024-04-20 14:16:14 -04:00
John McCardle a465a9861d Color parsing for UICaption __init__ - closes #58 2024-04-20 13:37:19 -04:00
John McCardle ac7f7052cd Squashed commit of the following: [break_up_ui_h]
Closes #43

No segfault found in cos_play after completing the checklist. Maybe I accidentally fixed it...?

commit 6aa151aba3
Author: John McCardle <mccardle.john@gmail.com>
Date:   Fri Apr 19 21:43:58 2024 -0400

    UISprite.h/.cpp cleanup

commit ec0374ef50
Author: John McCardle <mccardle.john@gmail.com>
Date:   Fri Apr 19 21:37:39 2024 -0400

    UIGridPoint.h/.cpp reorganization

commit 2cb7339535
Author: John McCardle <mccardle.john@gmail.com>
Date:   Fri Apr 19 21:19:25 2024 -0400

    UIGrid.h/.cpp cleanup. I have reservations about the UIEntityCollection[Iter] classes + methods living there, but not enough to fix it right now.

commit 5d6af324bf
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Apr 18 22:14:57 2024 -0400

    UIFrame - moving static method into class namespace; no type object access

commit 567218cd7b
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Apr 18 21:23:49 2024 -0400

    UIEntity fixes for the UI.h split: There are segfaults in cos_play, I may have missed a type usage or something

commit 76693acd28
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Apr 13 00:18:37 2024 -0400

    delete leftover comments

commit 9efe998a33
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Apr 13 00:17:43 2024 -0400

    some work on UICaption and UICollection; fixing segfaults resulting from mcrfpydef namepace TypeObject usage

commit 714965da45
Author: John McCardle <mccardle.john@gmail.com>
Date:   Fri Apr 12 14:15:00 2024 -0400

    eliminate extra includes on UICaption

commit 8efa25878f
Author: John McCardle <mccardle.john@gmail.com>
Date:   Wed Apr 10 23:41:14 2024 -0400

    remove a lot of stuff

commit c186d8c7f3
Author: John McCardle <mccardle.john@gmail.com>
Date:   Wed Apr 10 23:10:15 2024 -0400

    We are compiling again! Started refactoring UICaption to be more idiomatic

commit 1b6e2a709b
Author: John McCardle <mccardle.john@gmail.com>
Date:   Tue Apr 9 22:42:02 2024 -0400

    Still not quite compiling; as predicted, a lot of interdependency and definition order bugs to untangle

commit aa7553a818
Author: John McCardle <mccardle.john@gmail.com>
Date:   Tue Apr 9 22:41:20 2024 -0400

    PyTexture clean up scribbles and experiments

commit c0201d989a
Author: John McCardle <mccardle.john@gmail.com>
Date:   Mon Apr 8 22:55:00 2024 -0400

    additional unsaved changes

commit 83a63a3093
Author: John McCardle <mccardle.john@gmail.com>
Date:   Mon Apr 8 22:45:00 2024 -0400

    doesn't compile, but UI.h/.cpp code has been divvy'd up.

    refs #43 @2h
2024-04-20 10:32:04 -04:00
John McCardle 1a7186f745 Squashed commit of the following: [standardize_font_handling]
closes #60, closes #5, closes #68

The major functionality added here was proper use of types in the module, by importing after finalization.

commit 5009fa0fb9
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sun Apr 7 22:44:15 2024 -0400

    PyFont - use the new standard method for instancing

commit a19781b56a
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sun Apr 7 15:21:17 2024 -0400

    Many hours of pain & research behind this small commit. Safe object building by not messing with types before interpreter is fully initialized

commit 159658521c
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sun Mar 31 21:41:45 2024 -0400

    Font mostly working, just a few weird bugs with the types of the default items added to the module
2024-04-07 22:51:31 -04:00
John McCardle fbf263a038 Squashed commit of the following: [standardize_vector_handling]
closes #13

Deferring class standardization for the UI.h overhaul.

commit 5edebdd643
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sun Mar 31 14:21:07 2024 -0400

    PyVector init should be pretty reliable now

commit c13e185289
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sun Mar 31 13:51:29 2024 -0400

    PyColor fix - Init corrections

commit 8871f6be6e
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Mar 30 22:51:55 2024 -0400

    Parse arguments: no args & Vector object args work, tuples and bare numerics still do not

commit 1c12e8719c
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Mar 30 22:32:28 2024 -0400

    Not bad for a quick first salvo, but I cannot figure out why init isn't cooperating.
2024-03-31 18:00:19 -04:00
John McCardle f82508b753 Squashed commit of the following: [standardize_color_handling]
closes #11

Check the abandoned feature branch for PyLinkedColor, a time-expensive but now abandoned feature to link a color value to a UIDrawable.

There are some TODOs left in the PyColor class, but that can go under cleanup. I'm way over time on this, so I'm taking a small victory :)

commit 572aa52605
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Mar 30 21:18:26 2024 -0400

    More color table updates

commit 01706bd59d
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Mar 30 21:13:31 2024 -0400

    Color wrapup... Cutting PyLinkedColor to simplify my cursedly mortal, finite existence

commit 3991ac13d6
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Mar 28 23:50:50 2024 -0400

    Still having segfaults with LinkedColor and captions (specifically outline color, but that might not be the actual cause). PyColor shaping back up in simplified form.

commit 06e24a1b27
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Mar 28 20:53:49 2024 -0400

    LinkedColor now reflecting changes to the linked color value. Needs set method + RGBA / color properties

commit 41509dfe96
Author: John McCardle <mccardle.john@gmail.com>
Date:   Wed Mar 27 21:10:03 2024 -0400

    Addressing issues with PyColor by splitting behavior off into PyLinkedColor

commit 13a4ddf41b
Author: John McCardle <mccardle.john@gmail.com>
Date:   Tue Mar 26 23:02:00 2024 -0400

    Build runs again. PyColor objects are being instantiated, with bugs and no test of color changing

commit 1601fc7fab
Author: John McCardle <mccardle.john@gmail.com>
Date:   Mon Mar 25 20:48:08 2024 -0400

    Still doesn't compile, but now the issue is in UI.h overcoupling. Progress!

commit 13672c8fdb
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sun Mar 24 21:19:37 2024 -0400

    Dabbling around this morning; still not building

commit 79090b553f
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sun Mar 24 08:36:06 2024 -0400

    Unsaved changes from last night

commit 2cac6f03c6
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Mar 23 23:07:10 2024 -0400

    untested PyColor base implementation

commit 3728e5fcc8
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Mar 23 23:06:36 2024 -0400

    Color naming prototype
2024-03-30 21:20:40 -04:00
John McCardle 4ffe438d1b Squashed commit of the following: [standardize_texture_handling]
closes #18

commit b114ec3085
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Mar 21 22:22:35 2024 -0400

    cleaning up for merge

commit d7228172c4
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Mar 21 21:39:15 2024 -0400

    Messy, but monumental: PyTexture::pyObject works

    this also coincidentally fixes a weird bug I encountered while
    (mis?)using tp_alloc: by using PyType_GenericAlloc, I avoid the segfault
    that tp_alloc sometimes causes. See the horrible UIDrawable retrieval
    macro that I use in UI.h for a workaround that can probably be replaced
    with this technique

commit 2cf8f94310
Author: John McCardle <mccardle.john@gmail.com>
Date:   Wed Mar 20 21:16:52 2024 -0400

    Radical new example pattern for exposing a C++ class to Python

commit 84a8886da2
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sun Mar 17 16:29:33 2024 -0400

    Fixed render issue with UIGrid / PyTexture: wasn't positioning or scaling properly after fetching sprite

commit 20f80c4114
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sun Mar 17 16:23:52 2024 -0400

    Fixed sprite indexing error in PyTexture; needs non-square sprite tests, but feeling confident!

commit afd4ff1925
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Mar 16 21:53:24 2024 -0400

    good progress, we're building again. Issue with Grid (tile sprite) textures and I think the sprite indexes are being calculated wrong (x and y transposed?)

commit bfd33102d1
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Mar 16 14:52:35 2024 -0400

    Squashed basically all the compile bugs in UISprite, but UIEntity and UIGrid use textures as well, so they need to be fixed too before the project will build again

commit 47d0e34a17
Author: John McCardle <mccardle.john@gmail.com>
Date:   Sat Mar 16 11:31:39 2024 -0400

    Initial PyTexture class

    no testing done.
    should enable rectangular (non-square) textures

    "sprite" method; let's just overwrite sprites with texture coords
    Hoping to replace awful code like:
    `self->data->sprite.sprite.setTextureRect(self->data->sprite.itex->spriteCoordinates(val));`

    with something like:
    `self->data->sprite = self->data->texture->sprite(val);`
2024-03-21 22:24:42 -04:00
John McCardle cdaf309272 Squashed commit of the following: [raii_pyobjects]
closes #4

commit 8f060dc87b
Author: John McCardle <mccardle.john@gmail.com>
Date:   Fri Mar 15 22:20:03 2024 -0400

    Removing std::cout debugging statements

commit c9d5251c71
Author: John McCardle <mccardle.john@gmail.com>
Date:   Fri Mar 15 20:00:57 2024 -0400

    In-place map modification worked

commit 0a8f67e391
Author: John McCardle <mccardle.john@gmail.com>
Date:   Thu Mar 14 23:13:13 2024 -0400

    Stress test is failing: By removing a timer to a function (from inside that function?) I can immediately cause a segfault.

commit 05d9f6a882
Author: John McCardle <mccardle.john@gmail.com>
Date:   Tue Mar 12 22:27:12 2024 -0400

    wow, good test of Key and Click Callable classes. Cleanup, squash, and merge after I give it a lookover in daylight, though.

commit 972768eb26
Author: John McCardle <mccardle.john@gmail.com>
Date:   Tue Mar 12 21:02:48 2024 -0400

    inital PyCallable work; isolate very well behaved usage of PyObject references behind RAII
2024-03-15 22:20:37 -04:00
John McCardle 2c3c1449ee chore: changing comments to reflect TODOs conversion to issues 2024-03-12 21:03:39 -04:00
236 changed files with 48709 additions and 3938 deletions

21
.gitignore vendored
View File

@ -9,4 +9,25 @@ obj
build
lib
obj
__pycache__
.cache/
7DRL2025 Release/
CMakeFiles/
Makefile
*.md
*.zip
__lib/
_oldscripts/
assets/
cellular_automata_fire/
*.txt
deps/
fetch_issues_txt.py
forest_fire_CA.py
mcrogueface.github.io
scripts/
test_*
tcod_reference
.archive

View File

@ -22,11 +22,6 @@ file(GLOB_RECURSE SOURCES "src/*.cpp")
# Create a list of libraries to link against
set(LINK_LIBS
m
dl
util
pthread
python3.12
sfml-graphics
sfml-window
sfml-system
@ -35,22 +30,33 @@ set(LINK_LIBS
# On Windows, add any additional libs and include directories
if(WIN32)
# Windows-specific Python library name (no dots)
list(APPEND LINK_LIBS python312)
# Add the necessary Windows-specific libraries and include directories
# include_directories(path_to_additional_includes)
# link_directories(path_to_additional_libs)
# list(APPEND LINK_LIBS additional_windows_libs)
include_directories(${CMAKE_SOURCE_DIR}/deps/platform/windows)
else()
# Unix/Linux specific libraries
list(APPEND LINK_LIBS python3.12 m dl util pthread)
include_directories(${CMAKE_SOURCE_DIR}/deps/platform/linux)
endif()
# Add the directory where the linker should look for the libraries
#link_directories(${CMAKE_SOURCE_DIR}/deps_linux)
link_directories(${CMAKE_SOURCE_DIR}/lib)
link_directories(${CMAKE_SOURCE_DIR}/__lib)
# Define the executable target before linking libraries
add_executable(mcrogueface ${SOURCES})
# On Windows, set subsystem to WINDOWS to hide console
if(WIN32)
set_target_properties(mcrogueface PROPERTIES
WIN32_EXECUTABLE TRUE
LINK_FLAGS "/SUBSYSTEM:WINDOWS /ENTRY:mainCRTStartup")
endif()
# Now the linker will find the libraries in the specified directory
target_link_libraries(mcrogueface ${LINK_LIBS})
@ -67,9 +73,28 @@ add_custom_command(TARGET mcrogueface POST_BUILD
# Copy Python standard library to build directory
add_custom_command(TARGET mcrogueface POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_directory
${CMAKE_SOURCE_DIR}/lib $<TARGET_FILE_DIR:mcrogueface>/lib)
${CMAKE_SOURCE_DIR}/__lib $<TARGET_FILE_DIR:mcrogueface>/lib)
# rpath for including shared libraries
set_target_properties(mcrogueface PROPERTIES
INSTALL_RPATH "./lib")
# On Windows, copy DLLs to executable directory
if(WIN32)
# Copy all DLL files from lib to the executable directory
add_custom_command(TARGET mcrogueface POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy_directory
${CMAKE_SOURCE_DIR}/__lib $<TARGET_FILE_DIR:mcrogueface>
COMMAND ${CMAKE_COMMAND} -E echo "Copied DLLs to executable directory")
# Alternative: Copy specific DLLs if you want more control
# file(GLOB DLLS "${CMAKE_SOURCE_DIR}/__lib/*.dll")
# foreach(DLL ${DLLS})
# add_custom_command(TARGET mcrogueface POST_BUILD
# COMMAND ${CMAKE_COMMAND} -E copy_if_different
# ${DLL} $<TARGET_FILE_DIR:mcrogueface>)
# endforeach()
endif()
# rpath for including shared libraries (Linux/Unix only)
if(NOT WIN32)
set_target_properties(mcrogueface PROPERTIES
INSTALL_RPATH "$ORIGIN/./lib")
endif()

54
GNUmakefile Normal file
View File

@ -0,0 +1,54 @@
# Convenience Makefile wrapper for McRogueFace
# This delegates to CMake build in the build directory
.PHONY: all build clean run test dist help
# Default target
all: build
# Build the project
build:
@./build.sh
# Clean build artifacts
clean:
@./clean.sh
# Run the game
run: build
@cd build && ./mcrogueface
# Run in Python mode
python: build
@cd build && ./mcrogueface -i
# Test basic functionality
test: build
@echo "Testing McRogueFace..."
@cd build && ./mcrogueface -V
@cd build && ./mcrogueface -c "print('Test passed')"
@cd build && ./mcrogueface --headless -c "import mcrfpy; print('mcrfpy imported successfully')"
# Create distribution archive
dist: build
@echo "Creating distribution archive..."
@cd build && zip -r ../McRogueFace-$$(date +%Y%m%d).zip . -x "*.o" "CMakeFiles/*" "Makefile" "*.cmake"
@echo "Distribution archive created: McRogueFace-$$(date +%Y%m%d).zip"
# Show help
help:
@echo "McRogueFace Build System"
@echo "======================="
@echo ""
@echo "Available targets:"
@echo " make - Build the project (default)"
@echo " make build - Build the project"
@echo " make clean - Remove all build artifacts"
@echo " make run - Build and run the game"
@echo " make python - Build and run in Python interactive mode"
@echo " make test - Run basic tests"
@echo " make dist - Create distribution archive"
@echo " make help - Show this help message"
@echo ""
@echo "Build output goes to: ./build/"
@echo "Distribution archives are created in project root"

143
README.md
View File

@ -1,30 +1,127 @@
# McRogueFace - 2D Game Engine
An experimental prototype game engine built for my own use in 7DRL 2023.
# McRogueFace
*Blame my wife for the name*
## Tenets:
A Python-powered 2D game engine for creating roguelike games, built with C++ and SFML.
* C++ first, Python close behind.
* Entity-Component system based on David Churchill's Memorial University COMP4300 course lectures available on Youtube.
* Graphics, particles and shaders provided by SFML.
* Pathfinding, noise generation, and other Roguelike goodness provided by TCOD.
* Core roguelike logic from libtcod: field of view, pathfinding
* Animate sprites with multiple frames. Smooth transitions for positions, sizes, zoom, and camera
* Simple GUI element system allows keyboard and mouse input, composition
* No compilation or installation necessary. The runtime is a full Python environment; "Zip And Ship"
## Why?
![ Image ]()
I did the r/RoguelikeDev TCOD tutorial in Python. I loved it, but I did not want to be limited to ASCII. I want to be able to draw pixels on top of my tiles (like lines or circles) and eventually incorporate even more polish.
**Pre-Alpha Release Demo**: my 7DRL 2025 entry *"Crypt of Sokoban"* - a prototype with buttons, boulders, enemies, and items.
## To-do
## Quick Start
* ✅ Initial Commit
* ✅ Integrate scene, action, entity, component system from COMP4300 engine
* ✅ Windows / Visual Studio project
* ✅ Draw Sprites
* ✅ Play Sounds
* ✅ Draw UI, spawn entity from Python code
* ❌ Python AI for entities (NPCs on set paths, enemies towards player)
* ✅ Walking / Collision
* ❌ "Boards" (stairs / doors / walk off edge of screen)
* ❌ Cutscenes - interrupt normal controls, text scroll, character portraits
* ❌ Mouse integration - tooltips, zoom, click to select targets, cursors
**Download**:
- The entire McRogueFace visual framework:
- **Sprite**: an image file or one sprite from a shared sprite sheet
- **Caption**: load a font, display text
- **Frame**: A rectangle; put other things on it to move or manage GUIs as modules
- **Grid**: A 2D array of tiles with zoom + position control
- **Entity**: Lives on a Grid, displays a sprite, and can have a perspective or move along a path
- **Animation**: Change any property on any of the above over time
```bash
# Clone and build
git clone <wherever you found this repo>
cd McRogueFace
make
# Run the example game
cd build
./mcrogueface
```
## Example: Creating a Simple Scene
```python
import mcrfpy
# Create a new scene
mcrfpy.createScene("intro")
# Add a text caption
caption = mcrfpy.Caption((50, 50), "Welcome to McRogueFace!")
caption.size = 48
caption.fill_color = (255, 255, 255)
# Add to scene
mcrfpy.sceneUI("intro").append(caption)
# Switch to the scene
mcrfpy.setScene("intro")
```
## Documentation
### 📚 Full Documentation Site
For comprehensive documentation, tutorials, and API reference, visit:
**[https://mcrogueface.github.io](https://mcrogueface.github.io)**
The documentation site includes:
- **[Quickstart Guide](https://mcrogueface.github.io/quickstart)** - Get running in 5 minutes
- **[McRogueFace Does The Entire Roguelike Tutorial](https://mcrogueface.github.io/tutorials)** - Step-by-step game building
- **[Complete API Reference](https://mcrogueface.github.io/api)** - Every function documented
- **[Cookbook](https://mcrogueface.github.io/cookbook)** - Ready-to-use code recipes
- **[C++ Extension Guide](https://mcrogueface.github.io/extending-cpp)** - For C++ developers: Add engine features
## Build Requirements
- C++17 compiler (GCC 7+ or Clang 5+)
- CMake 3.14+
- Python 3.12+
- SFML 2.6
- Linux or Windows (macOS untested)
## Project Structure
```
McRogueFace/
├── assets/ # Sprites, fonts, audio
├── build/ # Build output directory: zip + ship
│ ├─ (*)assets/ # (copied location of assets)
│ ├─ (*)scripts/ # (copied location of src/scripts)
│ └─ lib/ # SFML, TCOD libraries, Python + standard library / modules
├── deps/ # Python, SFML, and libtcod imports can be tossed in here to build
│ └─ platform/ # windows, linux subdirectories for OS-specific cpython config
├── docs/ # generated HTML, markdown docs
│ └─ stubs/ # .pyi files for editor integration
├── modules/ # git submodules, to build all of McRogueFace's dependencies from source
├── src/ # C++ engine source
│ └─ scripts/ # Python game scripts (copied during build)
└── tests/ # Automated test suite
└── tools/ # For the McRogueFace ecosystem: docs generation
```
If you are building McRogueFace to implement game logic or scene configuration in C++, you'll have to compile the project.
If you are writing a game in Python using McRogueFace, you only need to rename and zip/distribute the `build` directory.
## Philosophy
- **C++ every frame, Python every tick**: All rendering data is handled in C++. Structure your UI and program animations in Python, and they are rendered without Python. All game logic can be written in Python.
- **No Compiling Required; Zip And Ship**: Implement your game objects with Python, zip up McRogueFace with your "game.py" to ship
- **Built-in Roguelike Support**: Dungeon generation, pathfinding, and field-of-view via libtcod
- **Hands-Off Testing**: PyAutoGUI-inspired event generation framework. All McRogueFace interactions can be performed headlessly via script: for software testing or AI integration
- **Interactive Development**: Python REPL integration for live game debugging. Use `mcrogueface` like a Python interpreter
## Contributing
PRs will be considered! Please include explicit mention that your contribution is your own work and released under the MIT license in the pull request.
The project has a private roadmap and issue list. Reach out via email or social media if you have bugs or feature requests.
## License
This project is licensed under the MIT License - see LICENSE file for details.
## Acknowledgments
- Developed for 7-Day Roguelike 2023, 2024, 2025 - here's to many more
- Built with [SFML](https://www.sfml-dev.org/), [libtcod](https://github.com/libtcod/libtcod), and Python
- Inspired by David Churchill's COMP4300 game engine lectures

Binary file not shown.

After

Width:  |  Height:  |  Size: 181 KiB

BIN
assets/kenney_TD_MR_IP.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 674 KiB

BIN
assets/sfx/splat1.ogg Normal file

Binary file not shown.

BIN
assets/sfx/splat2.ogg Normal file

Binary file not shown.

BIN
assets/sfx/splat3.ogg Normal file

Binary file not shown.

BIN
assets/sfx/splat4.ogg Normal file

Binary file not shown.

BIN
assets/sfx/splat5.ogg Normal file

Binary file not shown.

BIN
assets/sfx/splat6.ogg Normal file

Binary file not shown.

BIN
assets/sfx/splat7.ogg Normal file

Binary file not shown.

BIN
assets/sfx/splat8.ogg Normal file

Binary file not shown.

BIN
assets/sfx/splat9.ogg Normal file

Binary file not shown.

54
build.sh Executable file
View File

@ -0,0 +1,54 @@
#!/bin/bash
# Build script for McRogueFace - compiles everything into ./build directory
# Colors for output
RED='\033[0;31m'
GREEN='\033[0;32m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
echo -e "${GREEN}McRogueFace Build Script${NC}"
echo "========================="
# Create build directory if it doesn't exist
if [ ! -d "build" ]; then
echo -e "${YELLOW}Creating build directory...${NC}"
mkdir build
fi
# Change to build directory
cd build
# Run CMake to generate build files
echo -e "${YELLOW}Running CMake...${NC}"
cmake .. -DCMAKE_BUILD_TYPE=Release
# Check if CMake succeeded
if [ $? -ne 0 ]; then
echo -e "${RED}CMake configuration failed!${NC}"
exit 1
fi
# Run make with parallel jobs
echo -e "${YELLOW}Building with make...${NC}"
make -j$(nproc)
# Check if make succeeded
if [ $? -ne 0 ]; then
echo -e "${RED}Build failed!${NC}"
exit 1
fi
echo -e "${GREEN}Build completed successfully!${NC}"
echo ""
echo "The build directory contains:"
ls -la
echo ""
echo -e "${GREEN}To run McRogueFace:${NC}"
echo " cd build"
echo " ./mcrogueface"
echo ""
echo -e "${GREEN}To create a distribution archive:${NC}"
echo " cd build"
echo " zip -r ../McRogueFace-$(date +%Y%m%d).zip ."

36
build_windows.bat Normal file
View File

@ -0,0 +1,36 @@
@echo off
REM Windows build script for McRogueFace
REM Run this over SSH without Visual Studio GUI
echo Building McRogueFace for Windows...
REM Clean previous build
if exist build_win rmdir /s /q build_win
mkdir build_win
cd build_win
REM Generate Visual Studio project files with CMake
REM Use -G to specify generator, -A for architecture
REM Visual Studio 2022 = "Visual Studio 17 2022"
REM Visual Studio 2019 = "Visual Studio 16 2019"
cmake -G "Visual Studio 17 2022" -A x64 ..
if errorlevel 1 (
echo CMake configuration failed!
exit /b 1
)
REM Build using MSBuild (comes with Visual Studio)
REM You can also use cmake --build . --config Release
msbuild McRogueFace.sln /p:Configuration=Release /p:Platform=x64 /m
if errorlevel 1 (
echo Build failed!
exit /b 1
)
echo Build completed successfully!
echo Executable location: build_win\Release\mcrogueface.exe
REM Alternative: Using cmake to build (works with any generator)
REM cmake --build . --config Release --parallel
cd ..

42
build_windows_cmake.bat Normal file
View File

@ -0,0 +1,42 @@
@echo off
REM Windows build script using cmake --build (generator-agnostic)
REM This version works with any CMake generator
echo Building McRogueFace for Windows using CMake...
REM Set build directory
set BUILD_DIR=build_win
set CONFIG=Release
REM Clean previous build
if exist %BUILD_DIR% rmdir /s /q %BUILD_DIR%
mkdir %BUILD_DIR%
cd %BUILD_DIR%
REM Configure with CMake
REM You can change the generator here if needed:
REM -G "Visual Studio 17 2022" (VS 2022)
REM -G "Visual Studio 16 2019" (VS 2019)
REM -G "MinGW Makefiles" (MinGW)
REM -G "Ninja" (Ninja build system)
cmake -G "Visual Studio 17 2022" -A x64 -DCMAKE_BUILD_TYPE=%CONFIG% ..
if errorlevel 1 (
echo CMake configuration failed!
cd ..
exit /b 1
)
REM Build using cmake (works with any generator)
cmake --build . --config %CONFIG% --parallel
if errorlevel 1 (
echo Build failed!
cd ..
exit /b 1
)
echo.
echo Build completed successfully!
echo Executable: %BUILD_DIR%\%CONFIG%\mcrogueface.exe
echo.
cd ..

112
compile_commands.json Normal file
View File

@ -0,0 +1,112 @@
[
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/GameEngine.cpp.o -c /home/john/Development/McRogueFace/src/GameEngine.cpp",
"file": "/home/john/Development/McRogueFace/src/GameEngine.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/IndexTexture.cpp.o -c /home/john/Development/McRogueFace/src/IndexTexture.cpp",
"file": "/home/john/Development/McRogueFace/src/IndexTexture.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/McRFPy_API.cpp.o -c /home/john/Development/McRogueFace/src/McRFPy_API.cpp",
"file": "/home/john/Development/McRogueFace/src/McRFPy_API.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyCallable.cpp.o -c /home/john/Development/McRogueFace/src/PyCallable.cpp",
"file": "/home/john/Development/McRogueFace/src/PyCallable.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyColor.cpp.o -c /home/john/Development/McRogueFace/src/PyColor.cpp",
"file": "/home/john/Development/McRogueFace/src/PyColor.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyFont.cpp.o -c /home/john/Development/McRogueFace/src/PyFont.cpp",
"file": "/home/john/Development/McRogueFace/src/PyFont.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyScene.cpp.o -c /home/john/Development/McRogueFace/src/PyScene.cpp",
"file": "/home/john/Development/McRogueFace/src/PyScene.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyTexture.cpp.o -c /home/john/Development/McRogueFace/src/PyTexture.cpp",
"file": "/home/john/Development/McRogueFace/src/PyTexture.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/PyVector.cpp.o -c /home/john/Development/McRogueFace/src/PyVector.cpp",
"file": "/home/john/Development/McRogueFace/src/PyVector.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/Resources.cpp.o -c /home/john/Development/McRogueFace/src/Resources.cpp",
"file": "/home/john/Development/McRogueFace/src/Resources.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/Scene.cpp.o -c /home/john/Development/McRogueFace/src/Scene.cpp",
"file": "/home/john/Development/McRogueFace/src/Scene.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/Timer.cpp.o -c /home/john/Development/McRogueFace/src/Timer.cpp",
"file": "/home/john/Development/McRogueFace/src/Timer.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UICaption.cpp.o -c /home/john/Development/McRogueFace/src/UICaption.cpp",
"file": "/home/john/Development/McRogueFace/src/UICaption.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UICollection.cpp.o -c /home/john/Development/McRogueFace/src/UICollection.cpp",
"file": "/home/john/Development/McRogueFace/src/UICollection.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIDrawable.cpp.o -c /home/john/Development/McRogueFace/src/UIDrawable.cpp",
"file": "/home/john/Development/McRogueFace/src/UIDrawable.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIEntity.cpp.o -c /home/john/Development/McRogueFace/src/UIEntity.cpp",
"file": "/home/john/Development/McRogueFace/src/UIEntity.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIFrame.cpp.o -c /home/john/Development/McRogueFace/src/UIFrame.cpp",
"file": "/home/john/Development/McRogueFace/src/UIFrame.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIGrid.cpp.o -c /home/john/Development/McRogueFace/src/UIGrid.cpp",
"file": "/home/john/Development/McRogueFace/src/UIGrid.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UIGridPoint.cpp.o -c /home/john/Development/McRogueFace/src/UIGridPoint.cpp",
"file": "/home/john/Development/McRogueFace/src/UIGridPoint.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UISprite.cpp.o -c /home/john/Development/McRogueFace/src/UISprite.cpp",
"file": "/home/john/Development/McRogueFace/src/UISprite.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/UITestScene.cpp.o -c /home/john/Development/McRogueFace/src/UITestScene.cpp",
"file": "/home/john/Development/McRogueFace/src/UITestScene.cpp"
},
{
"directory": "/home/john/Development/McRogueFace/build",
"command": "/usr/bin/c++ -I/home/john/Development/McRogueFace/deps -I/home/john/Development/McRogueFace/deps/libtcod -I/home/john/Development/McRogueFace/deps/cpython -I/home/john/Development/McRogueFace/deps/Python -I/home/john/Development/McRogueFace/deps/platform/linux -g -std=gnu++2a -o CMakeFiles/mcrogueface.dir/src/main.cpp.o -c /home/john/Development/McRogueFace/src/main.cpp",
"file": "/home/john/Development/McRogueFace/src/main.cpp"
}
]

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

532
docs/stubs/mcrfpy.pyi Normal file
View File

@ -0,0 +1,532 @@
"""Type stubs for McRogueFace Python API.
Core game engine interface for creating roguelike games with Python.
"""
from typing import Any, List, Dict, Tuple, Optional, Callable, Union, overload
# Type aliases
UIElement = Union['Frame', 'Caption', 'Sprite', 'Grid']
Transition = Union[str, None]
# Classes
class Color:
"""SFML Color Object for RGBA colors."""
r: int
g: int
b: int
a: int
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, r: int, g: int, b: int, a: int = 255) -> None: ...
def from_hex(self, hex_string: str) -> 'Color':
"""Create color from hex string (e.g., '#FF0000' or 'FF0000')."""
...
def to_hex(self) -> str:
"""Convert color to hex string format."""
...
def lerp(self, other: 'Color', t: float) -> 'Color':
"""Linear interpolation between two colors."""
...
class Vector:
"""SFML Vector Object for 2D coordinates."""
x: float
y: float
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float, y: float) -> None: ...
def add(self, other: 'Vector') -> 'Vector': ...
def subtract(self, other: 'Vector') -> 'Vector': ...
def multiply(self, scalar: float) -> 'Vector': ...
def divide(self, scalar: float) -> 'Vector': ...
def distance(self, other: 'Vector') -> float: ...
def normalize(self) -> 'Vector': ...
def dot(self, other: 'Vector') -> float: ...
class Texture:
"""SFML Texture Object for images."""
def __init__(self, filename: str) -> None: ...
filename: str
width: int
height: int
sprite_count: int
class Font:
"""SFML Font Object for text rendering."""
def __init__(self, filename: str) -> None: ...
filename: str
family: str
class Drawable:
"""Base class for all drawable UI elements."""
x: float
y: float
visible: bool
z_index: int
name: str
pos: Vector
def get_bounds(self) -> Tuple[float, float, float, float]:
"""Get bounding box as (x, y, width, height)."""
...
def move(self, dx: float, dy: float) -> None:
"""Move by relative offset (dx, dy)."""
...
def resize(self, width: float, height: float) -> None:
"""Resize to new dimensions (width, height)."""
...
class Frame(Drawable):
"""Frame(x=0, y=0, w=0, h=0, fill_color=None, outline_color=None, outline=0, click=None, children=None)
A rectangular frame UI element that can contain other drawable elements.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float = 0, y: float = 0, w: float = 0, h: float = 0,
fill_color: Optional[Color] = None, outline_color: Optional[Color] = None,
outline: float = 0, click: Optional[Callable] = None,
children: Optional[List[UIElement]] = None) -> None: ...
w: float
h: float
fill_color: Color
outline_color: Color
outline: float
click: Optional[Callable[[float, float, int], None]]
children: 'UICollection'
clip_children: bool
class Caption(Drawable):
"""Caption(text='', x=0, y=0, font=None, fill_color=None, outline_color=None, outline=0, click=None)
A text display UI element with customizable font and styling.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, text: str = '', x: float = 0, y: float = 0,
font: Optional[Font] = None, fill_color: Optional[Color] = None,
outline_color: Optional[Color] = None, outline: float = 0,
click: Optional[Callable] = None) -> None: ...
text: str
font: Font
fill_color: Color
outline_color: Color
outline: float
click: Optional[Callable[[float, float, int], None]]
w: float # Read-only, computed from text
h: float # Read-only, computed from text
class Sprite(Drawable):
"""Sprite(x=0, y=0, texture=None, sprite_index=0, scale=1.0, click=None)
A sprite UI element that displays a texture or portion of a texture atlas.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float = 0, y: float = 0, texture: Optional[Texture] = None,
sprite_index: int = 0, scale: float = 1.0,
click: Optional[Callable] = None) -> None: ...
texture: Texture
sprite_index: int
scale: float
click: Optional[Callable[[float, float, int], None]]
w: float # Read-only, computed from texture
h: float # Read-only, computed from texture
class Grid(Drawable):
"""Grid(x=0, y=0, grid_size=(20, 20), texture=None, tile_width=16, tile_height=16, scale=1.0, click=None)
A grid-based tilemap UI element for rendering tile-based levels and game worlds.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, x: float = 0, y: float = 0, grid_size: Tuple[int, int] = (20, 20),
texture: Optional[Texture] = None, tile_width: int = 16, tile_height: int = 16,
scale: float = 1.0, click: Optional[Callable] = None) -> None: ...
grid_size: Tuple[int, int]
tile_width: int
tile_height: int
texture: Texture
scale: float
points: List[List['GridPoint']]
entities: 'EntityCollection'
background_color: Color
click: Optional[Callable[[int, int, int], None]]
def at(self, x: int, y: int) -> 'GridPoint':
"""Get grid point at tile coordinates."""
...
class GridPoint:
"""Grid point representing a single tile."""
texture_index: int
solid: bool
color: Color
class GridPointState:
"""State information for a grid point."""
texture_index: int
color: Color
class Entity(Drawable):
"""Entity(grid_x=0, grid_y=0, texture=None, sprite_index=0, name='')
Game entity that lives within a Grid.
"""
@overload
def __init__(self) -> None: ...
@overload
def __init__(self, grid_x: float = 0, grid_y: float = 0, texture: Optional[Texture] = None,
sprite_index: int = 0, name: str = '') -> None: ...
grid_x: float
grid_y: float
texture: Texture
sprite_index: int
grid: Optional[Grid]
def at(self, grid_x: float, grid_y: float) -> None:
"""Move entity to grid position."""
...
def die(self) -> None:
"""Remove entity from its grid."""
...
def index(self) -> int:
"""Get index in parent grid's entity collection."""
...
class UICollection:
"""Collection of UI drawable elements (Frame, Caption, Sprite, Grid)."""
def __len__(self) -> int: ...
def __getitem__(self, index: int) -> UIElement: ...
def __setitem__(self, index: int, value: UIElement) -> None: ...
def __delitem__(self, index: int) -> None: ...
def __contains__(self, item: UIElement) -> bool: ...
def __iter__(self) -> Any: ...
def __add__(self, other: 'UICollection') -> 'UICollection': ...
def __iadd__(self, other: 'UICollection') -> 'UICollection': ...
def append(self, item: UIElement) -> None: ...
def extend(self, items: List[UIElement]) -> None: ...
def remove(self, item: UIElement) -> None: ...
def index(self, item: UIElement) -> int: ...
def count(self, item: UIElement) -> int: ...
class EntityCollection:
"""Collection of Entity objects."""
def __len__(self) -> int: ...
def __getitem__(self, index: int) -> Entity: ...
def __setitem__(self, index: int, value: Entity) -> None: ...
def __delitem__(self, index: int) -> None: ...
def __contains__(self, item: Entity) -> bool: ...
def __iter__(self) -> Any: ...
def __add__(self, other: 'EntityCollection') -> 'EntityCollection': ...
def __iadd__(self, other: 'EntityCollection') -> 'EntityCollection': ...
def append(self, item: Entity) -> None: ...
def extend(self, items: List[Entity]) -> None: ...
def remove(self, item: Entity) -> None: ...
def index(self, item: Entity) -> int: ...
def count(self, item: Entity) -> int: ...
class Scene:
"""Base class for object-oriented scenes."""
name: str
def __init__(self, name: str) -> None: ...
def activate(self) -> None:
"""Called when scene becomes active."""
...
def deactivate(self) -> None:
"""Called when scene becomes inactive."""
...
def get_ui(self) -> UICollection:
"""Get UI elements collection."""
...
def on_keypress(self, key: str, pressed: bool) -> None:
"""Handle keyboard events."""
...
def on_click(self, x: float, y: float, button: int) -> None:
"""Handle mouse clicks."""
...
def on_enter(self) -> None:
"""Called when entering the scene."""
...
def on_exit(self) -> None:
"""Called when leaving the scene."""
...
def on_resize(self, width: int, height: int) -> None:
"""Handle window resize events."""
...
def update(self, dt: float) -> None:
"""Update scene logic."""
...
class Timer:
"""Timer object for scheduled callbacks."""
name: str
interval: int
active: bool
def __init__(self, name: str, callback: Callable[[float], None], interval: int) -> None: ...
def pause(self) -> None:
"""Pause the timer."""
...
def resume(self) -> None:
"""Resume the timer."""
...
def cancel(self) -> None:
"""Cancel and remove the timer."""
...
class Window:
"""Window singleton for managing the game window."""
resolution: Tuple[int, int]
fullscreen: bool
vsync: bool
title: str
fps_limit: int
game_resolution: Tuple[int, int]
scaling_mode: str
@staticmethod
def get() -> 'Window':
"""Get the window singleton instance."""
...
class Animation:
"""Animation object for animating UI properties."""
target: Any
property: str
duration: float
easing: str
loop: bool
on_complete: Optional[Callable]
def __init__(self, target: Any, property: str, start_value: Any, end_value: Any,
duration: float, easing: str = 'linear', loop: bool = False,
on_complete: Optional[Callable] = None) -> None: ...
def start(self) -> None:
"""Start the animation."""
...
def update(self, dt: float) -> bool:
"""Update animation, returns True if still running."""
...
def get_current_value(self) -> Any:
"""Get the current interpolated value."""
...
# Module functions
def createSoundBuffer(filename: str) -> int:
"""Load a sound effect from a file and return its buffer ID."""
...
def loadMusic(filename: str) -> None:
"""Load and immediately play background music from a file."""
...
def setMusicVolume(volume: int) -> None:
"""Set the global music volume (0-100)."""
...
def setSoundVolume(volume: int) -> None:
"""Set the global sound effects volume (0-100)."""
...
def playSound(buffer_id: int) -> None:
"""Play a sound effect using a previously loaded buffer."""
...
def getMusicVolume() -> int:
"""Get the current music volume level (0-100)."""
...
def getSoundVolume() -> int:
"""Get the current sound effects volume level (0-100)."""
...
def sceneUI(scene: Optional[str] = None) -> UICollection:
"""Get all UI elements for a scene."""
...
def currentScene() -> str:
"""Get the name of the currently active scene."""
...
def setScene(scene: str, transition: Optional[str] = None, duration: float = 0.0) -> None:
"""Switch to a different scene with optional transition effect."""
...
def createScene(name: str) -> None:
"""Create a new empty scene."""
...
def keypressScene(handler: Callable[[str, bool], None]) -> None:
"""Set the keyboard event handler for the current scene."""
...
def setTimer(name: str, handler: Callable[[float], None], interval: int) -> None:
"""Create or update a recurring timer."""
...
def delTimer(name: str) -> None:
"""Stop and remove a timer."""
...
def exit() -> None:
"""Cleanly shut down the game engine and exit the application."""
...
def setScale(multiplier: float) -> None:
"""Scale the game window size (deprecated - use Window.resolution)."""
...
def find(name: str, scene: Optional[str] = None) -> Optional[UIElement]:
"""Find the first UI element with the specified name."""
...
def findAll(pattern: str, scene: Optional[str] = None) -> List[UIElement]:
"""Find all UI elements matching a name pattern (supports * wildcards)."""
...
def getMetrics() -> Dict[str, Union[int, float]]:
"""Get current performance metrics."""
...
# Submodule
class automation:
"""Automation API for testing and scripting."""
@staticmethod
def screenshot(filename: str) -> bool:
"""Save a screenshot to the specified file."""
...
@staticmethod
def position() -> Tuple[int, int]:
"""Get current mouse position as (x, y) tuple."""
...
@staticmethod
def size() -> Tuple[int, int]:
"""Get screen size as (width, height) tuple."""
...
@staticmethod
def onScreen(x: int, y: int) -> bool:
"""Check if coordinates are within screen bounds."""
...
@staticmethod
def moveTo(x: int, y: int, duration: float = 0.0) -> None:
"""Move mouse to absolute position."""
...
@staticmethod
def moveRel(xOffset: int, yOffset: int, duration: float = 0.0) -> None:
"""Move mouse relative to current position."""
...
@staticmethod
def dragTo(x: int, y: int, duration: float = 0.0, button: str = 'left') -> None:
"""Drag mouse to position."""
...
@staticmethod
def dragRel(xOffset: int, yOffset: int, duration: float = 0.0, button: str = 'left') -> None:
"""Drag mouse relative to current position."""
...
@staticmethod
def click(x: Optional[int] = None, y: Optional[int] = None, clicks: int = 1,
interval: float = 0.0, button: str = 'left') -> None:
"""Click mouse at position."""
...
@staticmethod
def mouseDown(x: Optional[int] = None, y: Optional[int] = None, button: str = 'left') -> None:
"""Press mouse button down."""
...
@staticmethod
def mouseUp(x: Optional[int] = None, y: Optional[int] = None, button: str = 'left') -> None:
"""Release mouse button."""
...
@staticmethod
def keyDown(key: str) -> None:
"""Press key down."""
...
@staticmethod
def keyUp(key: str) -> None:
"""Release key."""
...
@staticmethod
def press(key: str) -> None:
"""Press and release a key."""
...
@staticmethod
def typewrite(text: str, interval: float = 0.0) -> None:
"""Type text with optional interval between characters."""
...

View File

@ -0,0 +1,209 @@
"""Type stubs for McRogueFace Python API.
Auto-generated - do not edit directly.
"""
from typing import Any, List, Dict, Tuple, Optional, Callable, Union
# Module documentation
# McRogueFace Python API\n\nCore game engine interface for creating roguelike games with Python.\n\nThis module provides:\n- Scene management (createScene, setScene, currentScene)\n- UI components (Frame, Caption, Sprite, Grid)\n- Entity system for game objects\n- Audio playback (sound effects and music)\n- Timer system for scheduled events\n- Input handling\n- Performance metrics\n\nExample:\n import mcrfpy\n \n # Create a new scene\n mcrfpy.createScene('game')\n mcrfpy.setScene('game')\n \n # Add UI elements\n frame = mcrfpy.Frame(10, 10, 200, 100)\n caption = mcrfpy.Caption('Hello World', 50, 50)\n mcrfpy.sceneUI().extend([frame, caption])\n
# Classes
class Animation:
"""Animation object for animating UI properties"""
def __init__(selftype(self)) -> None: ...
def get_current_value(self, *args, **kwargs) -> Any: ...
def start(self, *args, **kwargs) -> Any: ...
def update(selfreturns True if still running) -> Any: ...
class Caption:
"""Caption(text='', x=0, y=0, font=None, fill_color=None, outline_color=None, outline=0, click=None)"""
def __init__(selftype(self)) -> None: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class Color:
"""SFML Color Object"""
def __init__(selftype(self)) -> None: ...
def from_hex(selfe.g., '#FF0000' or 'FF0000') -> Any: ...
def lerp(self, *args, **kwargs) -> Any: ...
def to_hex(self, *args, **kwargs) -> Any: ...
class Drawable:
"""Base class for all drawable UI elements"""
def __init__(selftype(self)) -> None: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class Entity:
"""UIEntity objects"""
def __init__(selftype(self)) -> None: ...
def at(self, *args, **kwargs) -> Any: ...
def die(self, *args, **kwargs) -> Any: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def index(self, *args, **kwargs) -> Any: ...
def move(selfdx, dy) -> Any: ...
def path_to(selfx: int, y: int) -> bool: ...
def resize(selfwidth, height) -> Any: ...
def update_visibility(self) -> None: ...
class EntityCollection:
"""Iterable, indexable collection of Entities"""
def __init__(selftype(self)) -> None: ...
def append(self, *args, **kwargs) -> Any: ...
def count(self, *args, **kwargs) -> Any: ...
def extend(self, *args, **kwargs) -> Any: ...
def index(self, *args, **kwargs) -> Any: ...
def remove(self, *args, **kwargs) -> Any: ...
class Font:
"""SFML Font Object"""
def __init__(selftype(self)) -> None: ...
class Frame:
"""Frame(x=0, y=0, w=0, h=0, fill_color=None, outline_color=None, outline=0, click=None, children=None)"""
def __init__(selftype(self)) -> None: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class Grid:
"""Grid(x=0, y=0, grid_size=(20, 20), texture=None, tile_width=16, tile_height=16, scale=1.0, click=None)"""
def __init__(selftype(self)) -> None: ...
def at(self, *args, **kwargs) -> Any: ...
def compute_astar_path(selfx1: int, y1: int, x2: int, y2: int, diagonal_cost: float = 1.41) -> List[Tuple[int, int]]: ...
def compute_dijkstra(selfroot_x: int, root_y: int, diagonal_cost: float = 1.41) -> None: ...
def compute_fov(selfx: int, y: int, radius: int = 0, light_walls: bool = True, algorithm: int = FOV_BASIC) -> None: ...
def find_path(selfx1: int, y1: int, x2: int, y2: int, diagonal_cost: float = 1.41) -> List[Tuple[int, int]]: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def get_dijkstra_distance(selfx: int, y: int) -> Optional[float]: ...
def get_dijkstra_path(selfx: int, y: int) -> List[Tuple[int, int]]: ...
def is_in_fov(selfx: int, y: int) -> bool: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class GridPoint:
"""UIGridPoint object"""
def __init__(selftype(self)) -> None: ...
class GridPointState:
"""UIGridPointState object"""
def __init__(selftype(self)) -> None: ...
class Scene:
"""Base class for object-oriented scenes"""
def __init__(selftype(self)) -> None: ...
def activate(self, *args, **kwargs) -> Any: ...
def get_ui(self, *args, **kwargs) -> Any: ...
def register_keyboard(selfalternative to overriding on_keypress) -> Any: ...
class Sprite:
"""Sprite(x=0, y=0, texture=None, sprite_index=0, scale=1.0, click=None)"""
def __init__(selftype(self)) -> None: ...
def get_bounds(selfx, y, width, height) -> Any: ...
def move(selfdx, dy) -> Any: ...
def resize(selfwidth, height) -> Any: ...
class Texture:
"""SFML Texture Object"""
def __init__(selftype(self)) -> None: ...
class Timer:
"""Timer object for scheduled callbacks"""
def __init__(selftype(self)) -> None: ...
def cancel(self, *args, **kwargs) -> Any: ...
def pause(self, *args, **kwargs) -> Any: ...
def restart(self, *args, **kwargs) -> Any: ...
def resume(self, *args, **kwargs) -> Any: ...
class UICollection:
"""Iterable, indexable collection of UI objects"""
def __init__(selftype(self)) -> None: ...
def append(self, *args, **kwargs) -> Any: ...
def count(self, *args, **kwargs) -> Any: ...
def extend(self, *args, **kwargs) -> Any: ...
def index(self, *args, **kwargs) -> Any: ...
def remove(self, *args, **kwargs) -> Any: ...
class UICollectionIter:
"""Iterator for a collection of UI objects"""
def __init__(selftype(self)) -> None: ...
class UIEntityCollectionIter:
"""Iterator for a collection of UI objects"""
def __init__(selftype(self)) -> None: ...
class Vector:
"""SFML Vector Object"""
def __init__(selftype(self)) -> None: ...
def angle(self, *args, **kwargs) -> Any: ...
def copy(self, *args, **kwargs) -> Any: ...
def distance_to(self, *args, **kwargs) -> Any: ...
def dot(self, *args, **kwargs) -> Any: ...
def magnitude(self, *args, **kwargs) -> Any: ...
def magnitude_squared(self, *args, **kwargs) -> Any: ...
def normalize(self, *args, **kwargs) -> Any: ...
class Window:
"""Window singleton for accessing and modifying the game window properties"""
def __init__(selftype(self)) -> None: ...
def center(self, *args, **kwargs) -> Any: ...
def get(self, *args, **kwargs) -> Any: ...
def screenshot(self, *args, **kwargs) -> Any: ...
# Functions
def createScene(name: str) -> None: ...
def createSoundBuffer(filename: str) -> int: ...
def currentScene() -> str: ...
def delTimer(name: str) -> None: ...
def exit() -> None: ...
def find(name: str, scene: str = None) -> UIDrawable | None: ...
def findAll(pattern: str, scene: str = None) -> list: ...
def getMetrics() -> dict: ...
def getMusicVolume() -> int: ...
def getSoundVolume() -> int: ...
def keypressScene(handler: callable) -> None: ...
def loadMusic(filename: str) -> None: ...
def playSound(buffer_id: int) -> None: ...
def sceneUI(scene: str = None) -> list: ...
def setMusicVolume(volume: int) -> None: ...
def setScale(multiplier: float) -> None: ...
def setScene(scene: str, transition: str = None, duration: float = 0.0) -> None: ...
def setSoundVolume(volume: int) -> None: ...
def setTimer(name: str, handler: callable, interval: int) -> None: ...
# Constants
FOV_BASIC: int
FOV_DIAMOND: int
FOV_PERMISSIVE_0: int
FOV_PERMISSIVE_1: int
FOV_PERMISSIVE_2: int
FOV_PERMISSIVE_3: int
FOV_PERMISSIVE_4: int
FOV_PERMISSIVE_5: int
FOV_PERMISSIVE_6: int
FOV_PERMISSIVE_7: int
FOV_PERMISSIVE_8: int
FOV_RESTRICTIVE: int
FOV_SHADOW: int
default_font: Any
default_texture: Any

View File

@ -0,0 +1,24 @@
"""Type stubs for McRogueFace automation API."""
from typing import Optional, Tuple
def click(x=None, y=None, clicks=1, interval=0.0, button='left') -> Any: ...
def doubleClick(x=None, y=None) -> Any: ...
def dragRel(xOffset, yOffset, duration=0.0, button='left') -> Any: ...
def dragTo(x, y, duration=0.0, button='left') -> Any: ...
def hotkey(*keys) - Press a hotkey combination (e.g., hotkey('ctrl', 'c')) -> Any: ...
def keyDown(key) -> Any: ...
def keyUp(key) -> Any: ...
def middleClick(x=None, y=None) -> Any: ...
def mouseDown(x=None, y=None, button='left') -> Any: ...
def mouseUp(x=None, y=None, button='left') -> Any: ...
def moveRel(xOffset, yOffset, duration=0.0) -> Any: ...
def moveTo(x, y, duration=0.0) -> Any: ...
def onScreen(x, y) -> Any: ...
def position() - Get current mouse position as (x, y) -> Any: ...
def rightClick(x=None, y=None) -> Any: ...
def screenshot(filename) -> Any: ...
def scroll(clicks, x=None, y=None) -> Any: ...
def size() - Get screen size as (width, height) -> Any: ...
def tripleClick(x=None, y=None) -> Any: ...
def typewrite(message, interval=0.0) -> Any: ...

0
docs/stubs/py.typed Normal file
View File

View File

@ -0,0 +1,253 @@
# Part 0 - Setting Up McRogueFace
Welcome to the McRogueFace Roguelike Tutorial! This tutorial will teach you how to create a complete roguelike game using the McRogueFace game engine. Unlike traditional Python libraries, McRogueFace is a complete, portable game engine that includes everything you need to make and distribute games.
## What is McRogueFace?
McRogueFace is a high-performance game engine with Python scripting support. Think of it like Unity or Godot, but specifically designed for roguelikes and 2D games. It includes:
- A complete Python 3.12 runtime (no installation needed!)
- High-performance C++ rendering and entity management
- Built-in UI components and scene management
- Integrated audio system
- Professional sprite-based graphics
- Easy distribution - your players don't need Python installed!
## Prerequisites
Before starting this tutorial, you should:
- Have basic Python knowledge (variables, functions, classes)
- Be comfortable editing text files
- Have a text editor (VS Code, Sublime Text, Notepad++, etc.)
That's it! Unlike other roguelike tutorials, you don't need Python installed - McRogueFace includes everything.
## Getting McRogueFace
### Step 1: Download the Engine
1. Visit the McRogueFace releases page
2. Download the version for your operating system:
- `McRogueFace-Windows.zip` for Windows
- `McRogueFace-MacOS.zip` for macOS
- `McRogueFace-Linux.zip` for Linux
### Step 2: Extract the Archive
Extract the downloaded archive to a folder where you want to develop your game. You should see this structure:
```
McRogueFace/
├── mcrogueface (or mcrogueface.exe on Windows)
├── scripts/
│ └── game.py
├── assets/
│ ├── sprites/
│ ├── fonts/
│ └── audio/
└── lib/
```
### Step 3: Run the Engine
Run the McRogueFace executable:
- **Windows**: Double-click `mcrogueface.exe`
- **Mac/Linux**: Open a terminal in the folder and run `./mcrogueface`
You should see a window open with the default McRogueFace demo. This shows the engine is working correctly!
## Your First McRogueFace Script
Let's modify the engine to display "Hello Roguelike!" instead of the default demo.
### Step 1: Open game.py
Open `scripts/game.py` in your text editor. You'll see the default demo code. Replace it entirely with:
```python
import mcrfpy
# Create a new scene called "hello"
mcrfpy.createScene("hello")
# Switch to our new scene
mcrfpy.setScene("hello")
# Get the UI container for our scene
ui = mcrfpy.sceneUI("hello")
# Create a text caption
caption = mcrfpy.Caption("Hello Roguelike!", 400, 300)
caption.font_size = 32
caption.fill_color = mcrfpy.Color(255, 255, 255) # White text
# Add the caption to our scene
ui.append(caption)
# Create a smaller instruction caption
instruction = mcrfpy.Caption("Press ESC to exit", 400, 350)
instruction.font_size = 16
instruction.fill_color = mcrfpy.Color(200, 200, 200) # Light gray
ui.append(instruction)
# Set up a simple key handler
def handle_keys(key, state):
if state == "start" and key == "Escape":
mcrfpy.setScene(None) # This exits the game
mcrfpy.keypressScene(handle_keys)
print("Hello Roguelike is running!")
```
### Step 2: Save and Run
1. Save the file
2. If McRogueFace is still running, it will automatically reload!
3. If not, run the engine again
You should now see "Hello Roguelike!" displayed in the window.
### Step 3: Understanding the Code
Let's break down what we just wrote:
1. **Import mcrfpy**: This is McRogueFace's Python API
2. **Create a scene**: Scenes are like game states (menu, gameplay, inventory, etc.)
3. **UI elements**: We create Caption objects for text display
4. **Colors**: McRogueFace uses RGB colors (0-255 for each component)
5. **Input handling**: We set up a callback for keyboard input
6. **Scene switching**: Setting the scene to None exits the game
## Key Differences from Pure Python Development
### The Game Loop
Unlike typical Python scripts, McRogueFace runs your code inside its game loop:
1. The engine starts and loads `scripts/game.py`
2. Your script sets up scenes, UI elements, and callbacks
3. The engine runs at 60 FPS, handling rendering and input
4. Your callbacks are triggered by game events
### Hot Reloading
McRogueFace can reload your scripts while running! Just save your changes and the engine will reload automatically. This makes development incredibly fast.
### Asset Pipeline
McRogueFace includes a complete asset system:
- **Sprites**: Place images in `assets/sprites/`
- **Fonts**: TrueType fonts in `assets/fonts/`
- **Audio**: Sound effects and music in `assets/audio/`
We'll explore these in later lessons.
## Testing Your Setup
Let's create a more interactive test to ensure everything is working properly:
```python
import mcrfpy
# Create our test scene
mcrfpy.createScene("test")
mcrfpy.setScene("test")
ui = mcrfpy.sceneUI("test")
# Create a background frame
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(20, 20, 30) # Dark blue-gray
ui.append(background)
# Title text
title = mcrfpy.Caption("McRogueFace Setup Test", 512, 100)
title.font_size = 36
title.fill_color = mcrfpy.Color(255, 255, 100) # Yellow
ui.append(title)
# Status text that will update
status_text = mcrfpy.Caption("Press any key to test input...", 512, 300)
status_text.font_size = 20
status_text.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(status_text)
# Instructions
instructions = [
"Arrow Keys: Test movement input",
"Space: Test action input",
"Mouse Click: Test mouse input",
"ESC: Exit"
]
y_offset = 400
for instruction in instructions:
inst_caption = mcrfpy.Caption(instruction, 512, y_offset)
inst_caption.font_size = 16
inst_caption.fill_color = mcrfpy.Color(150, 150, 150)
ui.append(inst_caption)
y_offset += 30
# Input handler
def handle_input(key, state):
if state != "start":
return
if key == "Escape":
mcrfpy.setScene(None)
else:
status_text.text = f"You pressed: {key}"
status_text.fill_color = mcrfpy.Color(100, 255, 100) # Green
# Set up input handling
mcrfpy.keypressScene(handle_input)
print("Setup test is running! Try pressing different keys.")
```
## Troubleshooting
### Engine Won't Start
- **Windows**: Make sure you extracted all files, not just the .exe
- **Mac**: You may need to right-click and select "Open" the first time
- **Linux**: Make sure the file is executable: `chmod +x mcrogueface`
### Scripts Not Loading
- Ensure your script is named exactly `game.py` in the `scripts/` folder
- Check the console output for Python errors
- Make sure you're using Python 3 syntax
### Performance Issues
- McRogueFace should run smoothly at 60 FPS
- If not, check if your graphics drivers are updated
- The engine shows FPS in the window title
## What's Next?
Congratulations! You now have McRogueFace set up and running. You've learned:
- How to download and run the McRogueFace engine
- The basic structure of a McRogueFace project
- How to create scenes and UI elements
- How to handle keyboard input
- The development workflow with hot reloading
In Part 1, we'll create our player character and implement movement. We'll explore McRogueFace's entity system and learn how to create a game world.
## Why McRogueFace?
Before we continue, let's highlight why McRogueFace is excellent for roguelike development:
1. **No Installation Hassles**: Your players just download and run - no Python needed!
2. **Professional Performance**: C++ engine core means smooth gameplay even with hundreds of entities
3. **Built-in Features**: UI, audio, scenes, and animations are already there
4. **Easy Distribution**: Just zip your game folder and share it
5. **Rapid Development**: Hot reloading and Python scripting for quick iteration
Ready to make a roguelike? Let's continue to Part 1!

View File

@ -0,0 +1,33 @@
import mcrfpy
# Create a new scene called "hello"
mcrfpy.createScene("hello")
# Switch to our new scene
mcrfpy.setScene("hello")
# Get the UI container for our scene
ui = mcrfpy.sceneUI("hello")
# Create a text caption
caption = mcrfpy.Caption("Hello Roguelike!", 400, 300)
caption.font_size = 32
caption.fill_color = mcrfpy.Color(255, 255, 255) # White text
# Add the caption to our scene
ui.append(caption)
# Create a smaller instruction caption
instruction = mcrfpy.Caption("Press ESC to exit", 400, 350)
instruction.font_size = 16
instruction.fill_color = mcrfpy.Color(200, 200, 200) # Light gray
ui.append(instruction)
# Set up a simple key handler
def handle_keys(key, state):
if state == "start" and key == "Escape":
mcrfpy.setScene(None) # This exits the game
mcrfpy.keypressScene(handle_keys)
print("Hello Roguelike is running!")

View File

@ -0,0 +1,55 @@
import mcrfpy
# Create our test scene
mcrfpy.createScene("test")
mcrfpy.setScene("test")
ui = mcrfpy.sceneUI("test")
# Create a background frame
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(20, 20, 30) # Dark blue-gray
ui.append(background)
# Title text
title = mcrfpy.Caption("McRogueFace Setup Test", 512, 100)
title.font_size = 36
title.fill_color = mcrfpy.Color(255, 255, 100) # Yellow
ui.append(title)
# Status text that will update
status_text = mcrfpy.Caption("Press any key to test input...", 512, 300)
status_text.font_size = 20
status_text.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(status_text)
# Instructions
instructions = [
"Arrow Keys: Test movement input",
"Space: Test action input",
"Mouse Click: Test mouse input",
"ESC: Exit"
]
y_offset = 400
for instruction in instructions:
inst_caption = mcrfpy.Caption(instruction, 512, y_offset)
inst_caption.font_size = 16
inst_caption.fill_color = mcrfpy.Color(150, 150, 150)
ui.append(inst_caption)
y_offset += 30
# Input handler
def handle_input(key, state):
if state != "start":
return
if key == "Escape":
mcrfpy.setScene(None)
else:
status_text.text = f"You pressed: {key}"
status_text.fill_color = mcrfpy.Color(100, 255, 100) # Green
# Set up input handling
mcrfpy.keypressScene(handle_input)
print("Setup test is running! Try pressing different keys.")

View File

@ -0,0 +1,457 @@
# Part 1 - Drawing the '@' Symbol and Moving It Around
In Part 0, we set up McRogueFace and created a simple "Hello Roguelike" scene. Now it's time to create the foundation of our game: a player character that can move around the screen.
In traditional roguelikes, the player is represented by the '@' symbol. We'll honor that tradition while taking advantage of McRogueFace's powerful sprite-based rendering system.
## Understanding McRogueFace's Architecture
Before we dive into code, let's understand two key concepts in McRogueFace:
### Grid - The Game World
A `Grid` represents your game world. It's a 2D array of tiles where each tile can be:
- **Walkable or not** (for collision detection)
- **Transparent or not** (for field of view, which we'll cover later)
- **Have a visual appearance** (sprite index and color)
Think of the Grid as the dungeon floor, walls, and other static elements.
### Entity - Things That Move
An `Entity` represents anything that can move around on the Grid:
- The player character
- Monsters
- Items (if you want them to be thrown or moved)
- Projectiles
Entities exist "on top of" the Grid and automatically handle smooth movement animation between tiles.
## Creating Our Game World
Let's start by creating a simple room for our player to move around in. Create a new `game.py`:
```python
import mcrfpy
# Define some constants for our tile types
FLOOR_TILE = 0
WALL_TILE = 1
PLAYER_SPRITE = 2
# Window configuration
mcrfpy.createScene("game")
mcrfpy.setScene("game")
# Configure window properties
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 1"
# Get the UI container for our scene
ui = mcrfpy.sceneUI("game")
# Create a dark background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
ui.append(background)
```
Now we need to set up our tileset. For this tutorial, we'll use ASCII-style sprites. McRogueFace comes with a built-in ASCII tileset:
```python
# Load the ASCII tileset
# This tileset has characters mapped to sprite indices
# For example: @ = 64, # = 35, . = 46
tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game grid
# 50x30 tiles is a good size for a roguelike
GRID_WIDTH = 50
GRID_HEIGHT = 30
grid = mcrfpy.Grid(grid_x=GRID_WIDTH, grid_y=GRID_HEIGHT, texture=tileset)
grid.position = (100, 100) # Position on screen
grid.size = (800, 480) # Size in pixels
# Add the grid to our UI
ui.append(grid)
```
## Initializing the Game World
Now let's fill our grid with a simple room:
```python
def create_room():
"""Create a room with walls around the edges"""
# Fill everything with floor tiles first
for y in range(GRID_HEIGHT):
for x in range(GRID_WIDTH):
cell = grid.at(x, y)
cell.walkable = True
cell.transparent = True
cell.sprite_index = 46 # '.' character
cell.color = mcrfpy.Color(50, 50, 50) # Dark gray floor
# Create walls around the edges
for x in range(GRID_WIDTH):
# Top wall
cell = grid.at(x, 0)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100) # Gray walls
# Bottom wall
cell = grid.at(x, GRID_HEIGHT - 1)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
for y in range(GRID_HEIGHT):
# Left wall
cell = grid.at(0, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Right wall
cell = grid.at(GRID_WIDTH - 1, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Create the room
create_room()
```
## Creating the Player
Now let's add our player character:
```python
# Create the player entity
player = mcrfpy.Entity(x=GRID_WIDTH // 2, y=GRID_HEIGHT // 2, grid=grid)
player.sprite_index = 64 # '@' character
player.color = mcrfpy.Color(255, 255, 255) # White
# The entity is automatically added to the grid when we pass grid= parameter
# This is equivalent to: grid.entities.append(player)
```
## Handling Input
McRogueFace uses a callback system for input. For a turn-based roguelike, we only care about key presses, not releases:
```python
def handle_input(key, state):
"""Handle keyboard input for player movement"""
# Only process key presses, not releases
if state != "start":
return
# Movement deltas
dx, dy = 0, 0
# Arrow keys
if key == "Up":
dy = -1
elif key == "Down":
dy = 1
elif key == "Left":
dx = -1
elif key == "Right":
dx = 1
# Numpad movement (for true roguelike feel!)
elif key == "Num7": # Northwest
dx, dy = -1, -1
elif key == "Num8": # North
dy = -1
elif key == "Num9": # Northeast
dx, dy = 1, -1
elif key == "Num4": # West
dx = -1
elif key == "Num6": # East
dx = 1
elif key == "Num1": # Southwest
dx, dy = -1, 1
elif key == "Num2": # South
dy = 1
elif key == "Num3": # Southeast
dx, dy = 1, 1
# Escape to quit
elif key == "Escape":
mcrfpy.setScene(None)
return
# If there's movement, try to move the player
if dx != 0 or dy != 0:
move_player(dx, dy)
# Register the input handler
mcrfpy.keypressScene(handle_input)
```
## Implementing Movement with Collision Detection
Now let's implement the movement function with proper collision detection:
```python
def move_player(dx, dy):
"""Move the player if the destination is walkable"""
# Calculate new position
new_x = player.x + dx
new_y = player.y + dy
# Check bounds
if new_x < 0 or new_x >= GRID_WIDTH or new_y < 0 or new_y >= GRID_HEIGHT:
return
# Check if the destination is walkable
destination = grid.at(new_x, new_y)
if destination.walkable:
# Move the player
player.x = new_x
player.y = new_y
# The entity will automatically animate to the new position!
```
## Adding Visual Polish
Let's add some UI elements to make our game look more polished:
```python
# Add a title
title = mcrfpy.Caption("McRogueFace Roguelike", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100) # Yellow
ui.append(title)
# Add instructions
instructions = mcrfpy.Caption("Arrow Keys or Numpad to move, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200) # Light gray
ui.append(instructions)
# Add a status line at the bottom
status = mcrfpy.Caption("@ You", 100, 600)
status.font_size = 18
status.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(status)
```
## Complete Code
Here's the complete `game.py` for Part 1:
```python
import mcrfpy
# Window configuration
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 1"
# Get the UI container for our scene
ui = mcrfpy.sceneUI("game")
# Create a dark background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
ui.append(background)
# Load the ASCII tileset
tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game grid
GRID_WIDTH = 50
GRID_HEIGHT = 30
grid = mcrfpy.Grid(grid_x=GRID_WIDTH, grid_y=GRID_HEIGHT, texture=tileset)
grid.position = (100, 100)
grid.size = (800, 480)
ui.append(grid)
def create_room():
"""Create a room with walls around the edges"""
# Fill everything with floor tiles first
for y in range(GRID_HEIGHT):
for x in range(GRID_WIDTH):
cell = grid.at(x, y)
cell.walkable = True
cell.transparent = True
cell.sprite_index = 46 # '.' character
cell.color = mcrfpy.Color(50, 50, 50) # Dark gray floor
# Create walls around the edges
for x in range(GRID_WIDTH):
# Top wall
cell = grid.at(x, 0)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100) # Gray walls
# Bottom wall
cell = grid.at(x, GRID_HEIGHT - 1)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
for y in range(GRID_HEIGHT):
# Left wall
cell = grid.at(0, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Right wall
cell = grid.at(GRID_WIDTH - 1, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Create the room
create_room()
# Create the player entity
player = mcrfpy.Entity(x=GRID_WIDTH // 2, y=GRID_HEIGHT // 2, grid=grid)
player.sprite_index = 64 # '@' character
player.color = mcrfpy.Color(255, 255, 255) # White
def move_player(dx, dy):
"""Move the player if the destination is walkable"""
# Calculate new position
new_x = player.x + dx
new_y = player.y + dy
# Check bounds
if new_x < 0 or new_x >= GRID_WIDTH or new_y < 0 or new_y >= GRID_HEIGHT:
return
# Check if the destination is walkable
destination = grid.at(new_x, new_y)
if destination.walkable:
# Move the player
player.x = new_x
player.y = new_y
def handle_input(key, state):
"""Handle keyboard input for player movement"""
# Only process key presses, not releases
if state != "start":
return
# Movement deltas
dx, dy = 0, 0
# Arrow keys
if key == "Up":
dy = -1
elif key == "Down":
dy = 1
elif key == "Left":
dx = -1
elif key == "Right":
dx = 1
# Numpad movement (for true roguelike feel!)
elif key == "Num7": # Northwest
dx, dy = -1, -1
elif key == "Num8": # North
dy = -1
elif key == "Num9": # Northeast
dx, dy = 1, -1
elif key == "Num4": # West
dx = -1
elif key == "Num6": # East
dx = 1
elif key == "Num1": # Southwest
dx, dy = -1, 1
elif key == "Num2": # South
dy = 1
elif key == "Num3": # Southeast
dx, dy = 1, 1
# Escape to quit
elif key == "Escape":
mcrfpy.setScene(None)
return
# If there's movement, try to move the player
if dx != 0 or dy != 0:
move_player(dx, dy)
# Register the input handler
mcrfpy.keypressScene(handle_input)
# Add UI elements
title = mcrfpy.Caption("McRogueFace Roguelike", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
ui.append(title)
instructions = mcrfpy.Caption("Arrow Keys or Numpad to move, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(instructions)
status = mcrfpy.Caption("@ You", 100, 600)
status.font_size = 18
status.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(status)
print("Part 1: The @ symbol moves!")
```
## Understanding What We've Built
Let's review the key concepts we've implemented:
1. **Grid-Entity Architecture**: The Grid represents our static world (floors and walls), while the Entity (player) moves on top of it.
2. **Collision Detection**: By checking the `walkable` property of grid cells, we prevent the player from walking through walls.
3. **Turn-Based Input**: By only responding to key presses (not releases), we've created true turn-based movement.
4. **Visual Feedback**: The Entity system automatically animates movement between tiles, giving smooth visual feedback.
## Exercises
Try these modifications to deepen your understanding:
1. **Add More Rooms**: Create multiple rooms connected by corridors
2. **Different Tile Types**: Add doors (walkable but different appearance)
3. **Sprint Movement**: Hold Shift to move multiple tiles at once
4. **Mouse Support**: Click a tile to pathfind to it (we'll cover pathfinding properly later)
## ASCII Sprite Reference
Here are some useful ASCII character indices for the default tileset:
- @ (player): 64
- # (wall): 35
- . (floor): 46
- + (door): 43
- ~ (water): 126
- % (item): 37
- ! (potion): 33
## What's Next?
In Part 2, we'll expand our world with:
- A proper Entity system for managing multiple objects
- NPCs that can also move around
- A more interesting map layout
- The beginning of our game architecture
The foundation is set - you have a player character that can move around a world with collision detection. This is the core of any roguelike game!

View File

@ -0,0 +1,162 @@
import mcrfpy
# Window configuration
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 1"
# Get the UI container for our scene
ui = mcrfpy.sceneUI("game")
# Create a dark background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
ui.append(background)
# Load the ASCII tileset
tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game grid
GRID_WIDTH = 50
GRID_HEIGHT = 30
grid = mcrfpy.Grid(grid_x=GRID_WIDTH, grid_y=GRID_HEIGHT, texture=tileset)
grid.position = (100, 100)
grid.size = (800, 480)
ui.append(grid)
def create_room():
"""Create a room with walls around the edges"""
# Fill everything with floor tiles first
for y in range(GRID_HEIGHT):
for x in range(GRID_WIDTH):
cell = grid.at(x, y)
cell.walkable = True
cell.transparent = True
cell.sprite_index = 46 # '.' character
cell.color = mcrfpy.Color(50, 50, 50) # Dark gray floor
# Create walls around the edges
for x in range(GRID_WIDTH):
# Top wall
cell = grid.at(x, 0)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100) # Gray walls
# Bottom wall
cell = grid.at(x, GRID_HEIGHT - 1)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
for y in range(GRID_HEIGHT):
# Left wall
cell = grid.at(0, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Right wall
cell = grid.at(GRID_WIDTH - 1, y)
cell.walkable = False
cell.transparent = False
cell.sprite_index = 35 # '#' character
cell.color = mcrfpy.Color(100, 100, 100)
# Create the room
create_room()
# Create the player entity
player = mcrfpy.Entity(x=GRID_WIDTH // 2, y=GRID_HEIGHT // 2, grid=grid)
player.sprite_index = 64 # '@' character
player.color = mcrfpy.Color(255, 255, 255) # White
def move_player(dx, dy):
"""Move the player if the destination is walkable"""
# Calculate new position
new_x = player.x + dx
new_y = player.y + dy
# Check bounds
if new_x < 0 or new_x >= GRID_WIDTH or new_y < 0 or new_y >= GRID_HEIGHT:
return
# Check if the destination is walkable
destination = grid.at(new_x, new_y)
if destination.walkable:
# Move the player
player.x = new_x
player.y = new_y
def handle_input(key, state):
"""Handle keyboard input for player movement"""
# Only process key presses, not releases
if state != "start":
return
# Movement deltas
dx, dy = 0, 0
# Arrow keys
if key == "Up":
dy = -1
elif key == "Down":
dy = 1
elif key == "Left":
dx = -1
elif key == "Right":
dx = 1
# Numpad movement (for true roguelike feel!)
elif key == "Num7": # Northwest
dx, dy = -1, -1
elif key == "Num8": # North
dy = -1
elif key == "Num9": # Northeast
dx, dy = 1, -1
elif key == "Num4": # West
dx = -1
elif key == "Num6": # East
dx = 1
elif key == "Num1": # Southwest
dx, dy = -1, 1
elif key == "Num2": # South
dy = 1
elif key == "Num3": # Southeast
dx, dy = 1, 1
# Escape to quit
elif key == "Escape":
mcrfpy.setScene(None)
return
# If there's movement, try to move the player
if dx != 0 or dy != 0:
move_player(dx, dy)
# Register the input handler
mcrfpy.keypressScene(handle_input)
# Add UI elements
title = mcrfpy.Caption("McRogueFace Roguelike", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
ui.append(title)
instructions = mcrfpy.Caption("Arrow Keys or Numpad to move, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
ui.append(instructions)
status = mcrfpy.Caption("@ You", 100, 600)
status.font_size = 18
status.fill_color = mcrfpy.Color(255, 255, 255)
ui.append(status)
print("Part 1: The @ symbol moves!")

View File

@ -0,0 +1,562 @@
# Part 2 - The Generic Entity, the Render Functions, and the Map
In Part 1, we created a player character that could move around a simple room. Now it's time to build a proper architecture for our roguelike. We'll create a flexible entity system, a proper map structure, and organize our code for future expansion.
## Understanding Game Architecture
Before diving into code, let's understand the architecture we're building:
1. **Entities**: Anything that can exist in the game world (player, monsters, items)
2. **Game Map**: The dungeon structure with tiles that can be walls or floors
3. **Game Engine**: Coordinates everything - entities, map, input, and rendering
In McRogueFace, we'll adapt these concepts to work with the engine's scene-based architecture.
## Creating a Flexible Entity System
While McRogueFace provides a built-in `Entity` class, we'll create a wrapper to add game-specific functionality:
```python
class GameObject:
"""Base class for all game objects (player, monsters, items)"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks # Does this entity block movement?
self._entity = None # The McRogueFace entity
self.grid = None # Reference to the grid
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = self.color
def move(self, dx, dy):
"""Move by the given amount if possible"""
if not self.grid:
return
new_x = self.x + dx
new_y = self.y + dy
# Update our position
self.x = new_x
self.y = new_y
# Update the visual entity
if self._entity:
self._entity.x = new_x
self._entity.y = new_y
def destroy(self):
"""Remove this entity from the game"""
if self._entity and self.grid:
# Find and remove from grid's entity list
for i, entity in enumerate(self.grid.entities):
if entity == self._entity:
del self.grid.entities[i]
break
self._entity = None
```
## Building the Game Map
Let's create a proper map class that manages our dungeon:
```python
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = [] # List of GameObjects
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Initialize all tiles as walls
self.fill_with_walls()
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def create_room(self, x1, y1, x2, y2):
"""Carve out a room in the map"""
# Make sure coordinates are in the right order
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
# Carve out floor tiles
for y in range(y1, y2 + 1):
for x in range(x1, x2 + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_h(self, x1, x2, y):
"""Create a horizontal tunnel"""
for x in range(min(x1, x2), max(x1, x2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_v(self, y1, y2, x):
"""Create a vertical tunnel"""
for y in range(min(y1, y2), max(y1, y2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
# Check map boundaries
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
# Check if tile is walkable
if not self.grid.at(x, y).walkable:
return True
# Check if any blocking entity is at this position
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
```
## Creating the Game Engine
Now let's build our game engine to tie everything together:
```python
class Engine:
"""Main game engine that manages game state"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
# Create the game scene
mcrfpy.createScene("game")
mcrfpy.setScene("game")
# Configure window
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 2"
# Get UI container
self.ui = mcrfpy.sceneUI("game")
# Add background
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
# Load tileset
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
# Create the game world
self.setup_game()
# Setup input handling
self.setup_input()
# Add UI elements
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
# Create the map
self.game_map = GameMap(50, 30)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create some rooms
self.game_map.create_room(10, 10, 20, 20)
self.game_map.create_room(30, 15, 40, 25)
self.game_map.create_room(15, 22, 25, 28)
# Connect rooms with tunnels
self.game_map.create_tunnel_h(20, 30, 15)
self.game_map.create_tunnel_v(20, 22, 20)
# Create player
self.player = GameObject(15, 15, 64, (255, 255, 255), "Player", blocks=True)
self.game_map.add_entity(self.player)
# Create an NPC
npc = GameObject(35, 20, 64, (255, 255, 0), "NPC", blocks=True)
self.game_map.add_entity(npc)
self.entities.append(npc)
# Create some items (non-blocking)
potion = GameObject(12, 12, 33, (255, 0, 255), "Potion", blocks=False)
self.game_map.add_entity(potion)
self.entities.append(potion)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
# Check if movement is blocked
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
else:
# Check if we bumped into an entity
target = self.game_map.get_blocking_entity_at(new_x, new_y)
if target:
print(f"You bump into the {target.name}!")
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
# Movement keys
movement = {
"Up": (0, -1),
"Down": (0, 1),
"Left": (-1, 0),
"Right": (1, 0),
"Num7": (-1, -1),
"Num8": (0, -1),
"Num9": (1, -1),
"Num4": (-1, 0),
"Num6": (1, 0),
"Num1": (-1, 1),
"Num2": (0, 1),
"Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
# Title
title = mcrfpy.Caption("McRogueFace Roguelike - Part 2", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
# Instructions
instructions = mcrfpy.Caption("Explore the dungeon! ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
```
## Putting It All Together
Here's the complete `game.py` file:
```python
import mcrfpy
class GameObject:
"""Base class for all game objects (player, monsters, items)"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount if possible"""
if not self.grid:
return
new_x = self.x + dx
new_y = self.y + dy
self.x = new_x
self.y = new_y
if self._entity:
self._entity.x = new_x
self._entity.y = new_y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
self.fill_with_walls()
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def create_room(self, x1, y1, x2, y2):
"""Carve out a room in the map"""
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
for y in range(y1, y2 + 1):
for x in range(x1, x2 + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_h(self, x1, x2, y):
"""Create a horizontal tunnel"""
for x in range(min(x1, x2), max(x1, x2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_v(self, y1, y2, x):
"""Create a vertical tunnel"""
for y in range(min(y1, y2), max(y1, y2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
class Engine:
"""Main game engine that manages game state"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 2"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(50, 30)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
self.game_map.create_room(10, 10, 20, 20)
self.game_map.create_room(30, 15, 40, 25)
self.game_map.create_room(15, 22, 25, 28)
self.game_map.create_tunnel_h(20, 30, 15)
self.game_map.create_tunnel_v(20, 22, 20)
self.player = GameObject(15, 15, 64, (255, 255, 255), "Player", blocks=True)
self.game_map.add_entity(self.player)
npc = GameObject(35, 20, 64, (255, 255, 0), "NPC", blocks=True)
self.game_map.add_entity(npc)
self.entities.append(npc)
potion = GameObject(12, 12, 33, (255, 0, 255), "Potion", blocks=False)
self.game_map.add_entity(potion)
self.entities.append(potion)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
else:
target = self.game_map.get_blocking_entity_at(new_x, new_y)
if target:
print(f"You bump into the {target.name}!")
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("McRogueFace Roguelike - Part 2", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Explore the dungeon! ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 2: Entities and Maps!")
```
## Understanding the Architecture
### GameObject Class
Our `GameObject` class wraps McRogueFace's `Entity` and adds:
- Game logic properties (name, blocking)
- Position tracking independent of the visual entity
- Easy attachment/detachment from grids
### GameMap Class
The `GameMap` manages:
- The McRogueFace `Grid` for visual representation
- A list of all entities in the map
- Collision detection including entity blocking
- Map generation utilities (rooms, tunnels)
### Engine Class
The `Engine` coordinates everything:
- Scene and UI setup
- Game state management
- Input handling
- Entity-map interactions
## Key Improvements from Part 1
1. **Proper Entity Management**: Multiple entities can exist and interact
2. **Blocking Entities**: Some entities block movement, others don't
3. **Map Generation**: Tools for creating rooms and tunnels
4. **Collision System**: Checks both tiles and entities
5. **Organized Code**: Clear separation of concerns
## Exercises
1. **Add More Entity Types**: Create different sprites for monsters, items, and NPCs
2. **Entity Interactions**: Make items disappear when walked over
3. **Random Map Generation**: Place rooms and tunnels randomly
4. **Entity Properties**: Add health, damage, or other attributes to GameObjects
## What's Next?
In Part 3, we'll implement proper dungeon generation with:
- Procedurally generated rooms
- Smart tunnel routing
- Entity spawning
- The beginning of a real roguelike dungeon!
We now have a solid foundation with proper entity management and map structure. This architecture will serve us well as we add more complex features to our roguelike!

View File

@ -0,0 +1,217 @@
import mcrfpy
class GameObject:
"""Base class for all game objects (player, monsters, items)"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount if possible"""
if not self.grid:
return
new_x = self.x + dx
new_y = self.y + dy
self.x = new_x
self.y = new_y
if self._entity:
self._entity.x = new_x
self._entity.y = new_y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
self.fill_with_walls()
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def create_room(self, x1, y1, x2, y2):
"""Carve out a room in the map"""
x1, x2 = min(x1, x2), max(x1, x2)
y1, y2 = min(y1, y2), max(y1, y2)
for y in range(y1, y2 + 1):
for x in range(x1, x2 + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_h(self, x1, x2, y):
"""Create a horizontal tunnel"""
for x in range(min(x1, x2), max(x1, x2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def create_tunnel_v(self, y1, y2, x):
"""Create a vertical tunnel"""
for y in range(min(y1, y2), max(y1, y2) + 1):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
class Engine:
"""Main game engine that manages game state"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 2"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(50, 30)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
self.game_map.create_room(10, 10, 20, 20)
self.game_map.create_room(30, 15, 40, 25)
self.game_map.create_room(15, 22, 25, 28)
self.game_map.create_tunnel_h(20, 30, 15)
self.game_map.create_tunnel_v(20, 22, 20)
self.player = GameObject(15, 15, 64, (255, 255, 255), "Player", blocks=True)
self.game_map.add_entity(self.player)
npc = GameObject(35, 20, 64, (255, 255, 0), "NPC", blocks=True)
self.game_map.add_entity(npc)
self.entities.append(npc)
potion = GameObject(12, 12, 33, (255, 0, 255), "Potion", blocks=False)
self.game_map.add_entity(potion)
self.entities.append(potion)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
else:
target = self.game_map.get_blocking_entity_at(new_x, new_y)
if target:
print(f"You bump into the {target.name}!")
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("McRogueFace Roguelike - Part 2", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Explore the dungeon! ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 2: Entities and Maps!")

View File

@ -0,0 +1,548 @@
# Part 3 - Generating a Dungeon
In Parts 1 and 2, we created a player that could move around and interact with a hand-crafted dungeon. Now it's time to generate dungeons procedurally - a core feature of any roguelike game!
## The Plan
We'll create a dungeon generator that:
1. Places rectangular rooms randomly
2. Ensures rooms don't overlap
3. Connects rooms with tunnels
4. Places the player in the first room
This is a classic approach used by many roguelikes, and it creates interesting, playable dungeons.
## Creating a Room Class
First, let's create a class to represent rectangular rooms:
```python
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
"""Return the inner area of the room as a tuple of slices
This property returns the area inside the walls.
We'll add 1 to min coordinates and subtract 1 from max coordinates.
"""
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
"""Return True if this room overlaps with another RectangularRoom"""
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
```
## Implementing Tunnel Generation
Since McRogueFace doesn't include line-drawing algorithms, let's implement simple L-shaped tunnels:
```python
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
# Randomly decide whether to go horizontal first or vertical first
if random.random() < 0.5:
# Horizontal, then vertical
corner_x = x2
corner_y = y1
else:
# Vertical, then horizontal
corner_x = x1
corner_y = y2
# Generate the coordinates
# First line: from start to corner
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
# Second line: from corner to end
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
```
## The Dungeon Generator
Now let's update our GameMap class to generate dungeons:
```python
import random
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = [] # Keep track of rooms for game logic
def generate_dungeon(
self,
max_rooms,
room_min_size,
room_max_size,
player
):
"""Generate a new dungeon map"""
# Start with everything as walls
self.fill_with_walls()
for r in range(max_rooms):
# Random width and height
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
# Random position without going out of bounds
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
# Create the room
new_room = RectangularRoom(x, y, room_width, room_height)
# Check if it intersects with any existing room
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue # This room intersects, so go to the next attempt
# If we get here, it's a valid room
# Carve out this room
self.carve_room(new_room)
# Place the player in the center of the first room
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All rooms after the first:
# Tunnel between this room and the previous one
self.carve_tunnel(self.rooms[-1].center, new_room.center)
# Finally, append the new room to the list
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(30, 30, 40)) # Slightly different color for tunnels
```
## Complete Code
Here's the complete `game.py` with procedural dungeon generation:
```python
import mcrfpy
import random
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
"""Return the inner area of the room"""
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
"""Return True if this room overlaps with another"""
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
# Generate the coordinates
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(30, 30, 40))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 3"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player (before dungeon generation)
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add some monsters in random rooms
for i in range(5):
if i < len(self.game_map.rooms) - 1: # Don't spawn in first room
room = self.game_map.rooms[i + 1]
x, y = room.center
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "Space":
# Regenerate the dungeon
self.regenerate_dungeon()
mcrfpy.keypressScene(handle_keys)
def regenerate_dungeon(self):
"""Generate a new dungeon"""
# Clear existing entities
self.game_map.entities.clear()
self.game_map.rooms.clear()
self.entities.clear()
# Clear the entity list in the grid
if self.game_map.grid:
self.game_map.grid.entities.clear()
# Regenerate
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Re-add player
self.game_map.add_entity(self.player)
# Add new monsters
for i in range(5):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Procedural Dungeon Generation", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move, SPACE to regenerate, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 3: Procedural Dungeon Generation!")
print("Press SPACE to generate a new dungeon")
```
## Understanding the Algorithm
Our dungeon generation algorithm is simple but effective:
1. **Start with solid walls** - The entire map begins filled with wall tiles
2. **Try to place rooms** - Generate random rooms and check for overlaps
3. **Connect with tunnels** - Each new room connects to the previous one
4. **Place entities** - The player starts in the first room, monsters in others
### Room Placement
The algorithm attempts to place `max_rooms` rooms, but may place fewer if many attempts result in overlapping rooms. This is called "rejection sampling" - we generate random rooms and reject ones that don't fit.
### Tunnel Design
Our L-shaped tunnels are simple but effective. They either go:
- Horizontal first, then vertical
- Vertical first, then horizontal
This creates variety while ensuring all rooms are connected.
## Experimenting with Parameters
Try adjusting these parameters to create different dungeon styles:
```python
# Sparse dungeon with large rooms
self.game_map.generate_dungeon(
max_rooms=10,
room_min_size=10,
room_max_size=15,
player=self.player
)
# Dense dungeon with small rooms
self.game_map.generate_dungeon(
max_rooms=50,
room_min_size=4,
room_max_size=6,
player=self.player
)
```
## Visual Enhancements
Notice how we gave tunnels a slightly different color:
- Rooms: `color=(50, 50, 50)` - Medium gray
- Tunnels: `color=(30, 30, 40)` - Darker with blue tint
This subtle difference helps players understand the dungeon layout.
## Exercises
1. **Different Room Shapes**: Create circular or cross-shaped rooms
2. **Better Tunnel Routing**: Implement A* pathfinding for more natural tunnels
3. **Room Types**: Create special rooms (treasure rooms, trap rooms)
4. **Dungeon Themes**: Use different tile sets and colors for different dungeon levels
## What's Next?
In Part 4, we'll implement Field of View (FOV) so the player can only see parts of the dungeon they've explored. This will add mystery and atmosphere to our procedurally generated dungeons!
Our dungeon generator is now creating unique, playable levels every time. The foundation of a true roguelike is taking shape!

View File

@ -0,0 +1,312 @@
import mcrfpy
import random
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
"""Return the center coordinates of the room"""
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
"""Return the inner area of the room"""
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
"""Return True if this room overlaps with another"""
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
# Generate the coordinates
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, color=(100, 100, 100))
def set_tile(self, x, y, walkable, transparent, sprite_index, color):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*color)
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(50, 50, 50))
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, color=(30, 30, 40))
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 3"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player (before dungeon generation)
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add some monsters in random rooms
for i in range(5):
if i < len(self.game_map.rooms) - 1: # Don't spawn in first room
room = self.game_map.rooms[i + 1]
x, y = room.center
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "Space":
# Regenerate the dungeon
self.regenerate_dungeon()
mcrfpy.keypressScene(handle_keys)
def regenerate_dungeon(self):
"""Generate a new dungeon"""
# Clear existing entities
self.game_map.entities.clear()
self.game_map.rooms.clear()
self.entities.clear()
# Clear the entity list in the grid
if self.game_map.grid:
self.game_map.grid.entities.clear()
# Regenerate
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Re-add player
self.game_map.add_entity(self.player)
# Add new monsters
for i in range(5):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Procedural Dungeon Generation", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move, SPACE to regenerate, ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Create and run the game
engine = Engine()
print("Part 3: Procedural Dungeon Generation!")
print("Press SPACE to generate a new dungeon")

View File

@ -0,0 +1,520 @@
# Part 4 - Field of View
One of the defining features of roguelikes is exploration and discovery. In Part 3, we could see the entire dungeon at once. Now we'll implement Field of View (FOV) so players can only see what their character can actually see, adding mystery and tactical depth to our game.
## Understanding Field of View
Field of View creates three distinct visibility states for each tile:
1. **Visible**: Currently in the player's line of sight
2. **Explored**: Previously seen but not currently visible
3. **Unexplored**: Never seen (completely hidden)
This creates the classic "fog of war" effect where you remember the layout of areas you've explored, but can't see current enemy positions unless they're in your view.
## McRogueFace's FOV System
Good news! McRogueFace includes built-in FOV support through its C++ engine. We just need to enable and configure it. The engine uses an efficient shadowcasting algorithm that provides smooth, realistic line-of-sight calculations.
Let's update our code to use FOV:
```python
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
```
## Configuring Visibility Rendering
McRogueFace automatically handles the rendering of visible/explored/unexplored tiles. We need to set up our grid to use perspective-based rendering:
```python
class GameMap:
"""Manages the game world"""
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering (0 = first entity = player)
self.grid.perspective = 0
return self.grid
```
## Visual Appearance Configuration
Let's define how our tiles look in different visibility states:
```python
# Color configurations for visibility states
COLORS_VISIBLE = {
'wall': (100, 100, 100), # Light gray
'floor': (50, 50, 50), # Dark gray
'tunnel': (30, 30, 40), # Dark blue-gray
}
COLORS_EXPLORED = {
'wall': (50, 50, 70), # Darker, bluish
'floor': (20, 20, 30), # Very dark
'tunnel': (15, 15, 25), # Almost black
}
# Update the tile-setting methods to store the tile type
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
# Store both visible and explored colors
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
# The engine will automatically darken explored tiles
```
## Complete Implementation
Here's the complete updated `game.py` with FOV:
```python
import mcrfpy
import random
# Color configurations for visibility
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering (0 = first entity = player)
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.fov_radius = 8
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 4"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add monsters in random rooms
for i in range(10):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
# Randomly offset from center
x += random.randint(-2, 2)
y += random.randint(-2, 2)
# Make sure position is walkable
if self.game_map.grid.at(x, y).walkable:
if i % 2 == 0:
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
else:
# Create a troll
troll = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
self.game_map.add_entity(troll)
self.entities.append(troll)
# Initial FOV calculation
self.player.update_fov()
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "v":
# Toggle FOV on/off
if self.game_map.grid.perspective == 0:
self.game_map.grid.perspective = -1 # Omniscient
print("FOV disabled - omniscient view")
else:
self.game_map.grid.perspective = 0 # Player perspective
print("FOV enabled - player perspective")
elif key == "Plus" or key == "Equals":
# Increase FOV radius
self.fov_radius = min(self.fov_radius + 1, 20)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
elif key == "Minus":
# Decrease FOV radius
self.fov_radius = max(self.fov_radius - 1, 3)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Field of View", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | V to toggle FOV | +/- to adjust radius | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# FOV indicator
self.fov_text = mcrfpy.Caption(f"FOV Radius: {self.fov_radius}", 900, 100)
self.fov_text.font_size = 14
self.fov_text.fill_color = mcrfpy.Color(150, 200, 255)
self.ui.append(self.fov_text)
# Create and run the game
engine = Engine()
print("Part 4: Field of View!")
print("Press V to toggle FOV on/off")
print("Press +/- to adjust FOV radius")
```
## How FOV Works
McRogueFace's built-in FOV system uses a shadowcasting algorithm that:
1. **Casts rays** from the player's position to tiles within the radius
2. **Checks transparency** along each ray path
3. **Marks tiles as visible** if the ray reaches them unobstructed
4. **Remembers explored tiles** automatically
The engine handles all the complex calculations in C++ for optimal performance.
## Visibility States in Detail
### Visible Tiles
- Currently in the player's line of sight
- Rendered at full brightness
- Show current entity positions
### Explored Tiles
- Previously seen but not currently visible
- Rendered darker/muted
- Show remembered terrain but not entities
### Unexplored Tiles
- Never been in the player's FOV
- Rendered as black/invisible
- Complete mystery to the player
## FOV Parameters
You can customize FOV behavior:
```python
# Basic FOV update
entity.update_fov(radius=8)
# The grid's perspective property controls rendering:
grid.perspective = 0 # Use first entity's FOV (player)
grid.perspective = 1 # Use second entity's FOV
grid.perspective = -1 # Omniscient (no FOV, see everything)
```
## Performance Considerations
McRogueFace's C++ FOV implementation is highly optimized:
- Uses efficient shadowcasting algorithm
- Only recalculates when needed
- Handles large maps smoothly
- Automatically culls entities outside FOV
## Visual Polish
The engine automatically handles visual transitions:
- Smooth color changes between visibility states
- Entities fade in/out of view
- Explored areas remain visible but dimmed
## Exercises
1. **Variable Vision**: Give different entities different FOV radii
2. **Light Sources**: Create torches that expand local FOV
3. **Blind Spots**: Add pillars that create interesting shadows
4. **X-Ray Vision**: Temporary power-up to see through walls
## What's Next?
In Part 5, we'll place enemies throughout the dungeon and implement basic interactions. With FOV in place, enemies will appear and disappear as you explore, creating tension and surprise!
Field of View transforms our dungeon from a tactical puzzle into a mysterious world to explore. The fog of war adds atmosphere and gameplay depth that's essential to the roguelike experience.

View File

@ -0,0 +1,334 @@
import mcrfpy
import random
# Color configurations for visibility
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering (0 = first entity = player)
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
self.carve_tunnel(self.rooms[-1].center, new_room.center)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.fov_radius = 8
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 4"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player
)
# Add player to map
self.game_map.add_entity(self.player)
# Add monsters in random rooms
for i in range(10):
if i < len(self.game_map.rooms) - 1:
room = self.game_map.rooms[i + 1]
x, y = room.center
# Randomly offset from center
x += random.randint(-2, 2)
y += random.randint(-2, 2)
# Make sure position is walkable
if self.game_map.grid.at(x, y).walkable:
if i % 2 == 0:
# Create an orc
orc = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
self.game_map.add_entity(orc)
self.entities.append(orc)
else:
# Create a troll
troll = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
self.game_map.add_entity(troll)
self.entities.append(troll)
# Initial FOV calculation
self.player.update_fov()
def handle_movement(self, dx, dy):
"""Handle player movement"""
new_x = self.player.x + dx
new_y = self.player.y + dy
if not self.game_map.is_blocked(new_x, new_y):
self.player.move(dx, dy)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
self.handle_movement(dx, dy)
elif key == "Escape":
mcrfpy.setScene(None)
elif key == "v":
# Toggle FOV on/off
if self.game_map.grid.perspective == 0:
self.game_map.grid.perspective = -1 # Omniscient
print("FOV disabled - omniscient view")
else:
self.game_map.grid.perspective = 0 # Player perspective
print("FOV enabled - player perspective")
elif key == "Plus" or key == "Equals":
# Increase FOV radius
self.fov_radius = min(self.fov_radius + 1, 20)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
elif key == "Minus":
# Decrease FOV radius
self.fov_radius = max(self.fov_radius - 1, 3)
self.player._entity.update_fov(radius=self.fov_radius)
print(f"FOV radius: {self.fov_radius}")
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Field of View", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | V to toggle FOV | +/- to adjust radius | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# FOV indicator
self.fov_text = mcrfpy.Caption(f"FOV Radius: {self.fov_radius}", 900, 100)
self.fov_text.font_size = 14
self.fov_text.fill_color = mcrfpy.Color(150, 200, 255)
self.ui.append(self.fov_text)
# Create and run the game
engine = Engine()
print("Part 4: Field of View!")
print("Press V to toggle FOV on/off")
print("Press +/- to adjust FOV radius")

View File

@ -0,0 +1,570 @@
# Part 5 - Placing Enemies and Kicking Them (Harmlessly)
Now that we have Field of View working, it's time to populate our dungeon with enemies! In this part, we'll:
- Place enemies randomly in rooms
- Implement entity-to-entity collision detection
- Create basic interactions (bumping into enemies)
- Set the stage for combat in Part 6
## Enemy Spawning System
First, let's create a system to spawn enemies in our dungeon rooms. We'll avoid placing them in the first room (where the player starts) to give players a safe starting area.
```python
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
import random
number_of_enemies = random.randint(0, max_enemies)
for i in range(number_of_enemies):
# Try to find a valid position
attempts = 10
while attempts > 0:
# Random position within room bounds
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
# Check if position is valid
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
else:
enemy = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
game_map.add_entity(enemy)
break
attempts -= 1
```
## Enhanced Collision Detection
We need to improve our collision detection to check for entities, not just walls:
```python
class GameMap:
"""Manages the game world"""
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
# Check boundaries
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
# Check walls
if not self.grid.at(x, y).walkable:
return True
# Check entities
if self.get_blocking_entity_at(x, y):
return True
return False
```
## Action System Introduction
Let's create a simple action system to handle different types of interactions:
```python
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class BumpAction(Action):
"""Action for bumping into something"""
def __init__(self, dx, dy, target=None):
self.dx = dx
self.dy = dy
self.target = target
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
```
## Handling Player Actions
Now let's update our movement handling to support bumping into enemies:
```python
def handle_player_turn(self, action):
"""Process the player's action"""
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# We bumped into something!
print(f"You kick the {target.name} in the shins, much to its annoyance!")
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
# Update message
self.status_text.text = "Exploring the dungeon..."
else:
# Bumped into a wall
self.status_text.text = "Ouch! You bump into a wall."
elif isinstance(action, WaitAction):
self.status_text.text = "You wait..."
```
## Complete Updated Code
Here's the complete `game.py` with enemy placement and interactions:
```python
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
# Try to find a valid position
attempts = 10
while attempts > 0:
# Random position within room bounds
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
# Check if position is valid
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
else:
enemy = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 5"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
def handle_player_turn(self, action):
"""Process the player's action"""
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# We bumped into something!
print(f"You kick the {target.name} in the shins, much to its annoyance!")
self.status_text.text = f"You kick the {target.name}!"
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
self.status_text.text = ""
else:
# Bumped into a wall
self.status_text.text = "Blocked!"
elif isinstance(action, WaitAction):
self.status_text.text = "You wait..."
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Placing Enemies", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | . to wait | Bump into enemies! | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Status text
self.status_text = mcrfpy.Caption("", 512, 600)
self.status_text.font_size = 18
self.status_text.fill_color = mcrfpy.Color(255, 200, 200)
self.ui.append(self.status_text)
# Entity count
entity_count = len(self.entities)
count_text = mcrfpy.Caption(f"Enemies: {entity_count}", 900, 100)
count_text.font_size = 14
count_text.fill_color = mcrfpy.Color(150, 150, 255)
self.ui.append(count_text)
# Create and run the game
engine = Engine()
print("Part 5: Placing Enemies!")
print("Try bumping into enemies - combat coming in Part 6!")
```
## Understanding Entity Interactions
### Collision Detection
Our system now checks three things when the player tries to move:
1. **Map boundaries** - Can't move outside the map
2. **Wall tiles** - Can't walk through walls
3. **Blocking entities** - Can't walk through enemies
### The Action System
We've introduced a simple action system that will grow in Part 6:
- `Action` - Base class for all actions
- `MovementAction` - Represents attempted movement
- `WaitAction` - Skip a turn (important for turn-based games)
### Entity Spawning
Enemies are placed randomly in rooms with these rules:
- Never in the first room (player's starting room)
- Random number between 0 and max per room
- 80% orcs, 20% trolls
- Must be placed on walkable, unoccupied tiles
## Visual Feedback
With FOV enabled, enemies will appear and disappear as you explore:
- Enemies in sight are fully visible
- Enemies in explored but dark areas are hidden
- Creates tension and surprise encounters
## Exercises
1. **More Enemy Types**: Add different sprites and names (goblins, skeletons)
2. **Enemy Density**: Adjust spawn rates based on dungeon depth
3. **Special Rooms**: Create rooms with guaranteed enemies or treasures
4. **Better Feedback**: Add sound effects or visual effects for bumping
## What's Next?
In Part 6, we'll transform those harmless kicks into a real combat system! We'll add:
- Health points for all entities
- Damage calculations
- Death and corpses
- Combat messages
- The beginning of a real roguelike!
Right now our enemies are just obstacles. Soon they'll fight back!

View File

@ -0,0 +1,388 @@
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name, blocks=False):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
# Try to find a valid position
attempts = 10
while attempts > 0:
# Random position within room bounds
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
# Check if position is valid
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = GameObject(x, y, 111, (63, 127, 63), "Orc", blocks=True)
else:
enemy = GameObject(x, y, 84, (0, 127, 0), "Troll", blocks=True)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 5"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = GameObject(0, 0, 64, (255, 255, 255), "Player", blocks=True)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
def handle_player_turn(self, action):
"""Process the player's action"""
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# We bumped into something!
print(f"You kick the {target.name} in the shins, much to its annoyance!")
self.status_text.text = f"You kick the {target.name}!"
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
self.status_text.text = ""
else:
# Bumped into a wall
self.status_text.text = "Blocked!"
elif isinstance(action, WaitAction):
self.status_text.text = "You wait..."
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Placing Enemies", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Arrow keys to move | . to wait | Bump into enemies! | ESC to quit", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Status text
self.status_text = mcrfpy.Caption("", 512, 600)
self.status_text.font_size = 18
self.status_text.fill_color = mcrfpy.Color(255, 200, 200)
self.ui.append(self.status_text)
# Entity count
entity_count = len(self.entities)
count_text = mcrfpy.Caption(f"Enemies: {entity_count}", 900, 100)
count_text.font_size = 14
count_text.fill_color = mcrfpy.Color(150, 150, 255)
self.ui.append(count_text)
# Create and run the game
engine = Engine()
print("Part 5: Placing Enemies!")
print("Try bumping into enemies - combat coming in Part 6!")

View File

@ -0,0 +1,743 @@
# Part 6 - Doing (and Taking) Some Damage
It's time to turn our harmless kicks into real combat! In this part, we'll implement:
- Health points for all entities
- A damage calculation system
- Death and corpse mechanics
- Combat feedback messages
- The foundation of tactical roguelike combat
## Adding Combat Stats
First, let's enhance our GameObject class with combat capabilities:
```python
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name,
blocks=False, hp=0, defense=0, power=0):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
# Combat stats
self.max_hp = hp
self.hp = hp
self.defense = defense
self.power = power
@property
def is_alive(self):
"""Returns True if this entity can act"""
return self.hp > 0
def take_damage(self, amount):
"""Apply damage to this entity"""
damage = amount - self.defense
if damage > 0:
self.hp -= damage
# Check for death
if self.hp <= 0 and self.hp + damage > 0:
self.die()
return damage
def die(self):
"""Handle entity death"""
if self.name == "Player":
# Player death is special - we'll handle it differently
self.sprite_index = 64 # Stay as @ but change color
self.color = (127, 0, 0) # Dark red
if self._entity:
self._entity.color = mcrfpy.Color(127, 0, 0)
print("You have died!")
else:
# Enemy death
self.sprite_index = 37 # % character for corpse
self.color = (127, 0, 0) # Dark red
self.blocks = False # Corpses don't block
self.name = f"remains of {self.name}"
if self._entity:
self._entity.sprite_index = 37
self._entity.color = mcrfpy.Color(127, 0, 0)
```
## The Combat System
Now let's implement actual combat when entities bump into each other:
```python
class MeleeAction(Action):
"""Action for melee attacks"""
def __init__(self, attacker, target):
self.attacker = attacker
self.target = target
def perform(self):
"""Execute the attack"""
if not self.target.is_alive:
return # Can't attack the dead
damage = self.attacker.power - self.target.defense
if damage > 0:
attack_desc = f"{self.attacker.name} attacks {self.target.name} for {damage} damage!"
self.target.take_damage(damage)
else:
attack_desc = f"{self.attacker.name} attacks {self.target.name} but does no damage."
return attack_desc
```
## Entity Factories
Let's create factory functions for consistent entity creation:
```python
def create_player(x, y):
"""Create the player entity"""
return GameObject(
x=x, y=y,
sprite_index=64, # @
color=(255, 255, 255),
name="Player",
blocks=True,
hp=30,
defense=2,
power=5
)
def create_orc(x, y):
"""Create an orc enemy"""
return GameObject(
x=x, y=y,
sprite_index=111, # o
color=(63, 127, 63),
name="Orc",
blocks=True,
hp=10,
defense=0,
power=3
)
def create_troll(x, y):
"""Create a troll enemy"""
return GameObject(
x=x, y=y,
sprite_index=84, # T
color=(0, 127, 0),
name="Troll",
blocks=True,
hp=16,
defense=1,
power=4
)
```
## The Message Log
Combat needs feedback! Let's create a simple message log:
```python
class MessageLog:
"""Manages game messages"""
def __init__(self, max_messages=5):
self.messages = []
self.max_messages = max_messages
def add_message(self, text, color=(255, 255, 255)):
"""Add a message to the log"""
self.messages.append((text, color))
# Keep only recent messages
if len(self.messages) > self.max_messages:
self.messages.pop(0)
def render(self, ui, x, y, line_height=20):
"""Render messages to the UI"""
for i, (text, color) in enumerate(self.messages):
caption = mcrfpy.Caption(text, x, y + i * line_height)
caption.font_size = 14
caption.fill_color = mcrfpy.Color(*color)
ui.append(caption)
```
## Complete Implementation
Here's the complete `game.py` with combat:
```python
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Message colors
COLOR_PLAYER_ATK = (230, 230, 230)
COLOR_ENEMY_ATK = (255, 200, 200)
COLOR_PLAYER_DIE = (255, 100, 100)
COLOR_ENEMY_DIE = (255, 165, 0)
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class MeleeAction(Action):
"""Action for melee attacks"""
def __init__(self, attacker, target):
self.attacker = attacker
self.target = target
def perform(self):
"""Execute the attack"""
if not self.target.is_alive:
return None
damage = self.attacker.power - self.target.defense
if damage > 0:
attack_desc = f"{self.attacker.name} attacks {self.target.name} for {damage} damage!"
self.target.take_damage(damage)
# Choose color based on attacker
if self.attacker.name == "Player":
color = COLOR_PLAYER_ATK
else:
color = COLOR_ENEMY_ATK
return attack_desc, color
else:
attack_desc = f"{self.attacker.name} attacks {self.target.name} but does no damage."
return attack_desc, (150, 150, 150)
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name,
blocks=False, hp=0, defense=0, power=0):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
# Combat stats
self.max_hp = hp
self.hp = hp
self.defense = defense
self.power = power
@property
def is_alive(self):
"""Returns True if this entity can act"""
return self.hp > 0
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
def take_damage(self, amount):
"""Apply damage to this entity"""
self.hp -= amount
# Check for death
if self.hp <= 0:
self.die()
def die(self):
"""Handle entity death"""
if self.name == "Player":
# Player death
self.sprite_index = 64 # Stay as @
self.color = (127, 0, 0) # Dark red
if self._entity:
self._entity.color = mcrfpy.Color(127, 0, 0)
else:
# Enemy death
self.sprite_index = 37 # % character for corpse
self.color = (127, 0, 0) # Dark red
self.blocks = False # Corpses don't block
self.name = f"remains of {self.name}"
if self._entity:
self._entity.sprite_index = 37
self._entity.color = mcrfpy.Color(127, 0, 0)
# Entity factories
def create_player(x, y):
"""Create the player entity"""
return GameObject(
x=x, y=y,
sprite_index=64, # @
color=(255, 255, 255),
name="Player",
blocks=True,
hp=30,
defense=2,
power=5
)
def create_orc(x, y):
"""Create an orc enemy"""
return GameObject(
x=x, y=y,
sprite_index=111, # o
color=(63, 127, 63),
name="Orc",
blocks=True,
hp=10,
defense=0,
power=3
)
def create_troll(x, y):
"""Create a troll enemy"""
return GameObject(
x=x, y=y,
sprite_index=84, # T
color=(0, 127, 0),
name="Troll",
blocks=True,
hp=16,
defense=1,
power=4
)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
attempts = 10
while attempts > 0:
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = create_orc(x, y)
else:
enemy = create_troll(x, y)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.messages = [] # Simple message log
self.max_messages = 5
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 6"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def add_message(self, text, color=(255, 255, 255)):
"""Add a message to the log"""
self.messages.append((text, color))
if len(self.messages) > self.max_messages:
self.messages.pop(0)
self.update_message_display()
def update_message_display(self):
"""Update the message display"""
# Clear old messages
for caption in self.message_captions:
# Remove from UI (McRogueFace doesn't have remove, so we hide it)
caption.text = ""
# Display current messages
for i, (text, color) in enumerate(self.messages):
if i < len(self.message_captions):
self.message_captions[i].text = text
self.message_captions[i].fill_color = mcrfpy.Color(*color)
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = create_player(0, 0)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
# Welcome message
self.add_message("Welcome to the dungeon!", (100, 100, 255))
def handle_player_turn(self, action):
"""Process the player's action"""
if not self.player.is_alive:
return
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# Attack!
attack = MeleeAction(self.player, target)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if target died
if not target.is_alive:
death_msg = f"The {target.name.replace('remains of ', '')} is dead!"
self.add_message(death_msg, COLOR_ENEMY_DIE)
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
elif isinstance(action, WaitAction):
pass # Do nothing
# Enemy turns
self.handle_enemy_turns()
def handle_enemy_turns(self):
"""Let all enemies take their turn"""
for entity in self.entities:
if entity.is_alive:
# Simple AI: if player is adjacent, attack. Otherwise, do nothing.
dx = entity.x - self.player.x
dy = entity.y - self.player.y
distance = abs(dx) + abs(dy)
if distance == 1: # Adjacent to player
attack = MeleeAction(entity, self.player)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if player died
if not self.player.is_alive:
self.add_message("You have died!", COLOR_PLAYER_DIE)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Combat System", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Attack enemies by bumping into them!", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Player stats
self.hp_text = mcrfpy.Caption(f"HP: {self.player.hp}/{self.player.max_hp}", 50, 100)
self.hp_text.font_size = 18
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
self.ui.append(self.hp_text)
# Message log
self.message_captions = []
for i in range(self.max_messages):
caption = mcrfpy.Caption("", 50, 620 + i * 20)
caption.font_size = 14
caption.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(caption)
self.message_captions.append(caption)
# Timer to update HP display
def update_stats(dt):
self.hp_text.text = f"HP: {self.player.hp}/{self.player.max_hp}"
if self.player.hp <= 0:
self.hp_text.fill_color = mcrfpy.Color(127, 0, 0)
elif self.player.hp < self.player.max_hp // 3:
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
else:
self.hp_text.fill_color = mcrfpy.Color(0, 255, 0)
mcrfpy.setTimer("update_stats", update_stats, 100)
# Create and run the game
engine = Engine()
print("Part 6: Combat System!")
print("Attack enemies to defeat them, but watch your HP!")

View File

@ -0,0 +1,568 @@
import mcrfpy
import random
# Color configurations
COLORS_VISIBLE = {
'wall': (100, 100, 100),
'floor': (50, 50, 50),
'tunnel': (30, 30, 40),
}
# Message colors
COLOR_PLAYER_ATK = (230, 230, 230)
COLOR_ENEMY_ATK = (255, 200, 200)
COLOR_PLAYER_DIE = (255, 100, 100)
COLOR_ENEMY_DIE = (255, 165, 0)
# Actions
class Action:
"""Base class for all actions"""
pass
class MovementAction(Action):
"""Action for moving an entity"""
def __init__(self, dx, dy):
self.dx = dx
self.dy = dy
class MeleeAction(Action):
"""Action for melee attacks"""
def __init__(self, attacker, target):
self.attacker = attacker
self.target = target
def perform(self):
"""Execute the attack"""
if not self.target.is_alive:
return None
damage = self.attacker.power - self.target.defense
if damage > 0:
attack_desc = f"{self.attacker.name} attacks {self.target.name} for {damage} damage!"
self.target.take_damage(damage)
# Choose color based on attacker
if self.attacker.name == "Player":
color = COLOR_PLAYER_ATK
else:
color = COLOR_ENEMY_ATK
return attack_desc, color
else:
attack_desc = f"{self.attacker.name} attacks {self.target.name} but does no damage."
return attack_desc, (150, 150, 150)
class WaitAction(Action):
"""Action for waiting/skipping turn"""
pass
class GameObject:
"""Base class for all game objects"""
def __init__(self, x, y, sprite_index, color, name,
blocks=False, hp=0, defense=0, power=0):
self.x = x
self.y = y
self.sprite_index = sprite_index
self.color = color
self.name = name
self.blocks = blocks
self._entity = None
self.grid = None
# Combat stats
self.max_hp = hp
self.hp = hp
self.defense = defense
self.power = power
@property
def is_alive(self):
"""Returns True if this entity can act"""
return self.hp > 0
def attach_to_grid(self, grid):
"""Attach this game object to a McRogueFace grid"""
self.grid = grid
self._entity = mcrfpy.Entity(x=self.x, y=self.y, grid=grid)
self._entity.sprite_index = self.sprite_index
self._entity.color = mcrfpy.Color(*self.color)
def move(self, dx, dy):
"""Move by the given amount"""
if not self.grid:
return
self.x += dx
self.y += dy
if self._entity:
self._entity.x = self.x
self._entity.y = self.y
# Update FOV when player moves
if self.name == "Player":
self.update_fov()
def update_fov(self):
"""Update field of view from this entity's position"""
if self._entity and self.grid:
self._entity.update_fov(radius=8)
def take_damage(self, amount):
"""Apply damage to this entity"""
self.hp -= amount
# Check for death
if self.hp <= 0:
self.die()
def die(self):
"""Handle entity death"""
if self.name == "Player":
# Player death
self.sprite_index = 64 # Stay as @
self.color = (127, 0, 0) # Dark red
if self._entity:
self._entity.color = mcrfpy.Color(127, 0, 0)
else:
# Enemy death
self.sprite_index = 37 # % character for corpse
self.color = (127, 0, 0) # Dark red
self.blocks = False # Corpses don't block
self.name = f"remains of {self.name}"
if self._entity:
self._entity.sprite_index = 37
self._entity.color = mcrfpy.Color(127, 0, 0)
# Entity factories
def create_player(x, y):
"""Create the player entity"""
return GameObject(
x=x, y=y,
sprite_index=64, # @
color=(255, 255, 255),
name="Player",
blocks=True,
hp=30,
defense=2,
power=5
)
def create_orc(x, y):
"""Create an orc enemy"""
return GameObject(
x=x, y=y,
sprite_index=111, # o
color=(63, 127, 63),
name="Orc",
blocks=True,
hp=10,
defense=0,
power=3
)
def create_troll(x, y):
"""Create a troll enemy"""
return GameObject(
x=x, y=y,
sprite_index=84, # T
color=(0, 127, 0),
name="Troll",
blocks=True,
hp=16,
defense=1,
power=4
)
class RectangularRoom:
"""A rectangular room with its position and size"""
def __init__(self, x, y, width, height):
self.x1 = x
self.y1 = y
self.x2 = x + width
self.y2 = y + height
@property
def center(self):
center_x = (self.x1 + self.x2) // 2
center_y = (self.y1 + self.y2) // 2
return center_x, center_y
@property
def inner(self):
return self.x1 + 1, self.y1 + 1, self.x2 - 1, self.y2 - 1
def intersects(self, other):
return (
self.x1 <= other.x2
and self.x2 >= other.x1
and self.y1 <= other.y2
and self.y2 >= other.y1
)
def tunnel_between(start, end):
"""Return an L-shaped tunnel between two points"""
x1, y1 = start
x2, y2 = end
if random.random() < 0.5:
corner_x = x2
corner_y = y1
else:
corner_x = x1
corner_y = y2
for x in range(min(x1, corner_x), max(x1, corner_x) + 1):
yield x, y1
for y in range(min(y1, corner_y), max(y1, corner_y) + 1):
yield corner_x, y
for x in range(min(corner_x, x2), max(corner_x, x2) + 1):
yield x, corner_y
for y in range(min(corner_y, y2), max(corner_y, y2) + 1):
yield x2, y
def spawn_enemies_in_room(room, game_map, max_enemies=2):
"""Spawn between 0 and max_enemies in a room"""
number_of_enemies = random.randint(0, max_enemies)
enemies_spawned = []
for i in range(number_of_enemies):
attempts = 10
while attempts > 0:
x = random.randint(room.x1 + 1, room.x2 - 1)
y = random.randint(room.y1 + 1, room.y2 - 1)
if not game_map.is_blocked(x, y):
# 80% chance for orc, 20% for troll
if random.random() < 0.8:
enemy = create_orc(x, y)
else:
enemy = create_troll(x, y)
game_map.add_entity(enemy)
enemies_spawned.append(enemy)
break
attempts -= 1
return enemies_spawned
class GameMap:
"""Manages the game world"""
def __init__(self, width, height):
self.width = width
self.height = height
self.grid = None
self.entities = []
self.rooms = []
def create_grid(self, tileset):
"""Create the McRogueFace grid"""
self.grid = mcrfpy.Grid(grid_x=self.width, grid_y=self.height, texture=tileset)
self.grid.position = (100, 100)
self.grid.size = (800, 480)
# Enable perspective rendering
self.grid.perspective = 0
return self.grid
def fill_with_walls(self):
"""Fill the entire map with wall tiles"""
for y in range(self.height):
for x in range(self.width):
self.set_tile(x, y, walkable=False, transparent=False,
sprite_index=35, tile_type='wall')
def set_tile(self, x, y, walkable, transparent, sprite_index, tile_type):
"""Set properties for a specific tile"""
if 0 <= x < self.width and 0 <= y < self.height:
cell = self.grid.at(x, y)
cell.walkable = walkable
cell.transparent = transparent
cell.sprite_index = sprite_index
cell.color = mcrfpy.Color(*COLORS_VISIBLE[tile_type])
def generate_dungeon(self, max_rooms, room_min_size, room_max_size, player, max_enemies_per_room):
"""Generate a new dungeon map"""
self.fill_with_walls()
for r in range(max_rooms):
room_width = random.randint(room_min_size, room_max_size)
room_height = random.randint(room_min_size, room_max_size)
x = random.randint(0, self.width - room_width - 1)
y = random.randint(0, self.height - room_height - 1)
new_room = RectangularRoom(x, y, room_width, room_height)
if any(new_room.intersects(other_room) for other_room in self.rooms):
continue
self.carve_room(new_room)
if len(self.rooms) == 0:
# First room - place player
player.x, player.y = new_room.center
if player._entity:
player._entity.x, player._entity.y = new_room.center
else:
# All other rooms - add tunnel and enemies
self.carve_tunnel(self.rooms[-1].center, new_room.center)
spawn_enemies_in_room(new_room, self, max_enemies_per_room)
self.rooms.append(new_room)
def carve_room(self, room):
"""Carve out a room"""
inner_x1, inner_y1, inner_x2, inner_y2 = room.inner
for y in range(inner_y1, inner_y2):
for x in range(inner_x1, inner_x2):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='floor')
def carve_tunnel(self, start, end):
"""Carve a tunnel between two points"""
for x, y in tunnel_between(start, end):
self.set_tile(x, y, walkable=True, transparent=True,
sprite_index=46, tile_type='tunnel')
def get_blocking_entity_at(self, x, y):
"""Return any blocking entity at the given position"""
for entity in self.entities:
if entity.blocks and entity.x == x and entity.y == y:
return entity
return None
def is_blocked(self, x, y):
"""Check if a tile blocks movement"""
if x < 0 or x >= self.width or y < 0 or y >= self.height:
return True
if not self.grid.at(x, y).walkable:
return True
if self.get_blocking_entity_at(x, y):
return True
return False
def add_entity(self, entity):
"""Add a GameObject to the map"""
self.entities.append(entity)
entity.attach_to_grid(self.grid)
class Engine:
"""Main game engine"""
def __init__(self):
self.game_map = None
self.player = None
self.entities = []
self.messages = [] # Simple message log
self.max_messages = 5
mcrfpy.createScene("game")
mcrfpy.setScene("game")
window = mcrfpy.Window.get()
window.title = "McRogueFace Roguelike - Part 6"
self.ui = mcrfpy.sceneUI("game")
background = mcrfpy.Frame(0, 0, 1024, 768)
background.fill_color = mcrfpy.Color(0, 0, 0)
self.ui.append(background)
self.tileset = mcrfpy.Texture("assets/sprites/ascii_tileset.png", 16, 16)
self.setup_game()
self.setup_input()
self.setup_ui()
def add_message(self, text, color=(255, 255, 255)):
"""Add a message to the log"""
self.messages.append((text, color))
if len(self.messages) > self.max_messages:
self.messages.pop(0)
self.update_message_display()
def update_message_display(self):
"""Update the message display"""
# Clear old messages
for caption in self.message_captions:
# Remove from UI (McRogueFace doesn't have remove, so we hide it)
caption.text = ""
# Display current messages
for i, (text, color) in enumerate(self.messages):
if i < len(self.message_captions):
self.message_captions[i].text = text
self.message_captions[i].fill_color = mcrfpy.Color(*color)
def setup_game(self):
"""Initialize the game world"""
self.game_map = GameMap(80, 45)
grid = self.game_map.create_grid(self.tileset)
self.ui.append(grid)
# Create player
self.player = create_player(0, 0)
# Generate the dungeon
self.game_map.generate_dungeon(
max_rooms=30,
room_min_size=6,
room_max_size=10,
player=self.player,
max_enemies_per_room=2
)
# Add player to map
self.game_map.add_entity(self.player)
# Store reference to all entities
self.entities = [e for e in self.game_map.entities if e != self.player]
# Initial FOV calculation
self.player.update_fov()
# Welcome message
self.add_message("Welcome to the dungeon!", (100, 100, 255))
def handle_player_turn(self, action):
"""Process the player's action"""
if not self.player.is_alive:
return
if isinstance(action, MovementAction):
dest_x = self.player.x + action.dx
dest_y = self.player.y + action.dy
# Check what's at the destination
target = self.game_map.get_blocking_entity_at(dest_x, dest_y)
if target:
# Attack!
attack = MeleeAction(self.player, target)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if target died
if not target.is_alive:
death_msg = f"The {target.name.replace('remains of ', '')} is dead!"
self.add_message(death_msg, COLOR_ENEMY_DIE)
elif not self.game_map.is_blocked(dest_x, dest_y):
# Move the player
self.player.move(action.dx, action.dy)
elif isinstance(action, WaitAction):
pass # Do nothing
# Enemy turns
self.handle_enemy_turns()
def handle_enemy_turns(self):
"""Let all enemies take their turn"""
for entity in self.entities:
if entity.is_alive:
# Simple AI: if player is adjacent, attack. Otherwise, do nothing.
dx = entity.x - self.player.x
dy = entity.y - self.player.y
distance = abs(dx) + abs(dy)
if distance == 1: # Adjacent to player
attack = MeleeAction(entity, self.player)
result = attack.perform()
if result:
text, color = result
self.add_message(text, color)
# Check if player died
if not self.player.is_alive:
self.add_message("You have died!", COLOR_PLAYER_DIE)
def setup_input(self):
"""Setup keyboard input handling"""
def handle_keys(key, state):
if state != "start":
return
action = None
# Movement keys
movement = {
"Up": (0, -1), "Down": (0, 1),
"Left": (-1, 0), "Right": (1, 0),
"Num7": (-1, -1), "Num8": (0, -1), "Num9": (1, -1),
"Num4": (-1, 0), "Num5": (0, 0), "Num6": (1, 0),
"Num1": (-1, 1), "Num2": (0, 1), "Num3": (1, 1),
}
if key in movement:
dx, dy = movement[key]
if dx == 0 and dy == 0:
action = WaitAction()
else:
action = MovementAction(dx, dy)
elif key == "Period":
action = WaitAction()
elif key == "Escape":
mcrfpy.setScene(None)
return
# Process the action
if action:
self.handle_player_turn(action)
mcrfpy.keypressScene(handle_keys)
def setup_ui(self):
"""Setup UI elements"""
title = mcrfpy.Caption("Combat System", 512, 30)
title.font_size = 24
title.fill_color = mcrfpy.Color(255, 255, 100)
self.ui.append(title)
instructions = mcrfpy.Caption("Attack enemies by bumping into them!", 512, 60)
instructions.font_size = 16
instructions.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(instructions)
# Player stats
self.hp_text = mcrfpy.Caption(f"HP: {self.player.hp}/{self.player.max_hp}", 50, 100)
self.hp_text.font_size = 18
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
self.ui.append(self.hp_text)
# Message log
self.message_captions = []
for i in range(self.max_messages):
caption = mcrfpy.Caption("", 50, 620 + i * 20)
caption.font_size = 14
caption.fill_color = mcrfpy.Color(200, 200, 200)
self.ui.append(caption)
self.message_captions.append(caption)
# Timer to update HP display
def update_stats(dt):
self.hp_text.text = f"HP: {self.player.hp}/{self.player.max_hp}"
if self.player.hp <= 0:
self.hp_text.fill_color = mcrfpy.Color(127, 0, 0)
elif self.player.hp < self.player.max_hp // 3:
self.hp_text.fill_color = mcrfpy.Color(255, 100, 100)
else:
self.hp_text.fill_color = mcrfpy.Color(0, 255, 0)
mcrfpy.setTimer("update_stats", update_stats, 100)
# Create and run the game
engine = Engine()
print("Part 6: Combat System!")
print("Attack enemies to defeat them, but watch your HP!")

View File

@ -0,0 +1,80 @@
"""
McRogueFace Tutorial - Part 0: Introduction to Scene, Texture, and Grid
This tutorial introduces the basic building blocks:
- Scene: A container for UI elements and game state
- Texture: Loading image assets for use in the game
- Grid: A tilemap component for rendering tile-based worlds
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = zoom
grid.center = (grid_width/2.0)*16, (grid_height/2.0)*16 # center on the middle of the central tile
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 0",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((280, 750),
text="Scene + Texture + Grid = Tilemap!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 0 loaded!")
print(f"Created a {grid.grid_size[0]}x{grid.grid_size[1]} grid")
print(f"Grid positioned at ({grid.x}, {grid.y})")

View File

@ -0,0 +1,116 @@
"""
McRogueFace Tutorial - Part 1: Entities and Keyboard Input
This tutorial builds on Part 0 by adding:
- Entity: A game object that can be placed in a grid
- Keyboard handling: Responding to key presses to move the entity
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = zoom
grid.center = (grid_width/2.0)*16, (grid_height/2.0)*16 # center on the middle of the central tile
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start": # Only respond to key press, not release
# Get current player position in grid coordinates
px, py = player.x, player.y
# Calculate new position based on key press
if key == "W" or key == "Up":
py -= 1
elif key == "S" or key == "Down":
py += 1
elif key == "A" or key == "Left":
px -= 1
elif key == "D" or key == "Right":
px += 1
# Update player position (no collision checking yet)
player.x = px
player.y = py
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 1",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((200, 750),
text="Use WASD or Arrow Keys to move the hero!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 1 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Use WASD or Arrow keys to move!")

View File

@ -0,0 +1,117 @@
"""
McRogueFace Tutorial - Part 1: Entities and Keyboard Input
This tutorial builds on Part 0 by adding:
- Entity: A game object that can be placed in a grid
- Keyboard handling: Responding to key presses to move the entity
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start": # Only respond to key press, not release
# Get current player position in grid coordinates
px, py = player.x, player.y
# Calculate new position based on key press
if key == "W" or key == "Up":
py -= 1
elif key == "S" or key == "Down":
py += 1
elif key == "A" or key == "Left":
px -= 1
elif key == "D" or key == "Right":
px += 1
# Update player position (no collision checking yet)
player.x = px
player.y = py
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 1",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((200, 750),
text="Use WASD or Arrow Keys to move the hero!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 1 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Use WASD or Arrow keys to move!")

View File

@ -0,0 +1,149 @@
"""
McRogueFace Tutorial - Part 2: Animated Movement
This tutorial builds on Part 1 by adding:
- Animation system for smooth movement
- Movement that takes 0.5 seconds per tile
- Input blocking during movement animation
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Movement state tracking
is_moving = False
move_animations = [] # Track active animations
# Animation completion callback
def movement_complete(runtime):
"""Called when movement animation completes"""
global is_moving
is_moving = False
# Ensure grid is centered on final position
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
motion_speed = 0.30 # seconds per tile
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
global is_moving, move_animations
if state == "start" and not is_moving: # Only respond to key press when not moving
# Get current player position in grid coordinates
px, py = player.x, player.y
new_x, new_y = px, py
# Calculate new position based on key press
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# If position changed, start movement animation
if new_x != px or new_y != py:
is_moving = True
# Create animations for player position
anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad")
anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
anim_x.start(player)
anim_y.start(player)
# Animate grid center to follow player
center_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
center_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
center_x.start(grid)
center_y.start(grid)
# Set a timer to mark movement as complete
mcrfpy.setTimer("move_complete", movement_complete, 500)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 2",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((150, 750),
text="Smooth movement! Each step takes 0.5 seconds.",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 2 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Movement is now animated over 0.5 seconds per tile!")
print("Use WASD or Arrow keys to move!")

View File

@ -0,0 +1,241 @@
"""
McRogueFace Tutorial - Part 2: Enhanced with Single Move Queue
This tutorial builds on Part 2 by adding:
- Single queued move system for responsive input
- Debug display showing position and queue status
- Smooth continuous movement when keys are held
- Animation callbacks to prevent race conditions
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Movement state tracking
is_moving = False
move_queue = [] # List to store queued moves (max 1 item)
#last_position = (4, 4) # Track last position
current_destination = None # Track where we're currently moving to
current_move = None # Track current move direction
# Store animation references
player_anim_x = None
player_anim_y = None
grid_anim_x = None
grid_anim_y = None
# Debug display caption
debug_caption = mcrfpy.Caption((10, 40),
text="Last: (4, 4) | Queue: 0 | Dest: None",
)
debug_caption.font_size = 16
debug_caption.fill_color = mcrfpy.Color(255, 255, 0, 255)
mcrfpy.sceneUI("tutorial").append(debug_caption)
# Additional debug caption for movement state
move_debug_caption = mcrfpy.Caption((10, 60),
text="Moving: False | Current: None | Queued: None",
)
move_debug_caption.font_size = 16
move_debug_caption.fill_color = mcrfpy.Color(255, 200, 0, 255)
mcrfpy.sceneUI("tutorial").append(move_debug_caption)
def key_to_direction(key):
"""Convert key to direction string"""
if key == "W" or key == "Up":
return "Up"
elif key == "S" or key == "Down":
return "Down"
elif key == "A" or key == "Left":
return "Left"
elif key == "D" or key == "Right":
return "Right"
return None
def update_debug_display():
"""Update the debug caption with current state"""
queue_count = len(move_queue)
dest_text = f"({current_destination[0]}, {current_destination[1]})" if current_destination else "None"
debug_caption.text = f"Last: ({player.x}, {player.y}) | Queue: {queue_count} | Dest: {dest_text}"
# Update movement state debug
current_dir = key_to_direction(current_move) if current_move else "None"
queued_dir = key_to_direction(move_queue[0]) if move_queue else "None"
move_debug_caption.text = f"Moving: {is_moving} | Current: {current_dir} | Queued: {queued_dir}"
# Animation completion callback
def movement_complete(anim, target):
"""Called when movement animation completes"""
global is_moving, move_queue, current_destination, current_move
global player_anim_x, player_anim_y
print(f"In callback for animation: {anim=} {target=}")
# Clear movement state
is_moving = False
current_move = None
current_destination = None
# Clear animation references
player_anim_x = None
player_anim_y = None
# Update last position to where we actually are now
#last_position = (int(player.x), int(player.y))
# Ensure grid is centered on final position
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
# Check if there's a queued move
if move_queue:
# Pop the next move from the queue
next_move = move_queue.pop(0)
print(f"Processing queued move: {next_move}")
# Process it like a fresh input
process_move(next_move)
update_debug_display()
motion_speed = 0.30 # seconds per tile
def process_move(key):
"""Process a move based on the key"""
global is_moving, current_move, current_destination, move_queue
global player_anim_x, player_anim_y, grid_anim_x, grid_anim_y
# If already moving, just update the queue
if is_moving:
print(f"process_move processing {key=} as a queued move (is_moving = True)")
# Clear queue and add new move (only keep 1 queued move)
move_queue.clear()
move_queue.append(key)
update_debug_display()
return
print(f"process_move processing {key=} as a new, immediate animation (is_moving = False)")
# Calculate new position from current position
px, py = int(player.x), int(player.y)
new_x, new_y = px, py
# Calculate new position based on key press (only one tile movement)
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# Start the move if position changed
if new_x != px or new_y != py:
is_moving = True
current_move = key
current_destination = (new_x, new_y)
# only animate a single axis, same callback from either
if new_x != px:
player_anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_x.start(player)
elif new_y != py:
player_anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad", callback=movement_complete)
player_anim_y.start(player)
# Animate grid center to follow player
grid_anim_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
grid_anim_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
grid_anim_x.start(grid)
grid_anim_y.start(grid)
update_debug_display()
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
if state == "start":
# Only process movement keys
if key in ["W", "Up", "S", "Down", "A", "Left", "D", "Right"]:
print(f"handle_keys producing actual input: {key=}")
process_move(key)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 2 Enhanced",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((150, 750),
text="One-move queue system with animation callbacks!",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 2 Enhanced loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Movement now uses animation callbacks to prevent race conditions!")
print("Use WASD or Arrow keys to move!")

View File

@ -0,0 +1,149 @@
"""
McRogueFace Tutorial - Part 2: Animated Movement
This tutorial builds on Part 1 by adding:
- Animation system for smooth movement
- Movement that takes 0.5 seconds per tile
- Input blocking during movement animation
"""
import mcrfpy
import random
# Create and activate a new scene
mcrfpy.createScene("tutorial")
mcrfpy.setScene("tutorial")
# Load the texture (4x3 tiles, 64x48 pixels total, 16x16 per tile)
texture = mcrfpy.Texture("assets/tutorial2.png", 16, 16)
# Load the hero sprite texture (32x32 sprite sheet)
hero_texture = mcrfpy.Texture("assets/custom_player.png", 16, 16)
# Create a grid of tiles
# Each tile is 16x16 pixels, so with 3x zoom: 16*3 = 48 pixels per tile
grid_width, grid_height = 25, 20 # width, height in number of tiles
# calculating the size in pixels to fit the entire grid on-screen
zoom = 2.0
grid_size = grid_width * zoom * 16, grid_height * zoom * 16
# calculating the position to center the grid on the screen - assuming default 1024x768 resolution
grid_position = (1024 - grid_size[0]) / 2, (768 - grid_size[1]) / 2
grid = mcrfpy.Grid(
pos=grid_position,
grid_size=(grid_width, grid_height),
texture=texture,
size=grid_size, # height and width on screen
)
grid.zoom = 3.0 # we're not using the zoom variable! It's going to be really big!
# Define tile types
FLOOR_TILES = [0, 1, 2, 4, 5, 6, 8, 9, 10]
WALL_TILES = [3, 7, 11]
# Fill the grid with a simple pattern
for y in range(grid_height):
for x in range(grid_width):
# Create walls around the edges
if x == 0 or x == grid_width-1 or y == 0 or y == grid_height-1:
tile_index = random.choice(WALL_TILES)
else:
# Fill interior with floor tiles
tile_index = random.choice(FLOOR_TILES)
# Set the tile at this position
point = grid.at(x, y)
if point:
point.tilesprite = tile_index
# Add the grid to the scene
mcrfpy.sceneUI("tutorial").append(grid)
# Create a player entity at position (4, 4)
player = mcrfpy.Entity(
(4, 4), # Entity positions are tile coordinates
texture=hero_texture,
sprite_index=0 # Use the first sprite in the texture
)
# Add the player entity to the grid
grid.entities.append(player)
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16 # grid center is in texture/pixel coordinates
# Movement state tracking
is_moving = False
move_animations = [] # Track active animations
# Animation completion callback
def movement_complete(runtime):
"""Called when movement animation completes"""
global is_moving
is_moving = False
# Ensure grid is centered on final position
grid.center = (player.x + 0.5) * 16, (player.y + 0.5) * 16
motion_speed = 0.30 # seconds per tile
# Define keyboard handler
def handle_keys(key, state):
"""Handle keyboard input to move the player"""
global is_moving, move_animations
if state == "start" and not is_moving: # Only respond to key press when not moving
# Get current player position in grid coordinates
px, py = player.x, player.y
new_x, new_y = px, py
# Calculate new position based on key press
if key == "W" or key == "Up":
new_y -= 1
elif key == "S" or key == "Down":
new_y += 1
elif key == "A" or key == "Left":
new_x -= 1
elif key == "D" or key == "Right":
new_x += 1
# If position changed, start movement animation
if new_x != px or new_y != py:
is_moving = True
# Create animations for player position
anim_x = mcrfpy.Animation("x", float(new_x), motion_speed, "easeInOutQuad")
anim_y = mcrfpy.Animation("y", float(new_y), motion_speed, "easeInOutQuad")
anim_x.start(player)
anim_y.start(player)
# Animate grid center to follow player
center_x = mcrfpy.Animation("center_x", (new_x + 0.5) * 16, motion_speed, "linear")
center_y = mcrfpy.Animation("center_y", (new_y + 0.5) * 16, motion_speed, "linear")
center_x.start(grid)
center_y.start(grid)
# Set a timer to mark movement as complete
mcrfpy.setTimer("move_complete", movement_complete, 500)
# Register the keyboard handler
mcrfpy.keypressScene(handle_keys)
# Add a title caption
title = mcrfpy.Caption((320, 10),
text="McRogueFace Tutorial - Part 2",
)
title.fill_color = mcrfpy.Color(255, 255, 255, 255)
mcrfpy.sceneUI("tutorial").append(title)
# Add instructions
instructions = mcrfpy.Caption((150, 750),
"Smooth movement! Each step takes 0.5 seconds.",
)
instructions.font_size=18
instructions.fill_color = mcrfpy.Color(200, 200, 200, 255)
mcrfpy.sceneUI("tutorial").append(instructions)
print("Tutorial Part 2 loaded!")
print(f"Player entity created at grid position (4, 4)")
print("Movement is now animated over 0.5 seconds per tile!")
print("Use WASD or Arrow keys to move!")

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

View File

@ -11,10 +11,10 @@ public:
const static int WHEEL_NUM = 4;
const static int WHEEL_NEG = 2;
const static int WHEEL_DEL = 1;
static int keycode(sf::Keyboard::Key& k) { return KEY + (int)k; }
static int keycode(sf::Mouse::Button& b) { return MOUSEBUTTON + (int)b; }
static int keycode(const sf::Keyboard::Key& k) { return KEY + (int)k; }
static int keycode(const sf::Mouse::Button& b) { return MOUSEBUTTON + (int)b; }
//static int keycode(sf::Mouse::Wheel& w, float d) { return MOUSEWHEEL + (((int)w)<<12) + int(d*16) + 512; }
static int keycode(sf::Mouse::Wheel& w, float d) {
static int keycode(const sf::Mouse::Wheel& w, float d) {
int neg = 0;
if (d < 0) { neg = 1; }
return MOUSEWHEEL + (w * WHEEL_NUM) + (neg * WHEEL_NEG) + 1;
@ -32,7 +32,7 @@ public:
return (a & WHEEL_DEL) * factor;
}
static std::string key_str(sf::Keyboard::Key& keycode)
static std::string key_str(const sf::Keyboard::Key& keycode)
{
switch(keycode)
{

675
src/Animation.cpp Normal file
View File

@ -0,0 +1,675 @@
#include "Animation.h"
#include "UIDrawable.h"
#include "UIEntity.h"
#include "PyAnimation.h"
#include "McRFPy_API.h"
#include "PythonObjectCache.h"
#include <cmath>
#include <algorithm>
#include <unordered_map>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// Forward declaration of PyAnimation type
namespace mcrfpydef {
extern PyTypeObject PyAnimationType;
}
// Animation implementation
Animation::Animation(const std::string& targetProperty,
const AnimationValue& targetValue,
float duration,
EasingFunction easingFunc,
bool delta,
PyObject* callback)
: targetProperty(targetProperty)
, targetValue(targetValue)
, duration(duration)
, easingFunc(easingFunc)
, delta(delta)
, pythonCallback(callback)
{
// Increase reference count for Python callback
if (pythonCallback) {
Py_INCREF(pythonCallback);
}
}
Animation::~Animation() {
// Decrease reference count for Python callback if we still own it
PyObject* callback = pythonCallback;
if (callback) {
pythonCallback = nullptr;
PyGILState_STATE gstate = PyGILState_Ensure();
Py_DECREF(callback);
PyGILState_Release(gstate);
}
// Clean up cache entry
if (serial_number != 0) {
PythonObjectCache::getInstance().remove(serial_number);
}
}
void Animation::start(std::shared_ptr<UIDrawable> target) {
if (!target) return;
targetWeak = target;
elapsed = 0.0f;
callbackTriggered = false; // Reset callback state
// Capture start value from target
std::visit([this, &target](const auto& targetVal) {
using T = std::decay_t<decltype(targetVal)>;
if constexpr (std::is_same_v<T, float>) {
float value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, int>) {
int value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// For sprite animation, get current sprite index
int value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, sf::Color>) {
sf::Color value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
sf::Vector2f value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, std::string>) {
std::string value;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
}, targetValue);
}
void Animation::startEntity(std::shared_ptr<UIEntity> target) {
if (!target) return;
entityTargetWeak = target;
elapsed = 0.0f;
callbackTriggered = false; // Reset callback state
// Capture the starting value from the entity
std::visit([this, target](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
float value = 0.0f;
if (target->getProperty(targetProperty, value)) {
startValue = value;
}
}
else if constexpr (std::is_same_v<T, int>) {
// For entities, we might need to handle sprite_index differently
if (targetProperty == "sprite_index" || targetProperty == "sprite_number") {
startValue = target->sprite.getSpriteIndex();
}
}
// Entities don't support other types yet
}, targetValue);
}
bool Animation::hasValidTarget() const {
return !targetWeak.expired() || !entityTargetWeak.expired();
}
void Animation::clearCallback() {
// Safely clear the callback when PyAnimation is being destroyed
PyObject* callback = pythonCallback;
if (callback) {
pythonCallback = nullptr;
callbackTriggered = true; // Prevent future triggering
PyGILState_STATE gstate = PyGILState_Ensure();
Py_DECREF(callback);
PyGILState_Release(gstate);
}
}
void Animation::complete() {
// Jump to end of animation
elapsed = duration;
// Apply final value
if (auto target = targetWeak.lock()) {
AnimationValue finalValue = interpolate(1.0f);
applyValue(target.get(), finalValue);
}
else if (auto entity = entityTargetWeak.lock()) {
AnimationValue finalValue = interpolate(1.0f);
applyValue(entity.get(), finalValue);
}
}
bool Animation::update(float deltaTime) {
// Try to lock weak_ptr to get shared_ptr
std::shared_ptr<UIDrawable> target = targetWeak.lock();
std::shared_ptr<UIEntity> entity = entityTargetWeak.lock();
// If both are null, target was destroyed
if (!target && !entity) {
return false; // Remove this animation
}
if (isComplete()) {
return false;
}
elapsed += deltaTime;
elapsed = std::min(elapsed, duration);
// Calculate easing value (0.0 to 1.0)
float t = duration > 0 ? elapsed / duration : 1.0f;
float easedT = easingFunc(t);
// Get interpolated value
AnimationValue currentValue = interpolate(easedT);
// Apply to whichever target is valid
if (target) {
applyValue(target.get(), currentValue);
} else if (entity) {
applyValue(entity.get(), currentValue);
}
// Trigger callback when animation completes
// Check pythonCallback again in case it was cleared during update
if (isComplete() && !callbackTriggered && pythonCallback) {
triggerCallback();
}
return !isComplete();
}
AnimationValue Animation::getCurrentValue() const {
float t = duration > 0 ? elapsed / duration : 1.0f;
float easedT = easingFunc(t);
return interpolate(easedT);
}
AnimationValue Animation::interpolate(float t) const {
// Visit the variant to perform type-specific interpolation
return std::visit([this, t](const auto& target) -> AnimationValue {
using T = std::decay_t<decltype(target)>;
if constexpr (std::is_same_v<T, float>) {
// Interpolate float
const float* start = std::get_if<float>(&startValue);
if (!start) return target; // Type mismatch
if (delta) {
return *start + target * t;
} else {
return *start + (target - *start) * t;
}
}
else if constexpr (std::is_same_v<T, int>) {
// Interpolate integer
const int* start = std::get_if<int>(&startValue);
if (!start) return target;
float result;
if (delta) {
result = *start + target * t;
} else {
result = *start + (target - *start) * t;
}
return static_cast<int>(std::round(result));
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// For sprite animation, interpolate through the list
if (target.empty()) return target;
// Map t to an index in the vector
size_t index = static_cast<size_t>(t * (target.size() - 1));
index = std::min(index, target.size() - 1);
return static_cast<int>(target[index]);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
// Interpolate color
const sf::Color* start = std::get_if<sf::Color>(&startValue);
if (!start) return target;
sf::Color result;
if (delta) {
result.r = std::clamp(start->r + target.r * t, 0.0f, 255.0f);
result.g = std::clamp(start->g + target.g * t, 0.0f, 255.0f);
result.b = std::clamp(start->b + target.b * t, 0.0f, 255.0f);
result.a = std::clamp(start->a + target.a * t, 0.0f, 255.0f);
} else {
result.r = start->r + (target.r - start->r) * t;
result.g = start->g + (target.g - start->g) * t;
result.b = start->b + (target.b - start->b) * t;
result.a = start->a + (target.a - start->a) * t;
}
return result;
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
// Interpolate vector
const sf::Vector2f* start = std::get_if<sf::Vector2f>(&startValue);
if (!start) return target;
if (delta) {
return sf::Vector2f(start->x + target.x * t,
start->y + target.y * t);
} else {
return sf::Vector2f(start->x + (target.x - start->x) * t,
start->y + (target.y - start->y) * t);
}
}
else if constexpr (std::is_same_v<T, std::string>) {
// For text, show characters based on t
const std::string* start = std::get_if<std::string>(&startValue);
if (!start) return target;
// If delta mode, append characters from target
if (delta) {
size_t chars = static_cast<size_t>(target.length() * t);
return *start + target.substr(0, chars);
} else {
// Transition from start text to target text
if (t < 0.5f) {
// First half: remove characters from start
size_t chars = static_cast<size_t>(start->length() * (1.0f - t * 2.0f));
return start->substr(0, chars);
} else {
// Second half: add characters to target
size_t chars = static_cast<size_t>(target.length() * ((t - 0.5f) * 2.0f));
return target.substr(0, chars);
}
}
}
return target; // Fallback
}, targetValue);
}
void Animation::applyValue(UIDrawable* target, const AnimationValue& value) {
if (!target) return;
std::visit([this, target](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, int>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
target->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, std::string>) {
target->setProperty(targetProperty, val);
}
}, value);
}
void Animation::applyValue(UIEntity* entity, const AnimationValue& value) {
if (!entity) return;
std::visit([this, entity](const auto& val) {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
entity->setProperty(targetProperty, val);
}
else if constexpr (std::is_same_v<T, int>) {
entity->setProperty(targetProperty, val);
}
// Entities don't support other types yet
}, value);
}
void Animation::triggerCallback() {
if (!pythonCallback) return;
// Ensure we only trigger once
if (callbackTriggered) return;
callbackTriggered = true;
PyGILState_STATE gstate = PyGILState_Ensure();
// TODO: In future, create PyAnimation wrapper for this animation
// For now, pass None for both parameters
PyObject* args = PyTuple_New(2);
Py_INCREF(Py_None);
Py_INCREF(Py_None);
PyTuple_SetItem(args, 0, Py_None); // animation parameter
PyTuple_SetItem(args, 1, Py_None); // target parameter
PyObject* result = PyObject_CallObject(pythonCallback, args);
Py_DECREF(args);
if (!result) {
// Print error but don't crash
PyErr_Print();
PyErr_Clear(); // Clear the error state
} else {
Py_DECREF(result);
}
PyGILState_Release(gstate);
}
// Easing functions implementation
namespace EasingFunctions {
float linear(float t) {
return t;
}
float easeIn(float t) {
return t * t;
}
float easeOut(float t) {
return t * (2.0f - t);
}
float easeInOut(float t) {
return t < 0.5f ? 2.0f * t * t : -1.0f + (4.0f - 2.0f * t) * t;
}
// Quadratic
float easeInQuad(float t) {
return t * t;
}
float easeOutQuad(float t) {
return t * (2.0f - t);
}
float easeInOutQuad(float t) {
return t < 0.5f ? 2.0f * t * t : -1.0f + (4.0f - 2.0f * t) * t;
}
// Cubic
float easeInCubic(float t) {
return t * t * t;
}
float easeOutCubic(float t) {
float t1 = t - 1.0f;
return t1 * t1 * t1 + 1.0f;
}
float easeInOutCubic(float t) {
return t < 0.5f ? 4.0f * t * t * t : (t - 1.0f) * (2.0f * t - 2.0f) * (2.0f * t - 2.0f) + 1.0f;
}
// Quartic
float easeInQuart(float t) {
return t * t * t * t;
}
float easeOutQuart(float t) {
float t1 = t - 1.0f;
return 1.0f - t1 * t1 * t1 * t1;
}
float easeInOutQuart(float t) {
return t < 0.5f ? 8.0f * t * t * t * t : 1.0f - 8.0f * (t - 1.0f) * (t - 1.0f) * (t - 1.0f) * (t - 1.0f);
}
// Sine
float easeInSine(float t) {
return 1.0f - std::cos(t * M_PI / 2.0f);
}
float easeOutSine(float t) {
return std::sin(t * M_PI / 2.0f);
}
float easeInOutSine(float t) {
return 0.5f * (1.0f - std::cos(M_PI * t));
}
// Exponential
float easeInExpo(float t) {
return t == 0.0f ? 0.0f : std::pow(2.0f, 10.0f * (t - 1.0f));
}
float easeOutExpo(float t) {
return t == 1.0f ? 1.0f : 1.0f - std::pow(2.0f, -10.0f * t);
}
float easeInOutExpo(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
if (t < 0.5f) {
return 0.5f * std::pow(2.0f, 20.0f * t - 10.0f);
} else {
return 1.0f - 0.5f * std::pow(2.0f, -20.0f * t + 10.0f);
}
}
// Circular
float easeInCirc(float t) {
return 1.0f - std::sqrt(1.0f - t * t);
}
float easeOutCirc(float t) {
float t1 = t - 1.0f;
return std::sqrt(1.0f - t1 * t1);
}
float easeInOutCirc(float t) {
if (t < 0.5f) {
return 0.5f * (1.0f - std::sqrt(1.0f - 4.0f * t * t));
} else {
return 0.5f * (std::sqrt(1.0f - (2.0f * t - 2.0f) * (2.0f * t - 2.0f)) + 1.0f);
}
}
// Elastic
float easeInElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.3f;
float a = 1.0f;
float s = p / 4.0f;
float t1 = t - 1.0f;
return -(a * std::pow(2.0f, 10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p));
}
float easeOutElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.3f;
float a = 1.0f;
float s = p / 4.0f;
return a * std::pow(2.0f, -10.0f * t) * std::sin((t - s) * (2.0f * M_PI) / p) + 1.0f;
}
float easeInOutElastic(float t) {
if (t == 0.0f) return 0.0f;
if (t == 1.0f) return 1.0f;
float p = 0.45f;
float a = 1.0f;
float s = p / 4.0f;
if (t < 0.5f) {
float t1 = 2.0f * t - 1.0f;
return -0.5f * (a * std::pow(2.0f, 10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p));
} else {
float t1 = 2.0f * t - 1.0f;
return a * std::pow(2.0f, -10.0f * t1) * std::sin((t1 - s) * (2.0f * M_PI) / p) * 0.5f + 1.0f;
}
}
// Back (overshooting)
float easeInBack(float t) {
const float s = 1.70158f;
return t * t * ((s + 1.0f) * t - s);
}
float easeOutBack(float t) {
const float s = 1.70158f;
float t1 = t - 1.0f;
return t1 * t1 * ((s + 1.0f) * t1 + s) + 1.0f;
}
float easeInOutBack(float t) {
const float s = 1.70158f * 1.525f;
if (t < 0.5f) {
return 0.5f * (4.0f * t * t * ((s + 1.0f) * 2.0f * t - s));
} else {
float t1 = 2.0f * t - 2.0f;
return 0.5f * (t1 * t1 * ((s + 1.0f) * t1 + s) + 2.0f);
}
}
// Bounce
float easeOutBounce(float t) {
if (t < 1.0f / 2.75f) {
return 7.5625f * t * t;
} else if (t < 2.0f / 2.75f) {
float t1 = t - 1.5f / 2.75f;
return 7.5625f * t1 * t1 + 0.75f;
} else if (t < 2.5f / 2.75f) {
float t1 = t - 2.25f / 2.75f;
return 7.5625f * t1 * t1 + 0.9375f;
} else {
float t1 = t - 2.625f / 2.75f;
return 7.5625f * t1 * t1 + 0.984375f;
}
}
float easeInBounce(float t) {
return 1.0f - easeOutBounce(1.0f - t);
}
float easeInOutBounce(float t) {
if (t < 0.5f) {
return 0.5f * easeInBounce(2.0f * t);
} else {
return 0.5f * easeOutBounce(2.0f * t - 1.0f) + 0.5f;
}
}
// Get easing function by name
EasingFunction getByName(const std::string& name) {
static std::unordered_map<std::string, EasingFunction> easingMap = {
{"linear", linear},
{"easeIn", easeIn},
{"easeOut", easeOut},
{"easeInOut", easeInOut},
{"easeInQuad", easeInQuad},
{"easeOutQuad", easeOutQuad},
{"easeInOutQuad", easeInOutQuad},
{"easeInCubic", easeInCubic},
{"easeOutCubic", easeOutCubic},
{"easeInOutCubic", easeInOutCubic},
{"easeInQuart", easeInQuart},
{"easeOutQuart", easeOutQuart},
{"easeInOutQuart", easeInOutQuart},
{"easeInSine", easeInSine},
{"easeOutSine", easeOutSine},
{"easeInOutSine", easeInOutSine},
{"easeInExpo", easeInExpo},
{"easeOutExpo", easeOutExpo},
{"easeInOutExpo", easeInOutExpo},
{"easeInCirc", easeInCirc},
{"easeOutCirc", easeOutCirc},
{"easeInOutCirc", easeInOutCirc},
{"easeInElastic", easeInElastic},
{"easeOutElastic", easeOutElastic},
{"easeInOutElastic", easeInOutElastic},
{"easeInBack", easeInBack},
{"easeOutBack", easeOutBack},
{"easeInOutBack", easeInOutBack},
{"easeInBounce", easeInBounce},
{"easeOutBounce", easeOutBounce},
{"easeInOutBounce", easeInOutBounce}
};
auto it = easingMap.find(name);
if (it != easingMap.end()) {
return it->second;
}
return linear; // Default to linear
}
} // namespace EasingFunctions
// AnimationManager implementation
AnimationManager& AnimationManager::getInstance() {
static AnimationManager instance;
return instance;
}
void AnimationManager::addAnimation(std::shared_ptr<Animation> animation) {
if (animation && animation->hasValidTarget()) {
if (isUpdating) {
// Defer adding during update to avoid iterator invalidation
pendingAnimations.push_back(animation);
} else {
activeAnimations.push_back(animation);
}
}
}
void AnimationManager::update(float deltaTime) {
// Set flag to defer new animations
isUpdating = true;
// Remove completed or invalid animations
activeAnimations.erase(
std::remove_if(activeAnimations.begin(), activeAnimations.end(),
[deltaTime](std::shared_ptr<Animation>& anim) {
return !anim || !anim->update(deltaTime);
}),
activeAnimations.end()
);
// Clear update flag
isUpdating = false;
// Add any animations that were created during update
if (!pendingAnimations.empty()) {
activeAnimations.insert(activeAnimations.end(),
pendingAnimations.begin(),
pendingAnimations.end());
pendingAnimations.clear();
}
}
void AnimationManager::clear(bool completeAnimations) {
if (completeAnimations) {
// Complete all animations before clearing
for (auto& anim : activeAnimations) {
if (anim) {
anim->complete();
}
}
}
activeAnimations.clear();
}

175
src/Animation.h Normal file
View File

@ -0,0 +1,175 @@
#pragma once
#include <string>
#include <functional>
#include <memory>
#include <variant>
#include <vector>
#include <SFML/Graphics.hpp>
#include "Python.h"
// Forward declarations
class UIDrawable;
class UIEntity;
// Forward declare namespace
namespace EasingFunctions {
float linear(float t);
}
// Easing function type
typedef std::function<float(float)> EasingFunction;
// Animation target value can be various types
typedef std::variant<
float, // Single float value
int, // Single integer value
std::vector<int>, // List of integers (for sprite animation)
sf::Color, // Color animation
sf::Vector2f, // Vector animation
std::string // String animation (for text)
> AnimationValue;
class Animation {
public:
// Constructor
Animation(const std::string& targetProperty,
const AnimationValue& targetValue,
float duration,
EasingFunction easingFunc = EasingFunctions::linear,
bool delta = false,
PyObject* callback = nullptr);
// Destructor - cleanup Python callback reference
~Animation();
// Apply this animation to a drawable
void start(std::shared_ptr<UIDrawable> target);
// Apply this animation to an entity (special case since Entity doesn't inherit from UIDrawable)
void startEntity(std::shared_ptr<UIEntity> target);
// Complete the animation immediately (jump to final value)
void complete();
// Update animation (called each frame)
// Returns true if animation is still running, false if complete
bool update(float deltaTime);
// Get current interpolated value
AnimationValue getCurrentValue() const;
// Check if animation has valid target
bool hasValidTarget() const;
// Clear the callback (called when PyAnimation is deallocated)
void clearCallback();
// Animation properties
std::string getTargetProperty() const { return targetProperty; }
float getDuration() const { return duration; }
float getElapsed() const { return elapsed; }
bool isComplete() const { return elapsed >= duration; }
bool isDelta() const { return delta; }
private:
std::string targetProperty; // Property name to animate (e.g., "x", "color.r", "sprite_number")
AnimationValue startValue; // Starting value (captured when animation starts)
AnimationValue targetValue; // Target value to animate to
float duration; // Animation duration in seconds
float elapsed = 0.0f; // Elapsed time
EasingFunction easingFunc; // Easing function to use
bool delta; // If true, targetValue is relative to start
// RAII: Use weak_ptr for safe target tracking
std::weak_ptr<UIDrawable> targetWeak;
std::weak_ptr<UIEntity> entityTargetWeak;
// Callback support
PyObject* pythonCallback = nullptr; // Python callback function (we own a reference)
bool callbackTriggered = false; // Ensure callback only fires once
PyObject* pyAnimationWrapper = nullptr; // Weak reference to PyAnimation if created from Python
// Python object cache support
uint64_t serial_number = 0;
// Helper to interpolate between values
AnimationValue interpolate(float t) const;
// Helper to apply value to target
void applyValue(UIDrawable* target, const AnimationValue& value);
void applyValue(UIEntity* entity, const AnimationValue& value);
// Trigger callback when animation completes
void triggerCallback();
};
// Easing functions library
namespace EasingFunctions {
// Basic easing functions
float linear(float t);
float easeIn(float t);
float easeOut(float t);
float easeInOut(float t);
// Advanced easing functions
float easeInQuad(float t);
float easeOutQuad(float t);
float easeInOutQuad(float t);
float easeInCubic(float t);
float easeOutCubic(float t);
float easeInOutCubic(float t);
float easeInQuart(float t);
float easeOutQuart(float t);
float easeInOutQuart(float t);
float easeInSine(float t);
float easeOutSine(float t);
float easeInOutSine(float t);
float easeInExpo(float t);
float easeOutExpo(float t);
float easeInOutExpo(float t);
float easeInCirc(float t);
float easeOutCirc(float t);
float easeInOutCirc(float t);
float easeInElastic(float t);
float easeOutElastic(float t);
float easeInOutElastic(float t);
float easeInBack(float t);
float easeOutBack(float t);
float easeInOutBack(float t);
float easeInBounce(float t);
float easeOutBounce(float t);
float easeInOutBounce(float t);
// Get easing function by name
EasingFunction getByName(const std::string& name);
}
// Animation manager to handle active animations
class AnimationManager {
public:
static AnimationManager& getInstance();
// Add an animation to be managed
void addAnimation(std::shared_ptr<Animation> animation);
// Update all animations
void update(float deltaTime);
// Clear all animations (optionally completing them first)
void clear(bool completeAnimations = false);
private:
AnimationManager() = default;
std::vector<std::shared_ptr<Animation>> activeAnimations;
std::vector<std::shared_ptr<Animation>> pendingAnimations; // Animations to add after update
bool isUpdating = false; // Flag to track if we're in update loop
};

172
src/CommandLineParser.cpp Normal file
View File

@ -0,0 +1,172 @@
#include "CommandLineParser.h"
#include <iostream>
#include <filesystem>
#include <algorithm>
CommandLineParser::CommandLineParser(int argc, char* argv[])
: argc(argc), argv(argv) {}
CommandLineParser::ParseResult CommandLineParser::parse(McRogueFaceConfig& config) {
ParseResult result;
current_arg = 1; // Reset for each parse
// Detect if running as Python interpreter
std::filesystem::path exec_name = std::filesystem::path(argv[0]).filename();
if (exec_name.string().find("python") == 0) {
config.headless = true;
config.python_mode = true;
}
while (current_arg < argc) {
std::string arg = argv[current_arg];
// Handle Python-style single-letter flags
if (arg == "-h" || arg == "--help") {
print_help();
result.should_exit = true;
result.exit_code = 0;
return result;
}
if (arg == "-V" || arg == "--version") {
print_version();
result.should_exit = true;
result.exit_code = 0;
return result;
}
// Python execution modes
if (arg == "-c") {
config.python_mode = true;
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the -c option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.python_command = argv[current_arg];
current_arg++;
continue;
}
if (arg == "-m") {
config.python_mode = true;
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the -m option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.python_module = argv[current_arg];
current_arg++;
// Collect remaining args as module args
while (current_arg < argc) {
config.script_args.push_back(argv[current_arg]);
current_arg++;
}
continue;
}
if (arg == "-i") {
config.interactive_mode = true;
config.python_mode = true;
current_arg++;
continue;
}
// McRogueFace specific flags
if (arg == "--headless") {
config.headless = true;
config.audio_enabled = false;
current_arg++;
continue;
}
if (arg == "--audio-off") {
config.audio_enabled = false;
current_arg++;
continue;
}
if (arg == "--audio-on") {
config.audio_enabled = true;
current_arg++;
continue;
}
if (arg == "--screenshot") {
config.take_screenshot = true;
current_arg++;
if (current_arg < argc && argv[current_arg][0] != '-') {
config.screenshot_path = argv[current_arg];
current_arg++;
} else {
config.screenshot_path = "screenshot.png";
}
continue;
}
if (arg == "--exec") {
current_arg++;
if (current_arg >= argc) {
std::cerr << "Argument expected for the --exec option" << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
config.exec_scripts.push_back(argv[current_arg]);
config.python_mode = true;
current_arg++;
continue;
}
// If no flags matched, treat as positional argument (script name)
if (arg[0] != '-') {
config.script_path = arg;
config.python_mode = true;
current_arg++;
// Remaining args are script args
while (current_arg < argc) {
config.script_args.push_back(argv[current_arg]);
current_arg++;
}
break;
}
// Unknown flag
std::cerr << "Unknown option: " << arg << std::endl;
result.should_exit = true;
result.exit_code = 1;
return result;
}
return result;
}
void CommandLineParser::print_help() {
std::cout << "usage: mcrogueface [option] ... [-c cmd | -m mod | file | -] [arg] ...\n"
<< "Options:\n"
<< " -c cmd : program passed in as string (terminates option list)\n"
<< " -h : print this help message and exit (also --help)\n"
<< " -i : inspect interactively after running script\n"
<< " -m mod : run library module as a script (terminates option list)\n"
<< " -V : print the Python version number and exit (also --version)\n"
<< "\n"
<< "McRogueFace specific options:\n"
<< " --exec file : execute script before main program (can be used multiple times)\n"
<< " --headless : run without creating a window (implies --audio-off)\n"
<< " --audio-off : disable audio\n"
<< " --audio-on : enable audio (even in headless mode)\n"
<< " --screenshot [path] : take a screenshot in headless mode\n"
<< "\n"
<< "Arguments:\n"
<< " file : program read from script file\n"
<< " - : program read from stdin\n"
<< " arg ...: arguments passed to program in sys.argv[1:]\n";
}
void CommandLineParser::print_version() {
std::cout << "Python 3.12.0 (McRogueFace embedded)\n";
}

30
src/CommandLineParser.h Normal file
View File

@ -0,0 +1,30 @@
#ifndef COMMAND_LINE_PARSER_H
#define COMMAND_LINE_PARSER_H
#include <string>
#include <vector>
#include "McRogueFaceConfig.h"
class CommandLineParser {
public:
struct ParseResult {
bool should_exit = false;
int exit_code = 0;
};
CommandLineParser(int argc, char* argv[]);
ParseResult parse(McRogueFaceConfig& config);
private:
int argc;
char** argv;
int current_arg = 1; // Skip program name
bool has_flag(const std::string& short_flag, const std::string& long_flag = "");
std::string get_next_arg(const std::string& flag_name);
void parse_positional_args(McRogueFaceConfig& config);
void print_help();
void print_version();
};
#endif // COMMAND_LINE_PARSER_H

View File

@ -4,67 +4,285 @@
#include "PyScene.h"
#include "UITestScene.h"
#include "Resources.h"
#include "Animation.h"
#include "Timer.h"
#include <cmath>
GameEngine::GameEngine()
GameEngine::GameEngine() : GameEngine(McRogueFaceConfig{})
{
}
GameEngine::GameEngine(const McRogueFaceConfig& cfg)
: config(cfg), headless(cfg.headless)
{
Resources::font.loadFromFile("./assets/JetbrainsMono.ttf");
Resources::game = this;
window_title = "McRogueFace - 7DRL 2024 Engine Demo";
window.create(sf::VideoMode(1024, 768), window_title, sf::Style::Titlebar | sf::Style::Close);
visible = window.getDefaultView();
window.setFramerateLimit(30);
window_title = "McRogueFace Engine";
// Initialize rendering based on headless mode
if (headless) {
headless_renderer = std::make_unique<HeadlessRenderer>();
if (!headless_renderer->init(1024, 768)) {
throw std::runtime_error("Failed to initialize headless renderer");
}
render_target = &headless_renderer->getRenderTarget();
} else {
window = std::make_unique<sf::RenderWindow>();
window->create(sf::VideoMode(1024, 768), window_title, sf::Style::Titlebar | sf::Style::Close | sf::Style::Resize);
window->setFramerateLimit(60);
render_target = window.get();
}
visible = render_target->getDefaultView();
// Initialize the game view
gameView.setSize(static_cast<float>(gameResolution.x), static_cast<float>(gameResolution.y));
// Use integer center coordinates for pixel-perfect rendering
gameView.setCenter(std::floor(gameResolution.x / 2.0f), std::floor(gameResolution.y / 2.0f));
updateViewport();
scene = "uitest";
scenes["uitest"] = new UITestScene(this);
McRFPy_API::game = this;
McRFPy_API::api_init();
McRFPy_API::executePyString("import mcrfpy");
McRFPy_API::executeScript("scripts/game.py");
// Only load game.py if no custom script/command/module/exec is specified
bool should_load_game = config.script_path.empty() &&
config.python_command.empty() &&
config.python_module.empty() &&
config.exec_scripts.empty() &&
!config.interactive_mode &&
!config.python_mode;
if (should_load_game) {
if (!Py_IsInitialized()) {
McRFPy_API::api_init();
}
McRFPy_API::executePyString("import mcrfpy");
McRFPy_API::executeScript("scripts/game.py");
}
// Execute any --exec scripts in order
if (!config.exec_scripts.empty()) {
if (!Py_IsInitialized()) {
McRFPy_API::api_init();
}
McRFPy_API::executePyString("import mcrfpy");
for (const auto& exec_script : config.exec_scripts) {
std::cout << "Executing script: " << exec_script << std::endl;
McRFPy_API::executeScript(exec_script.string());
}
std::cout << "All --exec scripts completed" << std::endl;
}
clock.restart();
runtime.restart();
}
GameEngine::~GameEngine()
{
cleanup();
for (auto& [name, scene] : scenes) {
delete scene;
}
}
void GameEngine::cleanup()
{
if (cleaned_up) return;
cleaned_up = true;
// Clear all animations first (RAII handles invalidation)
AnimationManager::getInstance().clear();
// Clear Python references before destroying C++ objects
// Clear all timers (they hold Python callables)
timers.clear();
// Clear McRFPy_API's reference to this game engine
if (McRFPy_API::game == this) {
McRFPy_API::game = nullptr;
}
// Force close the window if it's still open
if (window && window->isOpen()) {
window->close();
}
}
Scene* GameEngine::currentScene() { return scenes[scene]; }
void GameEngine::changeScene(std::string s)
{
/*std::cout << "Current scene is now '" << s << "'\n";*/
if (scenes.find(s) != scenes.end())
scene = s;
changeScene(s, TransitionType::None, 0.0f);
}
void GameEngine::changeScene(std::string sceneName, TransitionType transitionType, float duration)
{
if (scenes.find(sceneName) == scenes.end())
{
std::cout << "Attempted to change to a scene that doesn't exist (`" << sceneName << "`)" << std::endl;
return;
}
if (transitionType == TransitionType::None || duration <= 0.0f)
{
// Immediate scene change
std::string old_scene = scene;
scene = sceneName;
// Trigger Python scene lifecycle events
McRFPy_API::triggerSceneChange(old_scene, sceneName);
}
else
std::cout << "Attempted to change to a scene that doesn't exist (`" << s << "`)" << std::endl;
{
// Start transition
transition.start(transitionType, scene, sceneName, duration);
// Render current scene to texture
sf::RenderTarget* original_target = render_target;
render_target = transition.oldSceneTexture.get();
transition.oldSceneTexture->clear();
currentScene()->render();
transition.oldSceneTexture->display();
// Change to new scene
std::string old_scene = scene;
scene = sceneName;
// Render new scene to texture
render_target = transition.newSceneTexture.get();
transition.newSceneTexture->clear();
currentScene()->render();
transition.newSceneTexture->display();
// Restore original render target and scene
render_target = original_target;
scene = old_scene;
}
}
void GameEngine::quit() { running = false; }
void GameEngine::setPause(bool p) { paused = p; }
sf::Font & GameEngine::getFont() { /*return font; */ return Resources::font; }
sf::RenderWindow & GameEngine::getWindow() { return window; }
sf::RenderWindow & GameEngine::getWindow() {
if (!window) {
throw std::runtime_error("Window not available in headless mode");
}
return *window;
}
sf::RenderTarget & GameEngine::getRenderTarget() {
return *render_target;
}
void GameEngine::createScene(std::string s) { scenes[s] = new PyScene(this); }
void GameEngine::setWindowScale(float multiplier)
{
window.setSize(sf::Vector2u(1024 * multiplier, 768 * multiplier)); // 7DRL 2024: window scaling
//window.create(sf::VideoMode(1024 * multiplier, 768 * multiplier), window_title, sf::Style::Titlebar | sf::Style::Close);
if (!headless && window) {
window->setSize(sf::Vector2u(gameResolution.x * multiplier, gameResolution.y * multiplier));
updateViewport();
}
}
void GameEngine::run()
{
//std::cout << "GameEngine::run() starting main loop..." << std::endl;
float fps = 0.0;
frameTime = 0.016f; // Initialize to ~60 FPS
clock.restart();
while (running)
{
// Reset per-frame metrics
metrics.resetPerFrame();
currentScene()->update();
testTimers();
sUserInput();
// Update Python scenes
McRFPy_API::updatePythonScenes(frameTime);
// Update animations (only if frameTime is valid)
if (frameTime > 0.0f && frameTime < 1.0f) {
AnimationManager::getInstance().update(frameTime);
}
if (!headless) {
sUserInput();
}
if (!paused)
{
}
currentScene()->sRender();
// Handle scene transitions
if (transition.type != TransitionType::None)
{
transition.update(frameTime);
if (transition.isComplete())
{
// Transition complete - finalize scene change
scene = transition.toScene;
transition.type = TransitionType::None;
// Trigger Python scene lifecycle events
McRFPy_API::triggerSceneChange(transition.fromScene, transition.toScene);
}
else
{
// Render transition
render_target->clear();
transition.render(*render_target);
}
}
else
{
// Normal scene rendering
currentScene()->render();
}
// Display the frame
if (headless) {
headless_renderer->display();
// Take screenshot if requested
if (config.take_screenshot) {
headless_renderer->saveScreenshot(config.screenshot_path.empty() ? "screenshot.png" : config.screenshot_path);
config.take_screenshot = false; // Only take one screenshot
}
} else {
window->display();
}
currentFrame++;
frameTime = clock.restart().asSeconds();
fps = 1 / frameTime;
window.setTitle(window_title + " " + std::to_string(fps) + " FPS");
// Update profiling metrics
metrics.updateFrameTime(frameTime * 1000.0f); // Convert to milliseconds
int whole_fps = metrics.fps;
int tenth_fps = (metrics.fps * 10) % 10;
if (!headless && window) {
window->setTitle(window_title);
}
// In windowed mode, check if window was closed
if (!headless && window && !window->isOpen()) {
running = false;
}
}
// Clean up before exiting the run loop
cleanup();
}
std::shared_ptr<Timer> GameEngine::getTimer(const std::string& name)
{
auto it = timers.find(name);
if (it != timers.end()) {
return it->second;
}
return nullptr;
}
void GameEngine::manageTimer(std::string name, PyObject* target, int interval)
@ -76,7 +294,7 @@ void GameEngine::manageTimer(std::string name, PyObject* target, int interval)
{
// Delete: Overwrite existing timer with one that calls None. This will be deleted in the next timer check
// see gitea issue #4: this allows for a timer to be deleted during its own call to itself
timers[name] = std::make_shared<PyTimerCallable>(Py_None, 1000, runtime.getElapsedTime().asMilliseconds());
timers[name] = std::make_shared<Timer>(Py_None, 1000, runtime.getElapsedTime().asMilliseconds());
return;
}
}
@ -85,7 +303,7 @@ void GameEngine::manageTimer(std::string name, PyObject* target, int interval)
std::cout << "Refusing to initialize timer to None. It's not an error, it's just pointless." << std::endl;
return;
}
timers[name] = std::make_shared<PyTimerCallable>(target, interval, runtime.getElapsedTime().asMilliseconds());
timers[name] = std::make_shared<Timer>(target, interval, runtime.getElapsedTime().asMilliseconds());
}
void GameEngine::testTimers()
@ -96,7 +314,8 @@ void GameEngine::testTimers()
{
it->second->test(now);
if (it->second->isNone())
// Remove timers that have been cancelled or are one-shot and fired
if (!it->second->getCallback() || it->second->getCallback() == Py_None)
{
it = timers.erase(it);
}
@ -105,86 +324,58 @@ void GameEngine::testTimers()
}
}
void GameEngine::processEvent(const sf::Event& event)
{
std::string actionType;
int actionCode = 0;
if (event.type == sf::Event::Closed) { running = false; return; }
// Handle window resize events
else if (event.type == sf::Event::Resized) {
// Update the viewport to handle the new window size
updateViewport();
// Notify Python scenes about the resize
McRFPy_API::triggerResize(event.size.width, event.size.height);
}
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseWheelScrolled) actionType = "start";
else if (event.type == sf::Event::KeyReleased || event.type == sf::Event::MouseButtonReleased) actionType = "end";
if (event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseButtonReleased)
actionCode = ActionCode::keycode(event.mouseButton.button);
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::KeyReleased)
actionCode = ActionCode::keycode(event.key.code);
else if (event.type == sf::Event::MouseWheelScrolled)
{
if (event.mouseWheelScroll.wheel == sf::Mouse::VerticalWheel)
{
int delta = 1;
if (event.mouseWheelScroll.delta < 0) delta = -1;
actionCode = ActionCode::keycode(event.mouseWheelScroll.wheel, delta );
}
}
else
return;
if (currentScene()->hasAction(actionCode))
{
std::string name = currentScene()->action(actionCode);
currentScene()->doAction(name, actionType);
}
else if (currentScene()->key_callable &&
(event.type == sf::Event::KeyPressed || event.type == sf::Event::KeyReleased))
{
currentScene()->key_callable->call(ActionCode::key_str(event.key.code), actionType);
}
}
void GameEngine::sUserInput()
{
sf::Event event;
while (window.pollEvent(event))
while (window && window->pollEvent(event))
{
std::string actionType;
int actionCode = 0;
if (event.type == sf::Event::Closed) { running = false; continue; }
// TODO: add resize event to Scene to react; call it after constructor too, maybe
else if (event.type == sf::Event::Resized) {
continue; // 7DRL short circuit. Resizing manually disabled
/*
sf::FloatRect area(0.f, 0.f, event.size.width, event.size.height);
//sf::FloatRect area(0.f, 0.f, 1024.f, 768.f); // 7DRL 2024: attempt to set scale appropriately
//sf::FloatRect area(0.f, 0.f, event.size.width, event.size.width * 0.75);
visible = sf::View(area);
window.setView(visible);
//window.setSize(sf::Vector2u(event.size.width, event.size.width * 0.75)); // 7DRL 2024: window scaling
std::cout << "Visible area set to (0, 0, " << event.size.width << ", " << event.size.height <<")"<<std::endl;
actionType = "resize";
//window.setSize(sf::Vector2u(event.size.width, event.size.width * 0.75)); // 7DRL 2024: window scaling
*/
}
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseWheelScrolled) actionType = "start";
else if (event.type == sf::Event::KeyReleased || event.type == sf::Event::MouseButtonReleased) actionType = "end";
if (event.type == sf::Event::MouseButtonPressed || event.type == sf::Event::MouseButtonReleased)
actionCode = ActionCode::keycode(event.mouseButton.button);
else if (event.type == sf::Event::KeyPressed || event.type == sf::Event::KeyReleased)
actionCode = ActionCode::keycode(event.key.code);
else if (event.type == sf::Event::MouseWheelScrolled)
{
// //sf::Mouse::Wheel w = event.MouseWheelScrollEvent.wheel;
if (event.mouseWheelScroll.wheel == sf::Mouse::VerticalWheel)
{
int delta = 1;
if (event.mouseWheelScroll.delta < 0) delta = -1;
actionCode = ActionCode::keycode(event.mouseWheelScroll.wheel, delta );
/*
std::cout << "[GameEngine] Generated MouseWheel code w(" << (int)event.mouseWheelScroll.wheel << ") d(" << event.mouseWheelScroll.delta << ") D(" << delta << ") = " << actionCode << std::endl;
std::cout << " test decode: isMouseWheel=" << ActionCode::isMouseWheel(actionCode) << ", wheel=" << ActionCode::wheel(actionCode) << ", delta=" << ActionCode::delta(actionCode) << std::endl;
std::cout << " math test: actionCode && WHEEL_NEG -> " << (actionCode && ActionCode::WHEEL_NEG) << "; actionCode && WHEEL_DEL -> " << (actionCode && ActionCode::WHEEL_DEL) << ";" << std::endl;
*/
}
// float d = event.MouseWheelScrollEvent.delta;
// actionCode = ActionCode::keycode(0, d);
}
else
continue;
//std::cout << "Event produced action code " << actionCode << ": " << actionType << std::endl;
if (currentScene()->hasAction(actionCode))
{
std::string name = currentScene()->action(actionCode);
currentScene()->doAction(name, actionType);
}
else if (currentScene()->key_callable)
{
currentScene()->key_callable->call(ActionCode::key_str(event.key.code), actionType);
/*
PyObject* args = Py_BuildValue("(ss)", ActionCode::key_str(event.key.code).c_str(), actionType.c_str());
PyObject* retval = PyObject_Call(currentScene()->key_callable, args, NULL);
if (!retval)
{
std::cout << "key_callable has raised an exception. It's going to STDERR and being dropped:" << std::endl;
PyErr_Print();
PyErr_Clear();
} else if (retval != Py_None)
{
std::cout << "key_callable returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
}
*/
}
else
{
//std::cout << "[GameEngine] Action not registered for input: " << actionCode << ": " << actionType << std::endl;
}
processEvent(event);
}
}
@ -205,3 +396,123 @@ std::shared_ptr<std::vector<std::shared_ptr<UIDrawable>>> GameEngine::scene_ui(s
if (scenes.count(target) == 0) return NULL;
return scenes[target]->ui_elements;
}
void GameEngine::setWindowTitle(const std::string& title)
{
window_title = title;
if (!headless && window) {
window->setTitle(title);
}
}
void GameEngine::setVSync(bool enabled)
{
vsync_enabled = enabled;
if (!headless && window) {
window->setVerticalSyncEnabled(enabled);
}
}
void GameEngine::setFramerateLimit(unsigned int limit)
{
framerate_limit = limit;
if (!headless && window) {
window->setFramerateLimit(limit);
}
}
void GameEngine::setGameResolution(unsigned int width, unsigned int height) {
gameResolution = sf::Vector2u(width, height);
gameView.setSize(static_cast<float>(width), static_cast<float>(height));
// Use integer center coordinates for pixel-perfect rendering
gameView.setCenter(std::floor(width / 2.0f), std::floor(height / 2.0f));
updateViewport();
}
void GameEngine::setViewportMode(ViewportMode mode) {
viewportMode = mode;
updateViewport();
}
std::string GameEngine::getViewportModeString() const {
switch (viewportMode) {
case ViewportMode::Center: return "center";
case ViewportMode::Stretch: return "stretch";
case ViewportMode::Fit: return "fit";
}
return "unknown";
}
void GameEngine::updateViewport() {
if (!render_target) return;
auto windowSize = render_target->getSize();
switch (viewportMode) {
case ViewportMode::Center: {
// 1:1 pixels, centered in window
float viewportWidth = std::min(static_cast<float>(gameResolution.x), static_cast<float>(windowSize.x));
float viewportHeight = std::min(static_cast<float>(gameResolution.y), static_cast<float>(windowSize.y));
// Floor offsets to ensure integer pixel alignment
float offsetX = std::floor((windowSize.x - viewportWidth) / 2.0f);
float offsetY = std::floor((windowSize.y - viewportHeight) / 2.0f);
gameView.setViewport(sf::FloatRect(
offsetX / windowSize.x,
offsetY / windowSize.y,
viewportWidth / windowSize.x,
viewportHeight / windowSize.y
));
break;
}
case ViewportMode::Stretch: {
// Fill entire window, ignore aspect ratio
gameView.setViewport(sf::FloatRect(0, 0, 1, 1));
break;
}
case ViewportMode::Fit: {
// Maintain aspect ratio with black bars
float windowAspect = static_cast<float>(windowSize.x) / windowSize.y;
float gameAspect = static_cast<float>(gameResolution.x) / gameResolution.y;
float viewportWidth, viewportHeight;
float offsetX = 0, offsetY = 0;
if (windowAspect > gameAspect) {
// Window is wider - black bars on sides
// Calculate viewport size in pixels and floor for pixel-perfect scaling
float pixelHeight = static_cast<float>(windowSize.y);
float pixelWidth = std::floor(pixelHeight * gameAspect);
viewportHeight = 1.0f;
viewportWidth = pixelWidth / windowSize.x;
offsetX = (1.0f - viewportWidth) / 2.0f;
} else {
// Window is taller - black bars on top/bottom
// Calculate viewport size in pixels and floor for pixel-perfect scaling
float pixelWidth = static_cast<float>(windowSize.x);
float pixelHeight = std::floor(pixelWidth / gameAspect);
viewportWidth = 1.0f;
viewportHeight = pixelHeight / windowSize.y;
offsetY = (1.0f - viewportHeight) / 2.0f;
}
gameView.setViewport(sf::FloatRect(offsetX, offsetY, viewportWidth, viewportHeight));
break;
}
}
// Apply the view
render_target->setView(gameView);
}
sf::Vector2f GameEngine::windowToGameCoords(const sf::Vector2f& windowPos) const {
if (!render_target) return windowPos;
// Convert window coordinates to game coordinates using the view
return render_target->mapPixelToCoords(sf::Vector2i(windowPos), gameView);
}

View File

@ -6,10 +6,26 @@
#include "IndexTexture.h"
#include "Timer.h"
#include "PyCallable.h"
#include "McRogueFaceConfig.h"
#include "HeadlessRenderer.h"
#include "SceneTransition.h"
#include <memory>
class GameEngine
{
sf::RenderWindow window;
public:
// Viewport modes (moved here so private section can use it)
enum class ViewportMode {
Center, // 1:1 pixels, viewport centered in window
Stretch, // viewport size = window size, doesn't respect aspect ratio
Fit // maintains original aspect ratio, leaves black bars
};
private:
std::unique_ptr<sf::RenderWindow> window;
std::unique_ptr<HeadlessRenderer> headless_renderer;
sf::RenderTarget* render_target;
sf::Font font;
std::map<std::string, Scene*> scenes;
bool running = true;
@ -19,29 +35,106 @@ class GameEngine
sf::Clock clock;
float frameTime;
std::string window_title;
bool headless = false;
McRogueFaceConfig config;
bool cleaned_up = false;
// Window state tracking
bool vsync_enabled = false;
unsigned int framerate_limit = 60;
// Scene transition state
SceneTransition transition;
// Viewport system
sf::Vector2u gameResolution{1024, 768}; // Fixed game resolution
sf::View gameView; // View for the game content
ViewportMode viewportMode = ViewportMode::Fit;
void updateViewport();
sf::Clock runtime;
//std::map<std::string, Timer> timers;
std::map<std::string, std::shared_ptr<PyTimerCallable>> timers;
void testTimers();
public:
sf::Clock runtime;
std::map<std::string, std::shared_ptr<Timer>> timers;
std::string scene;
// Profiling metrics
struct ProfilingMetrics {
float frameTime = 0.0f; // Current frame time in milliseconds
float avgFrameTime = 0.0f; // Average frame time over last N frames
int fps = 0; // Frames per second
int drawCalls = 0; // Draw calls per frame
int uiElements = 0; // Number of UI elements rendered
int visibleElements = 0; // Number of visible elements
// Frame time history for averaging
static constexpr int HISTORY_SIZE = 60;
float frameTimeHistory[HISTORY_SIZE] = {0};
int historyIndex = 0;
void updateFrameTime(float deltaMs) {
frameTime = deltaMs;
frameTimeHistory[historyIndex] = deltaMs;
historyIndex = (historyIndex + 1) % HISTORY_SIZE;
// Calculate average
float sum = 0.0f;
for (int i = 0; i < HISTORY_SIZE; ++i) {
sum += frameTimeHistory[i];
}
avgFrameTime = sum / HISTORY_SIZE;
fps = avgFrameTime > 0 ? static_cast<int>(1000.0f / avgFrameTime) : 0;
}
void resetPerFrame() {
drawCalls = 0;
uiElements = 0;
visibleElements = 0;
}
} metrics;
GameEngine();
GameEngine(const McRogueFaceConfig& cfg);
~GameEngine();
Scene* currentScene();
void changeScene(std::string);
void changeScene(std::string sceneName, TransitionType transitionType, float duration);
void createScene(std::string);
void quit();
void setPause(bool);
sf::Font & getFont();
sf::RenderWindow & getWindow();
sf::RenderTarget & getRenderTarget();
sf::RenderTarget* getRenderTargetPtr() { return render_target; }
void run();
void sUserInput();
void cleanup(); // Clean up Python references before destruction
int getFrame() { return currentFrame; }
float getFrameTime() { return frameTime; }
sf::View getView() { return visible; }
void manageTimer(std::string, PyObject*, int);
std::shared_ptr<Timer> getTimer(const std::string& name);
void setWindowScale(float);
bool isHeadless() const { return headless; }
void processEvent(const sf::Event& event);
// Window property accessors
const std::string& getWindowTitle() const { return window_title; }
void setWindowTitle(const std::string& title);
bool getVSync() const { return vsync_enabled; }
void setVSync(bool enabled);
unsigned int getFramerateLimit() const { return framerate_limit; }
void setFramerateLimit(unsigned int limit);
// Viewport system
void setGameResolution(unsigned int width, unsigned int height);
sf::Vector2u getGameResolution() const { return gameResolution; }
void setViewportMode(ViewportMode mode);
ViewportMode getViewportMode() const { return viewportMode; }
std::string getViewportModeString() const;
sf::Vector2f windowToGameCoords(const sf::Vector2f& windowPos) const;
// global textures for scripts to access
std::vector<IndexTexture> textures;

27
src/HeadlessRenderer.cpp Normal file
View File

@ -0,0 +1,27 @@
#include "HeadlessRenderer.h"
#include <iostream>
bool HeadlessRenderer::init(int width, int height) {
if (!render_texture.create(width, height)) {
std::cerr << "Failed to create headless render texture" << std::endl;
return false;
}
return true;
}
sf::RenderTarget& HeadlessRenderer::getRenderTarget() {
return render_texture;
}
void HeadlessRenderer::saveScreenshot(const std::string& path) {
sf::Image screenshot = render_texture.getTexture().copyToImage();
if (!screenshot.saveToFile(path)) {
std::cerr << "Failed to save screenshot to: " << path << std::endl;
} else {
std::cout << "Screenshot saved to: " << path << std::endl;
}
}
void HeadlessRenderer::display() {
render_texture.display();
}

20
src/HeadlessRenderer.h Normal file
View File

@ -0,0 +1,20 @@
#ifndef HEADLESS_RENDERER_H
#define HEADLESS_RENDERER_H
#include <SFML/Graphics.hpp>
#include <memory>
#include <string>
class HeadlessRenderer {
private:
sf::RenderTexture render_texture;
public:
bool init(int width = 1024, int height = 768);
sf::RenderTarget& getRenderTarget();
void saveScreenshot(const std::string& path);
void display(); // Finalize the current frame
bool isOpen() const { return true; } // Always "open" in headless mode
};
#endif // HEADLESS_RENDERER_H

File diff suppressed because it is too large Load Diff

View File

@ -3,6 +3,10 @@
#include "Python.h"
#include <list>
#include "PyFont.h"
#include "PyTexture.h"
#include "McRogueFaceConfig.h"
class GameEngine; // forward declared (circular members)
class McRFPy_API
@ -14,25 +18,28 @@ private:
McRFPy_API();
public:
inline static sf::Sprite sprite;
inline static sf::Texture texture;
static void setSpriteTexture(int);
static PyObject* mcrf_module;
static std::shared_ptr<PyFont> default_font;
static std::shared_ptr<PyTexture> default_texture;
//inline static sf::Sprite sprite;
//inline static sf::Texture texture;
//static void setSpriteTexture(int);
inline static GameEngine* game;
static void api_init();
static void api_init(const McRogueFaceConfig& config, int argc, char** argv);
static PyStatus init_python_with_config(const McRogueFaceConfig& config, int argc, char** argv);
static void api_shutdown();
// Python API functionality - use mcrfpy.* in scripts
//static PyObject* _drawSprite(PyObject*, PyObject*);
static void REPL_device(FILE * fp, const char *filename);
static void REPL();
static std::vector<sf::SoundBuffer> soundbuffers;
static sf::Music music;
static sf::Sound sfx;
static std::vector<sf::SoundBuffer>* soundbuffers;
static sf::Music* music;
static sf::Sound* sfx;
static std::map<std::string, PyObject*> callbacks;
static PyObject* _registerPyAction(PyObject*, PyObject*);
static PyObject* _registerInputAction(PyObject*, PyObject*);
static PyObject* _createSoundBuffer(PyObject*, PyObject*);
static PyObject* _loadMusic(PyObject*, PyObject*);
@ -59,12 +66,23 @@ public:
// accept keyboard input from scene
static sf::Vector2i cursor_position;
static void player_input(int, int);
static void computerTurn();
static void playerTurn();
static void doAction(std::string);
static void executeScript(std::string);
static void executePyString(std::string);
// Helper to mark scenes as needing z_index resort
static void markSceneNeedsSort();
// Name-based finding methods
static PyObject* _find(PyObject*, PyObject*);
static PyObject* _findAll(PyObject*, PyObject*);
// Profiling/metrics
static PyObject* _getMetrics(PyObject*, PyObject*);
// Scene lifecycle management for Python Scene objects
static void triggerSceneChange(const std::string& from_scene, const std::string& to_scene);
static void updatePythonScenes(float dt);
static void triggerResize(int width, int height);
};

817
src/McRFPy_Automation.cpp Normal file
View File

@ -0,0 +1,817 @@
#include "McRFPy_Automation.h"
#include "McRFPy_API.h"
#include "GameEngine.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <unordered_map>
// Helper function to get game engine
GameEngine* McRFPy_Automation::getGameEngine() {
return McRFPy_API::game;
}
// Sleep helper
void McRFPy_Automation::sleep_ms(int milliseconds) {
std::this_thread::sleep_for(std::chrono::milliseconds(milliseconds));
}
// Convert string to SFML key code
sf::Keyboard::Key McRFPy_Automation::stringToKey(const std::string& keyName) {
static const std::unordered_map<std::string, sf::Keyboard::Key> keyMap = {
// Letters
{"a", sf::Keyboard::A}, {"b", sf::Keyboard::B}, {"c", sf::Keyboard::C},
{"d", sf::Keyboard::D}, {"e", sf::Keyboard::E}, {"f", sf::Keyboard::F},
{"g", sf::Keyboard::G}, {"h", sf::Keyboard::H}, {"i", sf::Keyboard::I},
{"j", sf::Keyboard::J}, {"k", sf::Keyboard::K}, {"l", sf::Keyboard::L},
{"m", sf::Keyboard::M}, {"n", sf::Keyboard::N}, {"o", sf::Keyboard::O},
{"p", sf::Keyboard::P}, {"q", sf::Keyboard::Q}, {"r", sf::Keyboard::R},
{"s", sf::Keyboard::S}, {"t", sf::Keyboard::T}, {"u", sf::Keyboard::U},
{"v", sf::Keyboard::V}, {"w", sf::Keyboard::W}, {"x", sf::Keyboard::X},
{"y", sf::Keyboard::Y}, {"z", sf::Keyboard::Z},
// Numbers
{"0", sf::Keyboard::Num0}, {"1", sf::Keyboard::Num1}, {"2", sf::Keyboard::Num2},
{"3", sf::Keyboard::Num3}, {"4", sf::Keyboard::Num4}, {"5", sf::Keyboard::Num5},
{"6", sf::Keyboard::Num6}, {"7", sf::Keyboard::Num7}, {"8", sf::Keyboard::Num8},
{"9", sf::Keyboard::Num9},
// Function keys
{"f1", sf::Keyboard::F1}, {"f2", sf::Keyboard::F2}, {"f3", sf::Keyboard::F3},
{"f4", sf::Keyboard::F4}, {"f5", sf::Keyboard::F5}, {"f6", sf::Keyboard::F6},
{"f7", sf::Keyboard::F7}, {"f8", sf::Keyboard::F8}, {"f9", sf::Keyboard::F9},
{"f10", sf::Keyboard::F10}, {"f11", sf::Keyboard::F11}, {"f12", sf::Keyboard::F12},
{"f13", sf::Keyboard::F13}, {"f14", sf::Keyboard::F14}, {"f15", sf::Keyboard::F15},
// Special keys
{"escape", sf::Keyboard::Escape}, {"esc", sf::Keyboard::Escape},
{"enter", sf::Keyboard::Enter}, {"return", sf::Keyboard::Enter},
{"space", sf::Keyboard::Space}, {" ", sf::Keyboard::Space},
{"tab", sf::Keyboard::Tab}, {"\t", sf::Keyboard::Tab},
{"backspace", sf::Keyboard::BackSpace},
{"delete", sf::Keyboard::Delete}, {"del", sf::Keyboard::Delete},
{"insert", sf::Keyboard::Insert},
{"home", sf::Keyboard::Home},
{"end", sf::Keyboard::End},
{"pageup", sf::Keyboard::PageUp}, {"pgup", sf::Keyboard::PageUp},
{"pagedown", sf::Keyboard::PageDown}, {"pgdn", sf::Keyboard::PageDown},
// Arrow keys
{"left", sf::Keyboard::Left},
{"right", sf::Keyboard::Right},
{"up", sf::Keyboard::Up},
{"down", sf::Keyboard::Down},
// Modifiers
{"ctrl", sf::Keyboard::LControl}, {"ctrlleft", sf::Keyboard::LControl},
{"ctrlright", sf::Keyboard::RControl},
{"alt", sf::Keyboard::LAlt}, {"altleft", sf::Keyboard::LAlt},
{"altright", sf::Keyboard::RAlt},
{"shift", sf::Keyboard::LShift}, {"shiftleft", sf::Keyboard::LShift},
{"shiftright", sf::Keyboard::RShift},
{"win", sf::Keyboard::LSystem}, {"winleft", sf::Keyboard::LSystem},
{"winright", sf::Keyboard::RSystem}, {"command", sf::Keyboard::LSystem},
// Punctuation
{",", sf::Keyboard::Comma}, {".", sf::Keyboard::Period},
{"/", sf::Keyboard::Slash}, {"\\", sf::Keyboard::BackSlash},
{";", sf::Keyboard::SemiColon}, {"'", sf::Keyboard::Quote},
{"[", sf::Keyboard::LBracket}, {"]", sf::Keyboard::RBracket},
{"-", sf::Keyboard::Dash}, {"=", sf::Keyboard::Equal},
// Numpad
{"num0", sf::Keyboard::Numpad0}, {"num1", sf::Keyboard::Numpad1},
{"num2", sf::Keyboard::Numpad2}, {"num3", sf::Keyboard::Numpad3},
{"num4", sf::Keyboard::Numpad4}, {"num5", sf::Keyboard::Numpad5},
{"num6", sf::Keyboard::Numpad6}, {"num7", sf::Keyboard::Numpad7},
{"num8", sf::Keyboard::Numpad8}, {"num9", sf::Keyboard::Numpad9},
{"add", sf::Keyboard::Add}, {"subtract", sf::Keyboard::Subtract},
{"multiply", sf::Keyboard::Multiply}, {"divide", sf::Keyboard::Divide},
// Other
{"pause", sf::Keyboard::Pause},
{"capslock", sf::Keyboard::LControl}, // Note: SFML doesn't have CapsLock
{"numlock", sf::Keyboard::LControl}, // Note: SFML doesn't have NumLock
{"scrolllock", sf::Keyboard::LControl}, // Note: SFML doesn't have ScrollLock
};
auto it = keyMap.find(keyName);
if (it != keyMap.end()) {
return it->second;
}
return sf::Keyboard::Unknown;
}
// Inject mouse event into the game engine
void McRFPy_Automation::injectMouseEvent(sf::Event::EventType type, int x, int y, sf::Mouse::Button button) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = type;
switch (type) {
case sf::Event::MouseMoved:
event.mouseMove.x = x;
event.mouseMove.y = y;
break;
case sf::Event::MouseButtonPressed:
case sf::Event::MouseButtonReleased:
event.mouseButton.button = button;
event.mouseButton.x = x;
event.mouseButton.y = y;
break;
case sf::Event::MouseWheelScrolled:
event.mouseWheelScroll.wheel = sf::Mouse::VerticalWheel;
event.mouseWheelScroll.delta = static_cast<float>(x); // x is used for scroll amount
event.mouseWheelScroll.x = x;
event.mouseWheelScroll.y = y;
break;
default:
break;
}
engine->processEvent(event);
}
// Inject keyboard event into the game engine
void McRFPy_Automation::injectKeyEvent(sf::Event::EventType type, sf::Keyboard::Key key) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = type;
if (type == sf::Event::KeyPressed || type == sf::Event::KeyReleased) {
event.key.code = key;
event.key.alt = sf::Keyboard::isKeyPressed(sf::Keyboard::LAlt) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RAlt);
event.key.control = sf::Keyboard::isKeyPressed(sf::Keyboard::LControl) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RControl);
event.key.shift = sf::Keyboard::isKeyPressed(sf::Keyboard::LShift) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RShift);
event.key.system = sf::Keyboard::isKeyPressed(sf::Keyboard::LSystem) ||
sf::Keyboard::isKeyPressed(sf::Keyboard::RSystem);
}
engine->processEvent(event);
}
// Inject text event for typing
void McRFPy_Automation::injectTextEvent(sf::Uint32 unicode) {
auto engine = getGameEngine();
if (!engine) return;
sf::Event event;
event.type = sf::Event::TextEntered;
event.text.unicode = unicode;
engine->processEvent(event);
}
// Screenshot implementation
PyObject* McRFPy_Automation::_screenshot(PyObject* self, PyObject* args) {
const char* filename;
if (!PyArg_ParseTuple(args, "s", &filename)) {
return NULL;
}
auto engine = getGameEngine();
if (!engine) {
PyErr_SetString(PyExc_RuntimeError, "Game engine not initialized");
return NULL;
}
// Get the render target
sf::RenderTarget* target = engine->getRenderTargetPtr();
if (!target) {
PyErr_SetString(PyExc_RuntimeError, "No render target available");
return NULL;
}
// For RenderWindow, we can get a screenshot directly
if (auto* window = dynamic_cast<sf::RenderWindow*>(target)) {
sf::Vector2u windowSize = window->getSize();
sf::Texture texture;
texture.create(windowSize.x, windowSize.y);
texture.update(*window);
if (texture.copyToImage().saveToFile(filename)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
// For RenderTexture (headless mode)
else if (auto* renderTexture = dynamic_cast<sf::RenderTexture*>(target)) {
if (renderTexture->getTexture().copyToImage().saveToFile(filename)) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
PyErr_SetString(PyExc_RuntimeError, "Unknown render target type");
return NULL;
}
// Get current mouse position
PyObject* McRFPy_Automation::_position(PyObject* self, PyObject* args) {
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
return Py_BuildValue("(ii)", 0, 0);
}
// In headless mode, we'd need to track the simulated mouse position
// For now, return the actual mouse position relative to window if available
if (auto* window = dynamic_cast<sf::RenderWindow*>(engine->getRenderTargetPtr())) {
sf::Vector2i pos = sf::Mouse::getPosition(*window);
return Py_BuildValue("(ii)", pos.x, pos.y);
}
// In headless mode, return simulated position (TODO: track this)
return Py_BuildValue("(ii)", 0, 0);
}
// Get screen size
PyObject* McRFPy_Automation::_size(PyObject* self, PyObject* args) {
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
return Py_BuildValue("(ii)", 1024, 768); // Default size
}
sf::Vector2u size = engine->getRenderTarget().getSize();
return Py_BuildValue("(ii)", size.x, size.y);
}
// Check if coordinates are on screen
PyObject* McRFPy_Automation::_onScreen(PyObject* self, PyObject* args) {
int x, y;
if (!PyArg_ParseTuple(args, "ii", &x, &y)) {
return NULL;
}
auto engine = getGameEngine();
if (!engine || !engine->getRenderTargetPtr()) {
Py_RETURN_FALSE;
}
sf::Vector2u size = engine->getRenderTarget().getSize();
if (x >= 0 && x < (int)size.x && y >= 0 && y < (int)size.y) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
// Move mouse to position
PyObject* McRFPy_Automation::_moveTo(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "duration", NULL};
int x, y;
float duration = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|f", const_cast<char**>(kwlist),
&x, &y, &duration)) {
return NULL;
}
// TODO: Implement smooth movement with duration
injectMouseEvent(sf::Event::MouseMoved, x, y);
if (duration > 0) {
sleep_ms(static_cast<int>(duration * 1000));
}
Py_RETURN_NONE;
}
// Move mouse relative
PyObject* McRFPy_Automation::_moveRel(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"xOffset", "yOffset", "duration", NULL};
int xOffset, yOffset;
float duration = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|f", const_cast<char**>(kwlist),
&xOffset, &yOffset, &duration)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int currentX, currentY;
if (!PyArg_ParseTuple(pos, "ii", &currentX, &currentY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Move to new position
injectMouseEvent(sf::Event::MouseMoved, currentX + xOffset, currentY + yOffset);
if (duration > 0) {
sleep_ms(static_cast<int>(duration * 1000));
}
Py_RETURN_NONE;
}
// Click implementation
PyObject* McRFPy_Automation::_click(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "clicks", "interval", "button", NULL};
int x = -1, y = -1;
int clicks = 1;
float interval = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iiifs", const_cast<char**>(kwlist),
&x, &y, &clicks, &interval, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
// Determine button
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
// Move to position first
injectMouseEvent(sf::Event::MouseMoved, x, y);
// Perform clicks
for (int i = 0; i < clicks; i++) {
if (i > 0 && interval > 0) {
sleep_ms(static_cast<int>(interval * 1000));
}
injectMouseEvent(sf::Event::MouseButtonPressed, x, y, sfButton);
sleep_ms(10); // Small delay between press and release
injectMouseEvent(sf::Event::MouseButtonReleased, x, y, sfButton);
}
Py_RETURN_NONE;
}
// Right click
PyObject* McRFPy_Automation::_rightClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
// Build new args with button="right"
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "button", PyUnicode_FromString("right"));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Double click
PyObject* McRFPy_Automation::_doubleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "clicks", PyLong_FromLong(2));
PyDict_SetItemString(newKwargs, "interval", PyFloat_FromDouble(0.1));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Type text
PyObject* McRFPy_Automation::_typewrite(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"message", "interval", NULL};
const char* message;
float interval = 0.0f;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "s|f", const_cast<char**>(kwlist),
&message, &interval)) {
return NULL;
}
// Type each character
for (size_t i = 0; message[i] != '\0'; i++) {
if (i > 0 && interval > 0) {
sleep_ms(static_cast<int>(interval * 1000));
}
char c = message[i];
// Handle special characters
if (c == '\n') {
injectKeyEvent(sf::Event::KeyPressed, sf::Keyboard::Enter);
injectKeyEvent(sf::Event::KeyReleased, sf::Keyboard::Enter);
} else if (c == '\t') {
injectKeyEvent(sf::Event::KeyPressed, sf::Keyboard::Tab);
injectKeyEvent(sf::Event::KeyReleased, sf::Keyboard::Tab);
} else {
// For regular characters, send text event
injectTextEvent(static_cast<sf::Uint32>(c));
}
}
Py_RETURN_NONE;
}
// Press and hold key
PyObject* McRFPy_Automation::_keyDown(PyObject* self, PyObject* args) {
const char* keyName;
if (!PyArg_ParseTuple(args, "s", &keyName)) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyPressed, key);
Py_RETURN_NONE;
}
// Release key
PyObject* McRFPy_Automation::_keyUp(PyObject* self, PyObject* args) {
const char* keyName;
if (!PyArg_ParseTuple(args, "s", &keyName)) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyReleased, key);
Py_RETURN_NONE;
}
// Hotkey combination
PyObject* McRFPy_Automation::_hotkey(PyObject* self, PyObject* args) {
// Get all keys as separate arguments
Py_ssize_t numKeys = PyTuple_Size(args);
if (numKeys == 0) {
PyErr_SetString(PyExc_ValueError, "hotkey() requires at least one key");
return NULL;
}
// Press all keys
for (Py_ssize_t i = 0; i < numKeys; i++) {
PyObject* keyObj = PyTuple_GetItem(args, i);
const char* keyName = PyUnicode_AsUTF8(keyObj);
if (!keyName) {
return NULL;
}
sf::Keyboard::Key key = stringToKey(keyName);
if (key == sf::Keyboard::Unknown) {
PyErr_Format(PyExc_ValueError, "Unknown key: %s", keyName);
return NULL;
}
injectKeyEvent(sf::Event::KeyPressed, key);
sleep_ms(10); // Small delay between key presses
}
// Release all keys in reverse order
for (Py_ssize_t i = numKeys - 1; i >= 0; i--) {
PyObject* keyObj = PyTuple_GetItem(args, i);
const char* keyName = PyUnicode_AsUTF8(keyObj);
sf::Keyboard::Key key = stringToKey(keyName);
injectKeyEvent(sf::Event::KeyReleased, key);
sleep_ms(10);
}
Py_RETURN_NONE;
}
// Scroll wheel
PyObject* McRFPy_Automation::_scroll(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"clicks", "x", "y", NULL};
int clicks;
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "i|ii", const_cast<char**>(kwlist),
&clicks, &x, &y)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
// Inject scroll event
injectMouseEvent(sf::Event::MouseWheelScrolled, clicks, y);
Py_RETURN_NONE;
}
// Other click types using the main click function
PyObject* McRFPy_Automation::_middleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "button", PyUnicode_FromString("middle"));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
PyObject* McRFPy_Automation::_tripleClick(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", NULL};
int x = -1, y = -1;
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|ii", const_cast<char**>(kwlist), &x, &y)) {
return NULL;
}
PyObject* newKwargs = PyDict_New();
PyDict_SetItemString(newKwargs, "clicks", PyLong_FromLong(3));
PyDict_SetItemString(newKwargs, "interval", PyFloat_FromDouble(0.1));
if (x != -1) PyDict_SetItemString(newKwargs, "x", PyLong_FromLong(x));
if (y != -1) PyDict_SetItemString(newKwargs, "y", PyLong_FromLong(y));
PyObject* result = _click(self, PyTuple_New(0), newKwargs);
Py_DECREF(newKwargs);
return result;
}
// Mouse button press/release
PyObject* McRFPy_Automation::_mouseDown(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "button", NULL};
int x = -1, y = -1;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iis", const_cast<char**>(kwlist),
&x, &y, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
injectMouseEvent(sf::Event::MouseButtonPressed, x, y, sfButton);
Py_RETURN_NONE;
}
PyObject* McRFPy_Automation::_mouseUp(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "button", NULL};
int x = -1, y = -1;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "|iis", const_cast<char**>(kwlist),
&x, &y, &button)) {
return NULL;
}
// If no position specified, use current position
if (x == -1 || y == -1) {
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
if (!PyArg_ParseTuple(pos, "ii", &x, &y)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
}
sf::Mouse::Button sfButton = sf::Mouse::Left;
if (strcmp(button, "right") == 0) {
sfButton = sf::Mouse::Right;
} else if (strcmp(button, "middle") == 0) {
sfButton = sf::Mouse::Middle;
}
injectMouseEvent(sf::Event::MouseButtonReleased, x, y, sfButton);
Py_RETURN_NONE;
}
// Drag operations
PyObject* McRFPy_Automation::_dragTo(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"x", "y", "duration", "button", NULL};
int x, y;
float duration = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|fs", const_cast<char**>(kwlist),
&x, &y, &duration, &button)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int startX, startY;
if (!PyArg_ParseTuple(pos, "ii", &startX, &startY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Mouse down at current position
PyObject* downArgs = Py_BuildValue("(ii)", startX, startY);
PyObject* downKwargs = PyDict_New();
PyDict_SetItemString(downKwargs, "button", PyUnicode_FromString(button));
PyObject* downResult = _mouseDown(self, downArgs, downKwargs);
Py_DECREF(downArgs);
Py_DECREF(downKwargs);
if (!downResult) return NULL;
Py_DECREF(downResult);
// Move to target position
if (duration > 0) {
// Smooth movement
int steps = static_cast<int>(duration * 60); // 60 FPS
for (int i = 1; i <= steps; i++) {
int currentX = startX + (x - startX) * i / steps;
int currentY = startY + (y - startY) * i / steps;
injectMouseEvent(sf::Event::MouseMoved, currentX, currentY);
sleep_ms(1000 / 60); // 60 FPS
}
} else {
injectMouseEvent(sf::Event::MouseMoved, x, y);
}
// Mouse up at target position
PyObject* upArgs = Py_BuildValue("(ii)", x, y);
PyObject* upKwargs = PyDict_New();
PyDict_SetItemString(upKwargs, "button", PyUnicode_FromString(button));
PyObject* upResult = _mouseUp(self, upArgs, upKwargs);
Py_DECREF(upArgs);
Py_DECREF(upKwargs);
if (!upResult) return NULL;
Py_DECREF(upResult);
Py_RETURN_NONE;
}
PyObject* McRFPy_Automation::_dragRel(PyObject* self, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"xOffset", "yOffset", "duration", "button", NULL};
int xOffset, yOffset;
float duration = 0.0f;
const char* button = "left";
if (!PyArg_ParseTupleAndKeywords(args, kwargs, "ii|fs", const_cast<char**>(kwlist),
&xOffset, &yOffset, &duration, &button)) {
return NULL;
}
// Get current position
PyObject* pos = _position(self, NULL);
if (!pos) return NULL;
int currentX, currentY;
if (!PyArg_ParseTuple(pos, "ii", &currentX, &currentY)) {
Py_DECREF(pos);
return NULL;
}
Py_DECREF(pos);
// Call dragTo with absolute position
PyObject* dragArgs = Py_BuildValue("(ii)", currentX + xOffset, currentY + yOffset);
PyObject* dragKwargs = PyDict_New();
PyDict_SetItemString(dragKwargs, "duration", PyFloat_FromDouble(duration));
PyDict_SetItemString(dragKwargs, "button", PyUnicode_FromString(button));
PyObject* result = _dragTo(self, dragArgs, dragKwargs);
Py_DECREF(dragArgs);
Py_DECREF(dragKwargs);
return result;
}
// Method definitions for the automation module
static PyMethodDef automationMethods[] = {
{"screenshot", McRFPy_Automation::_screenshot, METH_VARARGS,
"screenshot(filename) - Save a screenshot to the specified file"},
{"position", McRFPy_Automation::_position, METH_NOARGS,
"position() - Get current mouse position as (x, y) tuple"},
{"size", McRFPy_Automation::_size, METH_NOARGS,
"size() - Get screen size as (width, height) tuple"},
{"onScreen", McRFPy_Automation::_onScreen, METH_VARARGS,
"onScreen(x, y) - Check if coordinates are within screen bounds"},
{"moveTo", (PyCFunction)McRFPy_Automation::_moveTo, METH_VARARGS | METH_KEYWORDS,
"moveTo(x, y, duration=0.0) - Move mouse to absolute position"},
{"moveRel", (PyCFunction)McRFPy_Automation::_moveRel, METH_VARARGS | METH_KEYWORDS,
"moveRel(xOffset, yOffset, duration=0.0) - Move mouse relative to current position"},
{"dragTo", (PyCFunction)McRFPy_Automation::_dragTo, METH_VARARGS | METH_KEYWORDS,
"dragTo(x, y, duration=0.0, button='left') - Drag mouse to position"},
{"dragRel", (PyCFunction)McRFPy_Automation::_dragRel, METH_VARARGS | METH_KEYWORDS,
"dragRel(xOffset, yOffset, duration=0.0, button='left') - Drag mouse relative to current position"},
{"click", (PyCFunction)McRFPy_Automation::_click, METH_VARARGS | METH_KEYWORDS,
"click(x=None, y=None, clicks=1, interval=0.0, button='left') - Click at position"},
{"rightClick", (PyCFunction)McRFPy_Automation::_rightClick, METH_VARARGS | METH_KEYWORDS,
"rightClick(x=None, y=None) - Right click at position"},
{"middleClick", (PyCFunction)McRFPy_Automation::_middleClick, METH_VARARGS | METH_KEYWORDS,
"middleClick(x=None, y=None) - Middle click at position"},
{"doubleClick", (PyCFunction)McRFPy_Automation::_doubleClick, METH_VARARGS | METH_KEYWORDS,
"doubleClick(x=None, y=None) - Double click at position"},
{"tripleClick", (PyCFunction)McRFPy_Automation::_tripleClick, METH_VARARGS | METH_KEYWORDS,
"tripleClick(x=None, y=None) - Triple click at position"},
{"scroll", (PyCFunction)McRFPy_Automation::_scroll, METH_VARARGS | METH_KEYWORDS,
"scroll(clicks, x=None, y=None) - Scroll wheel at position"},
{"mouseDown", (PyCFunction)McRFPy_Automation::_mouseDown, METH_VARARGS | METH_KEYWORDS,
"mouseDown(x=None, y=None, button='left') - Press mouse button"},
{"mouseUp", (PyCFunction)McRFPy_Automation::_mouseUp, METH_VARARGS | METH_KEYWORDS,
"mouseUp(x=None, y=None, button='left') - Release mouse button"},
{"typewrite", (PyCFunction)McRFPy_Automation::_typewrite, METH_VARARGS | METH_KEYWORDS,
"typewrite(message, interval=0.0) - Type text with optional interval between keystrokes"},
{"hotkey", McRFPy_Automation::_hotkey, METH_VARARGS,
"hotkey(*keys) - Press a hotkey combination (e.g., hotkey('ctrl', 'c'))"},
{"keyDown", McRFPy_Automation::_keyDown, METH_VARARGS,
"keyDown(key) - Press and hold a key"},
{"keyUp", McRFPy_Automation::_keyUp, METH_VARARGS,
"keyUp(key) - Release a key"},
{NULL, NULL, 0, NULL}
};
// Module definition for mcrfpy.automation
static PyModuleDef automationModule = {
PyModuleDef_HEAD_INIT,
"mcrfpy.automation",
"Automation API for McRogueFace - PyAutoGUI-compatible interface",
-1,
automationMethods
};
// Initialize automation submodule
PyObject* McRFPy_Automation::init_automation_module() {
PyObject* module = PyModule_Create(&automationModule);
if (module == NULL) {
return NULL;
}
return module;
}

56
src/McRFPy_Automation.h Normal file
View File

@ -0,0 +1,56 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <SFML/Graphics.hpp>
#include <SFML/Window.hpp>
#include <string>
#include <chrono>
#include <thread>
class GameEngine;
class McRFPy_Automation {
public:
// Initialize the automation submodule
static PyObject* init_automation_module();
// Screenshot functionality
static PyObject* _screenshot(PyObject* self, PyObject* args);
// Mouse position and screen info
static PyObject* _position(PyObject* self, PyObject* args);
static PyObject* _size(PyObject* self, PyObject* args);
static PyObject* _onScreen(PyObject* self, PyObject* args);
// Mouse movement
static PyObject* _moveTo(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _moveRel(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _dragTo(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _dragRel(PyObject* self, PyObject* args, PyObject* kwargs);
// Mouse clicks
static PyObject* _click(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _rightClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _middleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _doubleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _tripleClick(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _scroll(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _mouseDown(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _mouseUp(PyObject* self, PyObject* args, PyObject* kwargs);
// Keyboard
static PyObject* _typewrite(PyObject* self, PyObject* args, PyObject* kwargs);
static PyObject* _hotkey(PyObject* self, PyObject* args);
static PyObject* _keyDown(PyObject* self, PyObject* args);
static PyObject* _keyUp(PyObject* self, PyObject* args);
// Helper functions
static void injectMouseEvent(sf::Event::EventType type, int x, int y, sf::Mouse::Button button = sf::Mouse::Left);
static void injectKeyEvent(sf::Event::EventType type, sf::Keyboard::Key key);
static void injectTextEvent(sf::Uint32 unicode);
static sf::Keyboard::Key stringToKey(const std::string& keyName);
static void sleep_ms(int milliseconds);
private:
static GameEngine* getGameEngine();
};

324
src/McRFPy_Libtcod.cpp Normal file
View File

@ -0,0 +1,324 @@
#include "McRFPy_Libtcod.h"
#include "McRFPy_API.h"
#include "UIGrid.h"
#include <vector>
// Helper function to get UIGrid from Python object
static UIGrid* get_grid_from_pyobject(PyObject* obj) {
auto grid_type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Grid");
if (!grid_type) {
PyErr_SetString(PyExc_RuntimeError, "Could not find Grid type");
return nullptr;
}
if (!PyObject_IsInstance(obj, (PyObject*)grid_type)) {
Py_DECREF(grid_type);
PyErr_SetString(PyExc_TypeError, "First argument must be a Grid object");
return nullptr;
}
Py_DECREF(grid_type);
PyUIGridObject* pygrid = (PyUIGridObject*)obj;
return pygrid->data.get();
}
// Field of View computation
static PyObject* McRFPy_Libtcod::compute_fov(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x, y, radius;
int light_walls = 1;
int algorithm = FOV_BASIC;
if (!PyArg_ParseTuple(args, "Oiii|ii", &grid_obj, &x, &y, &radius,
&light_walls, &algorithm)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
// Compute FOV using grid's method
grid->computeFOV(x, y, radius, light_walls, (TCOD_fov_algorithm_t)algorithm);
// Return list of visible cells
PyObject* visible_list = PyList_New(0);
for (int gy = 0; gy < grid->grid_y; gy++) {
for (int gx = 0; gx < grid->grid_x; gx++) {
if (grid->isInFOV(gx, gy)) {
PyObject* pos = Py_BuildValue("(ii)", gx, gy);
PyList_Append(visible_list, pos);
Py_DECREF(pos);
}
}
}
return visible_list;
}
// A* Pathfinding
static PyObject* McRFPy_Libtcod::find_path(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x1, y1, x2, y2;
float diagonal_cost = 1.41f;
if (!PyArg_ParseTuple(args, "Oiiii|f", &grid_obj, &x1, &y1, &x2, &y2, &diagonal_cost)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
// Get path from grid
std::vector<std::pair<int, int>> path = grid->findPath(x1, y1, x2, y2, diagonal_cost);
// Convert to Python list
PyObject* path_list = PyList_New(path.size());
for (size_t i = 0; i < path.size(); i++) {
PyObject* pos = Py_BuildValue("(ii)", path[i].first, path[i].second);
PyList_SetItem(path_list, i, pos); // steals reference
}
return path_list;
}
// Line drawing algorithm
static PyObject* McRFPy_Libtcod::line(PyObject* self, PyObject* args) {
int x1, y1, x2, y2;
if (!PyArg_ParseTuple(args, "iiii", &x1, &y1, &x2, &y2)) {
return NULL;
}
// Use TCOD's line algorithm
TCODLine::init(x1, y1, x2, y2);
PyObject* line_list = PyList_New(0);
int x, y;
// Step through line
while (!TCODLine::step(&x, &y)) {
PyObject* pos = Py_BuildValue("(ii)", x, y);
PyList_Append(line_list, pos);
Py_DECREF(pos);
}
return line_list;
}
// Line iterator (generator-like function)
static PyObject* McRFPy_Libtcod::line_iter(PyObject* self, PyObject* args) {
// For simplicity, just call line() for now
// A proper implementation would create an iterator object
return line(self, args);
}
// Dijkstra pathfinding
static PyObject* McRFPy_Libtcod::dijkstra_new(PyObject* self, PyObject* args) {
PyObject* grid_obj;
float diagonal_cost = 1.41f;
if (!PyArg_ParseTuple(args, "O|f", &grid_obj, &diagonal_cost)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
// For now, just return the grid object since Dijkstra is part of the grid
Py_INCREF(grid_obj);
return grid_obj;
}
static PyObject* McRFPy_Libtcod::dijkstra_compute(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int root_x, root_y;
if (!PyArg_ParseTuple(args, "Oii", &grid_obj, &root_x, &root_y)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
grid->computeDijkstra(root_x, root_y);
Py_RETURN_NONE;
}
static PyObject* McRFPy_Libtcod::dijkstra_get_distance(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x, y;
if (!PyArg_ParseTuple(args, "Oii", &grid_obj, &x, &y)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
float distance = grid->getDijkstraDistance(x, y);
if (distance < 0) {
Py_RETURN_NONE;
}
return PyFloat_FromDouble(distance);
}
static PyObject* McRFPy_Libtcod::dijkstra_path_to(PyObject* self, PyObject* args) {
PyObject* grid_obj;
int x, y;
if (!PyArg_ParseTuple(args, "Oii", &grid_obj, &x, &y)) {
return NULL;
}
UIGrid* grid = get_grid_from_pyobject(grid_obj);
if (!grid) return NULL;
std::vector<std::pair<int, int>> path = grid->getDijkstraPath(x, y);
PyObject* path_list = PyList_New(path.size());
for (size_t i = 0; i < path.size(); i++) {
PyObject* pos = Py_BuildValue("(ii)", path[i].first, path[i].second);
PyList_SetItem(path_list, i, pos); // steals reference
}
return path_list;
}
// Add FOV algorithm constants to module
static PyObject* McRFPy_Libtcod::add_fov_constants(PyObject* module) {
// FOV algorithms
PyModule_AddIntConstant(module, "FOV_BASIC", FOV_BASIC);
PyModule_AddIntConstant(module, "FOV_DIAMOND", FOV_DIAMOND);
PyModule_AddIntConstant(module, "FOV_SHADOW", FOV_SHADOW);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_0", FOV_PERMISSIVE_0);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_1", FOV_PERMISSIVE_1);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_2", FOV_PERMISSIVE_2);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_3", FOV_PERMISSIVE_3);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_4", FOV_PERMISSIVE_4);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_5", FOV_PERMISSIVE_5);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_6", FOV_PERMISSIVE_6);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_7", FOV_PERMISSIVE_7);
PyModule_AddIntConstant(module, "FOV_PERMISSIVE_8", FOV_PERMISSIVE_8);
PyModule_AddIntConstant(module, "FOV_RESTRICTIVE", FOV_RESTRICTIVE);
PyModule_AddIntConstant(module, "FOV_SYMMETRIC_SHADOWCAST", FOV_SYMMETRIC_SHADOWCAST);
return module;
}
// Method definitions
static PyMethodDef libtcodMethods[] = {
{"compute_fov", McRFPy_Libtcod::compute_fov, METH_VARARGS,
"compute_fov(grid, x, y, radius, light_walls=True, algorithm=FOV_BASIC)\n\n"
"Compute field of view from a position.\n\n"
"Args:\n"
" grid: Grid object to compute FOV on\n"
" x, y: Origin position\n"
" radius: Maximum sight radius\n"
" light_walls: Whether walls are lit when in FOV\n"
" algorithm: FOV algorithm to use (FOV_BASIC, FOV_SHADOW, etc.)\n\n"
"Returns:\n"
" List of (x, y) tuples for visible cells"},
{"find_path", McRFPy_Libtcod::find_path, METH_VARARGS,
"find_path(grid, x1, y1, x2, y2, diagonal_cost=1.41)\n\n"
"Find shortest path between two points using A*.\n\n"
"Args:\n"
" grid: Grid object to pathfind on\n"
" x1, y1: Starting position\n"
" x2, y2: Target position\n"
" diagonal_cost: Cost of diagonal movement\n\n"
"Returns:\n"
" List of (x, y) tuples representing the path, or empty list if no path exists"},
{"line", McRFPy_Libtcod::line, METH_VARARGS,
"line(x1, y1, x2, y2)\n\n"
"Get cells along a line using Bresenham's algorithm.\n\n"
"Args:\n"
" x1, y1: Starting position\n"
" x2, y2: Ending position\n\n"
"Returns:\n"
" List of (x, y) tuples along the line"},
{"line_iter", McRFPy_Libtcod::line_iter, METH_VARARGS,
"line_iter(x1, y1, x2, y2)\n\n"
"Iterate over cells along a line.\n\n"
"Args:\n"
" x1, y1: Starting position\n"
" x2, y2: Ending position\n\n"
"Returns:\n"
" Iterator of (x, y) tuples along the line"},
{"dijkstra_new", McRFPy_Libtcod::dijkstra_new, METH_VARARGS,
"dijkstra_new(grid, diagonal_cost=1.41)\n\n"
"Create a Dijkstra pathfinding context for a grid.\n\n"
"Args:\n"
" grid: Grid object to use for pathfinding\n"
" diagonal_cost: Cost of diagonal movement\n\n"
"Returns:\n"
" Grid object configured for Dijkstra pathfinding"},
{"dijkstra_compute", McRFPy_Libtcod::dijkstra_compute, METH_VARARGS,
"dijkstra_compute(grid, root_x, root_y)\n\n"
"Compute Dijkstra distance map from root position.\n\n"
"Args:\n"
" grid: Grid object with Dijkstra context\n"
" root_x, root_y: Root position to compute distances from"},
{"dijkstra_get_distance", McRFPy_Libtcod::dijkstra_get_distance, METH_VARARGS,
"dijkstra_get_distance(grid, x, y)\n\n"
"Get distance from root to a position.\n\n"
"Args:\n"
" grid: Grid object with computed Dijkstra map\n"
" x, y: Position to get distance for\n\n"
"Returns:\n"
" Float distance or None if position is invalid/unreachable"},
{"dijkstra_path_to", McRFPy_Libtcod::dijkstra_path_to, METH_VARARGS,
"dijkstra_path_to(grid, x, y)\n\n"
"Get shortest path from position to Dijkstra root.\n\n"
"Args:\n"
" grid: Grid object with computed Dijkstra map\n"
" x, y: Starting position\n\n"
"Returns:\n"
" List of (x, y) tuples representing the path to root"},
{NULL, NULL, 0, NULL}
};
// Module definition
static PyModuleDef libtcodModule = {
PyModuleDef_HEAD_INIT,
"mcrfpy.libtcod",
"TCOD-compatible algorithms for field of view, pathfinding, and line drawing.\n\n"
"This module provides access to TCOD's algorithms integrated with McRogueFace grids.\n"
"Unlike the original TCOD, these functions work directly with Grid objects.\n\n"
"FOV Algorithms:\n"
" FOV_BASIC - Basic circular FOV\n"
" FOV_SHADOW - Shadow casting (recommended)\n"
" FOV_DIAMOND - Diamond-shaped FOV\n"
" FOV_PERMISSIVE_0 through FOV_PERMISSIVE_8 - Permissive variants\n"
" FOV_RESTRICTIVE - Most restrictive FOV\n"
" FOV_SYMMETRIC_SHADOWCAST - Symmetric shadow casting\n\n"
"Example:\n"
" import mcrfpy\n"
" from mcrfpy import libtcod\n\n"
" grid = mcrfpy.Grid(50, 50)\n"
" visible = libtcod.compute_fov(grid, 25, 25, 10)\n"
" path = libtcod.find_path(grid, 0, 0, 49, 49)",
-1,
libtcodMethods
};
// Module initialization
PyObject* McRFPy_Libtcod::init_libtcod_module() {
PyObject* m = PyModule_Create(&libtcodModule);
if (m == NULL) {
return NULL;
}
// Add FOV algorithm constants
add_fov_constants(m);
return m;
}

27
src/McRFPy_Libtcod.h Normal file
View File

@ -0,0 +1,27 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <libtcod.h>
namespace McRFPy_Libtcod
{
// Field of View algorithms
static PyObject* compute_fov(PyObject* self, PyObject* args);
// Pathfinding
static PyObject* find_path(PyObject* self, PyObject* args);
static PyObject* dijkstra_new(PyObject* self, PyObject* args);
static PyObject* dijkstra_compute(PyObject* self, PyObject* args);
static PyObject* dijkstra_get_distance(PyObject* self, PyObject* args);
static PyObject* dijkstra_path_to(PyObject* self, PyObject* args);
// Line algorithms
static PyObject* line(PyObject* self, PyObject* args);
static PyObject* line_iter(PyObject* self, PyObject* args);
// FOV algorithm constants
static PyObject* add_fov_constants(PyObject* module);
// Module initialization
PyObject* init_libtcod_module();
}

33
src/McRogueFaceConfig.h Normal file
View File

@ -0,0 +1,33 @@
#ifndef MCROGUEFACE_CONFIG_H
#define MCROGUEFACE_CONFIG_H
#include <string>
#include <vector>
#include <filesystem>
struct McRogueFaceConfig {
// McRogueFace specific
bool headless = false;
bool audio_enabled = true;
// Python interpreter emulation
bool python_mode = false;
std::string python_command; // -c command
std::string python_module; // -m module
bool interactive_mode = false; // -i flag
bool show_version = false; // -V flag
bool show_help = false; // -h flag
// Script execution
std::filesystem::path script_path;
std::vector<std::string> script_args;
// Scripts to execute before main script (--exec flag)
std::vector<std::filesystem::path> exec_scripts;
// Screenshot functionality for headless mode
std::string screenshot_path;
bool take_screenshot = false;
};
#endif // MCROGUEFACE_CONFIG_H

273
src/PyAnimation.cpp Normal file
View File

@ -0,0 +1,273 @@
#include "PyAnimation.h"
#include "McRFPy_API.h"
#include "UIDrawable.h"
#include "UIFrame.h"
#include "UICaption.h"
#include "UISprite.h"
#include "UIGrid.h"
#include "UIEntity.h"
#include "UI.h" // For the PyTypeObject definitions
#include <cstring>
PyObject* PyAnimation::create(PyTypeObject* type, PyObject* args, PyObject* kwds) {
PyAnimationObject* self = (PyAnimationObject*)type->tp_alloc(type, 0);
if (self != NULL) {
// Will be initialized in init
}
return (PyObject*)self;
}
int PyAnimation::init(PyAnimationObject* self, PyObject* args, PyObject* kwds) {
static const char* keywords[] = {"property", "target", "duration", "easing", "delta", "callback", nullptr};
const char* property_name;
PyObject* target_value;
float duration;
const char* easing_name = "linear";
int delta = 0;
PyObject* callback = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "sOf|spO", const_cast<char**>(keywords),
&property_name, &target_value, &duration, &easing_name, &delta, &callback)) {
return -1;
}
// Validate callback is callable if provided
if (callback && callback != Py_None && !PyCallable_Check(callback)) {
PyErr_SetString(PyExc_TypeError, "callback must be callable");
return -1;
}
// Convert None to nullptr for C++
if (callback == Py_None) {
callback = nullptr;
}
// Convert Python target value to AnimationValue
AnimationValue animValue;
if (PyFloat_Check(target_value)) {
animValue = static_cast<float>(PyFloat_AsDouble(target_value));
}
else if (PyLong_Check(target_value)) {
animValue = static_cast<int>(PyLong_AsLong(target_value));
}
else if (PyList_Check(target_value)) {
// List of integers for sprite animation
std::vector<int> indices;
Py_ssize_t size = PyList_Size(target_value);
for (Py_ssize_t i = 0; i < size; i++) {
PyObject* item = PyList_GetItem(target_value, i);
if (PyLong_Check(item)) {
indices.push_back(PyLong_AsLong(item));
} else {
PyErr_SetString(PyExc_TypeError, "Sprite animation list must contain only integers");
return -1;
}
}
animValue = indices;
}
else if (PyTuple_Check(target_value)) {
Py_ssize_t size = PyTuple_Size(target_value);
if (size == 2) {
// Vector2f
float x = PyFloat_AsDouble(PyTuple_GetItem(target_value, 0));
float y = PyFloat_AsDouble(PyTuple_GetItem(target_value, 1));
animValue = sf::Vector2f(x, y);
}
else if (size == 3 || size == 4) {
// Color (RGB or RGBA)
int r = PyLong_AsLong(PyTuple_GetItem(target_value, 0));
int g = PyLong_AsLong(PyTuple_GetItem(target_value, 1));
int b = PyLong_AsLong(PyTuple_GetItem(target_value, 2));
int a = size == 4 ? PyLong_AsLong(PyTuple_GetItem(target_value, 3)) : 255;
animValue = sf::Color(r, g, b, a);
}
else {
PyErr_SetString(PyExc_ValueError, "Tuple must have 2 elements (vector) or 3-4 elements (color)");
return -1;
}
}
else if (PyUnicode_Check(target_value)) {
// String for text animation
const char* str = PyUnicode_AsUTF8(target_value);
animValue = std::string(str);
}
else {
PyErr_SetString(PyExc_TypeError, "Target value must be float, int, list, tuple, or string");
return -1;
}
// Get easing function
EasingFunction easingFunc = EasingFunctions::getByName(easing_name);
// Create the Animation
self->data = std::make_shared<Animation>(property_name, animValue, duration, easingFunc, delta != 0, callback);
return 0;
}
void PyAnimation::dealloc(PyAnimationObject* self) {
self->data.reset();
Py_TYPE(self)->tp_free((PyObject*)self);
}
PyObject* PyAnimation::get_property(PyAnimationObject* self, void* closure) {
return PyUnicode_FromString(self->data->getTargetProperty().c_str());
}
PyObject* PyAnimation::get_duration(PyAnimationObject* self, void* closure) {
return PyFloat_FromDouble(self->data->getDuration());
}
PyObject* PyAnimation::get_elapsed(PyAnimationObject* self, void* closure) {
return PyFloat_FromDouble(self->data->getElapsed());
}
PyObject* PyAnimation::get_is_complete(PyAnimationObject* self, void* closure) {
return PyBool_FromLong(self->data->isComplete());
}
PyObject* PyAnimation::get_is_delta(PyAnimationObject* self, void* closure) {
return PyBool_FromLong(self->data->isDelta());
}
PyObject* PyAnimation::start(PyAnimationObject* self, PyObject* args) {
PyObject* target_obj;
if (!PyArg_ParseTuple(args, "O", &target_obj)) {
return NULL;
}
// Check type by comparing type names
const char* type_name = Py_TYPE(target_obj)->tp_name;
if (strcmp(type_name, "mcrfpy.Frame") == 0) {
PyUIFrameObject* frame = (PyUIFrameObject*)target_obj;
if (frame->data) {
self->data->start(frame->data);
AnimationManager::getInstance().addAnimation(self->data);
}
}
else if (strcmp(type_name, "mcrfpy.Caption") == 0) {
PyUICaptionObject* caption = (PyUICaptionObject*)target_obj;
if (caption->data) {
self->data->start(caption->data);
AnimationManager::getInstance().addAnimation(self->data);
}
}
else if (strcmp(type_name, "mcrfpy.Sprite") == 0) {
PyUISpriteObject* sprite = (PyUISpriteObject*)target_obj;
if (sprite->data) {
self->data->start(sprite->data);
AnimationManager::getInstance().addAnimation(self->data);
}
}
else if (strcmp(type_name, "mcrfpy.Grid") == 0) {
PyUIGridObject* grid = (PyUIGridObject*)target_obj;
if (grid->data) {
self->data->start(grid->data);
AnimationManager::getInstance().addAnimation(self->data);
}
}
else if (strcmp(type_name, "mcrfpy.Entity") == 0) {
// Special handling for Entity since it doesn't inherit from UIDrawable
PyUIEntityObject* entity = (PyUIEntityObject*)target_obj;
if (entity->data) {
self->data->startEntity(entity->data);
AnimationManager::getInstance().addAnimation(self->data);
}
}
else {
PyErr_SetString(PyExc_TypeError, "Target must be a Frame, Caption, Sprite, Grid, or Entity");
return NULL;
}
Py_RETURN_NONE;
}
PyObject* PyAnimation::update(PyAnimationObject* self, PyObject* args) {
float deltaTime;
if (!PyArg_ParseTuple(args, "f", &deltaTime)) {
return NULL;
}
bool still_running = self->data->update(deltaTime);
return PyBool_FromLong(still_running);
}
PyObject* PyAnimation::get_current_value(PyAnimationObject* self, PyObject* args) {
AnimationValue value = self->data->getCurrentValue();
// Convert AnimationValue back to Python
return std::visit([](const auto& val) -> PyObject* {
using T = std::decay_t<decltype(val)>;
if constexpr (std::is_same_v<T, float>) {
return PyFloat_FromDouble(val);
}
else if constexpr (std::is_same_v<T, int>) {
return PyLong_FromLong(val);
}
else if constexpr (std::is_same_v<T, std::vector<int>>) {
// This shouldn't happen as we interpolate to int
return PyLong_FromLong(0);
}
else if constexpr (std::is_same_v<T, sf::Color>) {
return Py_BuildValue("(iiii)", val.r, val.g, val.b, val.a);
}
else if constexpr (std::is_same_v<T, sf::Vector2f>) {
return Py_BuildValue("(ff)", val.x, val.y);
}
else if constexpr (std::is_same_v<T, std::string>) {
return PyUnicode_FromString(val.c_str());
}
Py_RETURN_NONE;
}, value);
}
PyObject* PyAnimation::complete(PyAnimationObject* self, PyObject* args) {
if (self->data) {
self->data->complete();
}
Py_RETURN_NONE;
}
PyObject* PyAnimation::has_valid_target(PyAnimationObject* self, PyObject* args) {
if (self->data && self->data->hasValidTarget()) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyGetSetDef PyAnimation::getsetters[] = {
{"property", (getter)get_property, NULL, "Target property name", NULL},
{"duration", (getter)get_duration, NULL, "Animation duration in seconds", NULL},
{"elapsed", (getter)get_elapsed, NULL, "Elapsed time in seconds", NULL},
{"is_complete", (getter)get_is_complete, NULL, "Whether animation is complete", NULL},
{"is_delta", (getter)get_is_delta, NULL, "Whether animation uses delta mode", NULL},
{NULL}
};
PyMethodDef PyAnimation::methods[] = {
{"start", (PyCFunction)start, METH_VARARGS,
"start(target) -> None\n\n"
"Start the animation on a target UI element.\n\n"
"Args:\n"
" target: The UI element to animate (Frame, Caption, Sprite, Grid, or Entity)\n\n"
"Note:\n"
" The animation will automatically stop if the target is destroyed."},
{"update", (PyCFunction)update, METH_VARARGS,
"Update the animation by deltaTime (returns True if still running)"},
{"get_current_value", (PyCFunction)get_current_value, METH_NOARGS,
"Get the current interpolated value"},
{"complete", (PyCFunction)complete, METH_NOARGS,
"complete() -> None\n\n"
"Complete the animation immediately by jumping to the final value."},
{"hasValidTarget", (PyCFunction)has_valid_target, METH_NOARGS,
"hasValidTarget() -> bool\n\n"
"Check if the animation still has a valid target.\n\n"
"Returns:\n"
" True if the target still exists, False if it was destroyed."},
{NULL}
};

52
src/PyAnimation.h Normal file
View File

@ -0,0 +1,52 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "structmember.h"
#include "Animation.h"
#include <memory>
typedef struct {
PyObject_HEAD
std::shared_ptr<Animation> data;
} PyAnimationObject;
class PyAnimation {
public:
static PyObject* create(PyTypeObject* type, PyObject* args, PyObject* kwds);
static int init(PyAnimationObject* self, PyObject* args, PyObject* kwds);
static void dealloc(PyAnimationObject* self);
// Properties
static PyObject* get_property(PyAnimationObject* self, void* closure);
static PyObject* get_duration(PyAnimationObject* self, void* closure);
static PyObject* get_elapsed(PyAnimationObject* self, void* closure);
static PyObject* get_is_complete(PyAnimationObject* self, void* closure);
static PyObject* get_is_delta(PyAnimationObject* self, void* closure);
// Methods
static PyObject* start(PyAnimationObject* self, PyObject* args);
static PyObject* update(PyAnimationObject* self, PyObject* args);
static PyObject* get_current_value(PyAnimationObject* self, PyObject* args);
static PyObject* complete(PyAnimationObject* self, PyObject* args);
static PyObject* has_valid_target(PyAnimationObject* self, PyObject* args);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
static PyTypeObject PyAnimationType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Animation",
.tp_basicsize = sizeof(PyAnimationObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)PyAnimation::dealloc,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Animation object for animating UI properties"),
.tp_methods = PyAnimation::methods,
.tp_getset = PyAnimation::getsetters,
.tp_init = (initproc)PyAnimation::init,
.tp_new = PyAnimation::create,
};
}

View File

@ -5,6 +5,21 @@ PyCallable::PyCallable(PyObject* _target)
target = Py_XNewRef(_target);
}
PyCallable::PyCallable(const PyCallable& other)
{
target = Py_XNewRef(other.target);
}
PyCallable& PyCallable::operator=(const PyCallable& other)
{
if (this != &other) {
PyObject* old_target = target;
target = Py_XNewRef(other.target);
Py_XDECREF(old_target);
}
return *this;
}
PyCallable::~PyCallable()
{
if (target)
@ -16,49 +31,11 @@ PyObject* PyCallable::call(PyObject* args, PyObject* kwargs)
return PyObject_Call(target, args, kwargs);
}
bool PyCallable::isNone()
bool PyCallable::isNone() const
{
return (target == Py_None || target == NULL);
}
PyTimerCallable::PyTimerCallable(PyObject* _target, int _interval, int now)
: PyCallable(_target), interval(_interval), last_ran(now)
{}
PyTimerCallable::PyTimerCallable()
: PyCallable(Py_None), interval(0), last_ran(0)
{}
bool PyTimerCallable::hasElapsed(int now)
{
return now >= last_ran + interval;
}
void PyTimerCallable::call(int now)
{
PyObject* args = Py_BuildValue("(i)", now);
PyObject* retval = PyCallable::call(args, NULL);
if (!retval)
{
PyErr_Print();
PyErr_Clear();
} else if (retval != Py_None)
{
std::cout << "timer returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
std::cout << PyUnicode_AsUTF8(PyObject_Repr(retval)) << std::endl;
}
}
bool PyTimerCallable::test(int now)
{
if(hasElapsed(now))
{
call(now);
last_ran = now;
return true;
}
return false;
}
PyClickCallable::PyClickCallable(PyObject* _target)
: PyCallable(_target)

View File

@ -6,24 +6,15 @@ class PyCallable
{
protected:
PyObject* target;
public:
PyCallable(PyObject*);
PyCallable(const PyCallable& other);
PyCallable& operator=(const PyCallable& other);
~PyCallable();
PyObject* call(PyObject*, PyObject*);
public:
bool isNone();
};
class PyTimerCallable: public PyCallable
{
private:
int interval;
int last_ran;
void call(int);
public:
bool hasElapsed(int);
bool test(int);
PyTimerCallable(PyObject*, int, int);
PyTimerCallable();
bool isNone() const;
PyObject* borrow() const { return target; }
};
class PyClickCallable: public PyCallable
@ -33,6 +24,11 @@ public:
PyObject* borrow();
PyClickCallable(PyObject*);
PyClickCallable();
PyClickCallable(const PyClickCallable& other) : PyCallable(other) {}
PyClickCallable& operator=(const PyClickCallable& other) {
PyCallable::operator=(other);
return *this;
}
};
class PyKeyCallable: public PyCallable

330
src/PyColor.cpp Normal file
View File

@ -0,0 +1,330 @@
#include "PyColor.h"
#include "McRFPy_API.h"
#include "PyObjectUtils.h"
#include "PyRAII.h"
#include <string>
#include <cstdio>
PyGetSetDef PyColor::getsetters[] = {
{"r", (getter)PyColor::get_member, (setter)PyColor::set_member, "Red component", (void*)0},
{"g", (getter)PyColor::get_member, (setter)PyColor::set_member, "Green component", (void*)1},
{"b", (getter)PyColor::get_member, (setter)PyColor::set_member, "Blue component", (void*)2},
{"a", (getter)PyColor::get_member, (setter)PyColor::set_member, "Alpha component", (void*)3},
{NULL}
};
PyMethodDef PyColor::methods[] = {
{"from_hex", (PyCFunction)PyColor::from_hex, METH_VARARGS | METH_CLASS, "Create Color from hex string (e.g., '#FF0000' or 'FF0000')"},
{"to_hex", (PyCFunction)PyColor::to_hex, METH_NOARGS, "Convert Color to hex string"},
{"lerp", (PyCFunction)PyColor::lerp, METH_VARARGS, "Linearly interpolate between this color and another"},
{NULL}
};
PyColor::PyColor(sf::Color target)
:data(target) {}
PyObject* PyColor::pyObject()
{
PyTypeObject* type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Color");
if (!type) return nullptr;
PyColorObject* obj = (PyColorObject*)type->tp_alloc(type, 0);
Py_DECREF(type);
if (obj) {
obj->data = data;
}
return (PyObject*)obj;
}
sf::Color PyColor::fromPy(PyObject* obj)
{
PyColorObject* self = (PyColorObject*)obj;
return self->data;
}
sf::Color PyColor::fromPy(PyColorObject* self)
{
return self->data;
}
void PyColor::set(sf::Color color)
{
data = color;
}
sf::Color PyColor::get()
{
return data;
}
Py_hash_t PyColor::hash(PyObject* obj)
{
auto self = (PyColorObject*)obj;
Py_hash_t value = 0;
value += self->data.r;
value << 8; value += self->data.g;
value << 8; value += self->data.b;
value << 8; value += self->data.a;
return value;
}
PyObject* PyColor::repr(PyObject* obj)
{
PyColorObject* self = (PyColorObject*)obj;
std::ostringstream ss;
sf::Color c = self->data;
ss << "<Color (" << int(c.r) << ", " << int(c.g) << ", " << int(c.b) << ", " << int(c.a) << ")>";
std::string repr_str = ss.str();
return PyUnicode_DecodeUTF8(repr_str.c_str(), repr_str.size(), "replace");
}
int PyColor::init(PyColorObject* self, PyObject* args, PyObject* kwds) {
//using namespace mcrfpydef;
static const char* keywords[] = { "r", "g", "b", "a", nullptr };
PyObject* leader;
int r = -1, g = -1, b = -1, a = 255;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|iii", const_cast<char**>(keywords), &leader, &g, &b, &a)) {
PyErr_SetString(PyExc_TypeError, "mcrfpy.Color requires a 3-tuple, 4-tuple, color name, or integer values within 0-255 (r, g, b, optionally a)");
return -1;
}
//std::cout << "Arg parsing succeeded. Values: " << r << " " << g << " " << b << " " << a <<std::endl;
//std::cout << PyUnicode_AsUTF8(PyObject_Repr(leader)) << std::endl;
// Tuple cases
if (PyTuple_Check(leader)) {
Py_ssize_t tupleSize = PyTuple_Size(leader);
if (tupleSize < 3 || tupleSize > 4) {
PyErr_SetString(PyExc_TypeError, "Invalid tuple length: mcrfpy.Color requires a 3-tuple, 4-tuple, color name, or integer values within 0-255 (r, g, b, optionally a)");
return -1;
}
r = PyLong_AsLong(PyTuple_GetItem(leader, 0));
g = PyLong_AsLong(PyTuple_GetItem(leader, 1));
b = PyLong_AsLong(PyTuple_GetItem(leader, 2));
if (tupleSize == 4) {
a = PyLong_AsLong(PyTuple_GetItem(leader, 3));
}
}
// Color name (not implemented yet)
else if (PyUnicode_Check(leader)) {
PyErr_SetString(PyExc_NotImplementedError, "Color names aren't ready yet");
return -1;
}
// Check if the leader is actually an integer for the r value
else if (PyLong_Check(leader)) {
r = PyLong_AsLong(leader);
// Additional validation not shown; g, b are required to be parsed
} else {
PyErr_SetString(PyExc_TypeError, "mcrfpy.Color requires a 3-tuple, 4-tuple, color name, or integer values within 0-255 (r, g, b, optionally a)");
return -1;
}
// Validate color values
if (r < 0 || r > 255 || g < 0 || g > 255 || b < 0 || b > 255 || a < 0 || a > 255) {
PyErr_SetString(PyExc_ValueError, "Color values must be between 0 and 255.");
return -1;
}
self->data = sf::Color(r, g, b, a);
return 0;
}
PyObject* PyColor::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
{
auto obj = (PyObject*)type->tp_alloc(type, 0);
//Py_INCREF(obj);
return obj;
}
PyObject* PyColor::get_member(PyObject* obj, void* closure)
{
PyColorObject* self = (PyColorObject*)obj;
long member = (long)closure;
switch (member) {
case 0: // r
return PyLong_FromLong(self->data.r);
case 1: // g
return PyLong_FromLong(self->data.g);
case 2: // b
return PyLong_FromLong(self->data.b);
case 3: // a
return PyLong_FromLong(self->data.a);
default:
PyErr_SetString(PyExc_AttributeError, "Invalid color member");
return NULL;
}
}
int PyColor::set_member(PyObject* obj, PyObject* value, void* closure)
{
PyColorObject* self = (PyColorObject*)obj;
long member = (long)closure;
if (!PyLong_Check(value)) {
PyErr_SetString(PyExc_TypeError, "Color values must be integers");
return -1;
}
long val = PyLong_AsLong(value);
if (val < 0 || val > 255) {
PyErr_SetString(PyExc_ValueError, "Color values must be between 0 and 255");
return -1;
}
switch (member) {
case 0: // r
self->data.r = static_cast<sf::Uint8>(val);
break;
case 1: // g
self->data.g = static_cast<sf::Uint8>(val);
break;
case 2: // b
self->data.b = static_cast<sf::Uint8>(val);
break;
case 3: // a
self->data.a = static_cast<sf::Uint8>(val);
break;
default:
PyErr_SetString(PyExc_AttributeError, "Invalid color member");
return -1;
}
return 0;
}
PyColorObject* PyColor::from_arg(PyObject* args)
{
// Use RAII for type reference management
PyRAII::PyTypeRef type("Color", McRFPy_API::mcrf_module);
if (!type) {
return NULL;
}
// Check if args is already a Color instance
if (PyObject_IsInstance(args, (PyObject*)type.get())) {
return (PyColorObject*)args;
}
// Create new Color object using RAII
PyRAII::PyObjectRef obj(type->tp_alloc(type.get(), 0), true);
if (!obj) {
return NULL;
}
// Initialize the object
int err = init((PyColorObject*)obj.get(), args, NULL);
if (err) {
// obj will be automatically cleaned up when it goes out of scope
return NULL;
}
// Release ownership and return
return (PyColorObject*)obj.release();
}
// Color helper method implementations
PyObject* PyColor::from_hex(PyObject* cls, PyObject* args)
{
const char* hex_str;
if (!PyArg_ParseTuple(args, "s", &hex_str)) {
return NULL;
}
std::string hex(hex_str);
// Remove # if present
if (hex.length() > 0 && hex[0] == '#') {
hex = hex.substr(1);
}
// Validate hex string
if (hex.length() != 6 && hex.length() != 8) {
PyErr_SetString(PyExc_ValueError, "Hex string must be 6 or 8 characters (RGB or RGBA)");
return NULL;
}
// Parse hex values
try {
unsigned int r = std::stoul(hex.substr(0, 2), nullptr, 16);
unsigned int g = std::stoul(hex.substr(2, 2), nullptr, 16);
unsigned int b = std::stoul(hex.substr(4, 2), nullptr, 16);
unsigned int a = 255;
if (hex.length() == 8) {
a = std::stoul(hex.substr(6, 2), nullptr, 16);
}
// Create new Color object
PyTypeObject* type = (PyTypeObject*)cls;
PyColorObject* color = (PyColorObject*)type->tp_alloc(type, 0);
if (color) {
color->data = sf::Color(r, g, b, a);
}
return (PyObject*)color;
} catch (const std::exception& e) {
PyErr_SetString(PyExc_ValueError, "Invalid hex string");
return NULL;
}
}
PyObject* PyColor::to_hex(PyColorObject* self, PyObject* Py_UNUSED(ignored))
{
char hex[10]; // #RRGGBBAA + null terminator
// Include alpha only if not fully opaque
if (self->data.a < 255) {
snprintf(hex, sizeof(hex), "#%02X%02X%02X%02X",
self->data.r, self->data.g, self->data.b, self->data.a);
} else {
snprintf(hex, sizeof(hex), "#%02X%02X%02X",
self->data.r, self->data.g, self->data.b);
}
return PyUnicode_FromString(hex);
}
PyObject* PyColor::lerp(PyColorObject* self, PyObject* args)
{
PyObject* other_obj;
float t;
if (!PyArg_ParseTuple(args, "Of", &other_obj, &t)) {
return NULL;
}
// Validate other color
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Color");
if (!PyObject_IsInstance(other_obj, (PyObject*)type)) {
Py_DECREF(type);
PyErr_SetString(PyExc_TypeError, "First argument must be a Color");
return NULL;
}
PyColorObject* other = (PyColorObject*)other_obj;
// Clamp t to [0, 1]
if (t < 0.0f) t = 0.0f;
if (t > 1.0f) t = 1.0f;
// Perform linear interpolation
sf::Uint8 r = static_cast<sf::Uint8>(self->data.r + (other->data.r - self->data.r) * t);
sf::Uint8 g = static_cast<sf::Uint8>(self->data.g + (other->data.g - self->data.g) * t);
sf::Uint8 b = static_cast<sf::Uint8>(self->data.b + (other->data.b - self->data.b) * t);
sf::Uint8 a = static_cast<sf::Uint8>(self->data.a + (other->data.a - self->data.a) * t);
// Create new Color object
PyColorObject* result = (PyColorObject*)type->tp_alloc(type, 0);
Py_DECREF(type);
if (result) {
result->data = sf::Color(r, g, b, a);
}
return (PyObject*)result;
}

56
src/PyColor.h Normal file
View File

@ -0,0 +1,56 @@
#pragma once
#include "Common.h"
#include "Python.h"
class PyColor;
class UIDrawable; // forward declare for pointer
typedef struct {
PyObject_HEAD
sf::Color data;
} PyColorObject;
class PyColor
{
private:
public:
sf::Color data;
PyColor(sf::Color);
void set(sf::Color);
sf::Color get();
PyObject* pyObject();
static sf::Color fromPy(PyObject*);
static sf::Color fromPy(PyColorObject*);
static PyObject* repr(PyObject*);
static Py_hash_t hash(PyObject*);
static int init(PyColorObject*, PyObject*, PyObject*);
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
static PyObject* get_member(PyObject*, void*);
static int set_member(PyObject*, PyObject*, void*);
// Color helper methods
static PyObject* from_hex(PyObject* cls, PyObject* args);
static PyObject* to_hex(PyColorObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* lerp(PyColorObject* self, PyObject* args);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
static PyColorObject* from_arg(PyObject*);
};
namespace mcrfpydef {
static PyTypeObject PyColorType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Color",
.tp_basicsize = sizeof(PyColorObject),
.tp_itemsize = 0,
.tp_repr = PyColor::repr,
.tp_hash = PyColor::hash,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Color Object"),
.tp_methods = PyColor::methods,
.tp_getset = PyColor::getsetters,
.tp_init = (initproc)PyColor::init,
.tp_new = PyColor::pynew,
};
}

179
src/PyDrawable.cpp Normal file
View File

@ -0,0 +1,179 @@
#include "PyDrawable.h"
#include "McRFPy_API.h"
// Click property getter
static PyObject* PyDrawable_get_click(PyDrawableObject* self, void* closure)
{
if (!self->data->click_callable)
Py_RETURN_NONE;
PyObject* ptr = self->data->click_callable->borrow();
if (ptr && ptr != Py_None)
return ptr;
else
Py_RETURN_NONE;
}
// Click property setter
static int PyDrawable_set_click(PyDrawableObject* self, PyObject* value, void* closure)
{
if (value == Py_None) {
self->data->click_unregister();
} else if (PyCallable_Check(value)) {
self->data->click_register(value);
} else {
PyErr_SetString(PyExc_TypeError, "click must be callable or None");
return -1;
}
return 0;
}
// Z-index property getter
static PyObject* PyDrawable_get_z_index(PyDrawableObject* self, void* closure)
{
return PyLong_FromLong(self->data->z_index);
}
// Z-index property setter
static int PyDrawable_set_z_index(PyDrawableObject* self, PyObject* value, void* closure)
{
if (!PyLong_Check(value)) {
PyErr_SetString(PyExc_TypeError, "z_index must be an integer");
return -1;
}
int val = PyLong_AsLong(value);
self->data->z_index = val;
// Mark scene as needing resort
self->data->notifyZIndexChanged();
return 0;
}
// Visible property getter (new for #87)
static PyObject* PyDrawable_get_visible(PyDrawableObject* self, void* closure)
{
return PyBool_FromLong(self->data->visible);
}
// Visible property setter (new for #87)
static int PyDrawable_set_visible(PyDrawableObject* self, PyObject* value, void* closure)
{
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "visible must be a boolean");
return -1;
}
self->data->visible = (value == Py_True);
return 0;
}
// Opacity property getter (new for #88)
static PyObject* PyDrawable_get_opacity(PyDrawableObject* self, void* closure)
{
return PyFloat_FromDouble(self->data->opacity);
}
// Opacity property setter (new for #88)
static int PyDrawable_set_opacity(PyDrawableObject* self, PyObject* value, void* closure)
{
float val;
if (PyFloat_Check(value)) {
val = PyFloat_AsDouble(value);
} else if (PyLong_Check(value)) {
val = PyLong_AsLong(value);
} else {
PyErr_SetString(PyExc_TypeError, "opacity must be a number");
return -1;
}
// Clamp to valid range
if (val < 0.0f) val = 0.0f;
if (val > 1.0f) val = 1.0f;
self->data->opacity = val;
return 0;
}
// GetSetDef array for properties
static PyGetSetDef PyDrawable_getsetters[] = {
{"click", (getter)PyDrawable_get_click, (setter)PyDrawable_set_click,
"Callable executed when object is clicked", NULL},
{"z_index", (getter)PyDrawable_get_z_index, (setter)PyDrawable_set_z_index,
"Z-order for rendering (lower values rendered first)", NULL},
{"visible", (getter)PyDrawable_get_visible, (setter)PyDrawable_set_visible,
"Whether the object is visible", NULL},
{"opacity", (getter)PyDrawable_get_opacity, (setter)PyDrawable_set_opacity,
"Opacity level (0.0 = transparent, 1.0 = opaque)", NULL},
{NULL} // Sentinel
};
// get_bounds method implementation (#89)
static PyObject* PyDrawable_get_bounds(PyDrawableObject* self, PyObject* Py_UNUSED(args))
{
auto bounds = self->data->get_bounds();
return Py_BuildValue("(ffff)", bounds.left, bounds.top, bounds.width, bounds.height);
}
// move method implementation (#98)
static PyObject* PyDrawable_move(PyDrawableObject* self, PyObject* args)
{
float dx, dy;
if (!PyArg_ParseTuple(args, "ff", &dx, &dy)) {
return NULL;
}
self->data->move(dx, dy);
Py_RETURN_NONE;
}
// resize method implementation (#98)
static PyObject* PyDrawable_resize(PyDrawableObject* self, PyObject* args)
{
float w, h;
if (!PyArg_ParseTuple(args, "ff", &w, &h)) {
return NULL;
}
self->data->resize(w, h);
Py_RETURN_NONE;
}
// Method definitions
static PyMethodDef PyDrawable_methods[] = {
{"get_bounds", (PyCFunction)PyDrawable_get_bounds, METH_NOARGS,
"Get bounding box as (x, y, width, height)"},
{"move", (PyCFunction)PyDrawable_move, METH_VARARGS,
"Move by relative offset (dx, dy)"},
{"resize", (PyCFunction)PyDrawable_resize, METH_VARARGS,
"Resize to new dimensions (width, height)"},
{NULL} // Sentinel
};
// Type initialization
static int PyDrawable_init(PyDrawableObject* self, PyObject* args, PyObject* kwds)
{
PyErr_SetString(PyExc_TypeError, "Drawable is an abstract base class and cannot be instantiated directly");
return -1;
}
namespace mcrfpydef {
PyTypeObject PyDrawableType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Drawable",
.tp_basicsize = sizeof(PyDrawableObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)[](PyObject* self) {
PyDrawableObject* obj = (PyDrawableObject*)self;
obj->data.reset();
Py_TYPE(self)->tp_free(self);
},
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,
.tp_doc = PyDoc_STR("Base class for all drawable UI elements"),
.tp_methods = PyDrawable_methods,
.tp_getset = PyDrawable_getsetters,
.tp_init = (initproc)PyDrawable_init,
.tp_new = PyType_GenericNew,
};
}

15
src/PyDrawable.h Normal file
View File

@ -0,0 +1,15 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "UIDrawable.h"
// Python object structure for UIDrawable base class
typedef struct {
PyObject_HEAD
std::shared_ptr<UIDrawable> data;
} PyDrawableObject;
// Declare the Python type for Drawable base class
namespace mcrfpydef {
extern PyTypeObject PyDrawableType;
}

79
src/PyFont.cpp Normal file
View File

@ -0,0 +1,79 @@
#include "PyFont.h"
#include "McRFPy_API.h"
PyFont::PyFont(std::string filename)
: source(filename)
{
font = sf::Font();
font.loadFromFile(source);
}
PyObject* PyFont::pyObject()
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Font");
//PyObject* obj = PyType_GenericAlloc(&mcrfpydef::PyFontType, 0);
PyObject* obj = PyFont::pynew(type, Py_None, Py_None);
try {
((PyFontObject*)obj)->data = shared_from_this();
}
catch (std::bad_weak_ptr& e)
{
std::cout << "Bad weak ptr: shared_from_this() failed in PyFont::pyObject(); did you create a PyFont outside of std::make_shared? enjoy your segfault, soon!" << std::endl;
}
// TODO - shared_from_this will raise an exception if the object does not have a shared pointer. Constructor should be made private; write a factory function
return obj;
}
PyObject* PyFont::repr(PyObject* obj)
{
PyFontObject* self = (PyFontObject*)obj;
std::ostringstream ss;
if (!self->data)
{
ss << "<Font [invalid internal object]>";
std::string repr_str = ss.str();
return PyUnicode_DecodeUTF8(repr_str.c_str(), repr_str.size(), "replace");
}
auto& pfont = *(self->data);
ss << "<Font (family=" << pfont.font.getInfo().family << ") source=`" << pfont.source << "`>";
std::string repr_str = ss.str();
return PyUnicode_DecodeUTF8(repr_str.c_str(), repr_str.size(), "replace");
}
Py_hash_t PyFont::hash(PyObject* obj)
{
auto self = (PyFontObject*)obj;
return reinterpret_cast<Py_hash_t>(self->data.get());
}
int PyFont::init(PyFontObject* self, PyObject* args, PyObject* kwds)
{
static const char* keywords[] = { "filename", nullptr };
char* filename;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "s", const_cast<char**>(keywords), &filename))
return -1;
self->data = std::make_shared<PyFont>(filename);
return 0;
}
PyObject* PyFont::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
{
return (PyObject*)type->tp_alloc(type, 0);
}
PyObject* PyFont::get_family(PyFontObject* self, void* closure)
{
return PyUnicode_FromString(self->data->font.getInfo().family.c_str());
}
PyObject* PyFont::get_source(PyFontObject* self, void* closure)
{
return PyUnicode_FromString(self->data->source.c_str());
}
PyGetSetDef PyFont::getsetters[] = {
{"family", (getter)PyFont::get_family, NULL, "Font family name", NULL},
{"source", (getter)PyFont::get_source, NULL, "Source filename of the font", NULL},
{NULL} // Sentinel
};

47
src/PyFont.h Normal file
View File

@ -0,0 +1,47 @@
#pragma once
#include "Common.h"
#include "Python.h"
class PyFont;
typedef struct {
PyObject_HEAD
std::shared_ptr<PyFont> data;
} PyFontObject;
class PyFont : public std::enable_shared_from_this<PyFont>
{
private:
std::string source;
public:
PyFont(std::string filename);
sf::Font font;
PyObject* pyObject();
static PyObject* repr(PyObject*);
static Py_hash_t hash(PyObject*);
static int init(PyFontObject*, PyObject*, PyObject*);
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
// Getters for properties
static PyObject* get_family(PyFontObject* self, void* closure);
static PyObject* get_source(PyFontObject* self, void* closure);
static PyGetSetDef getsetters[];
};
namespace mcrfpydef {
static PyTypeObject PyFontType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Font",
.tp_basicsize = sizeof(PyFontObject),
.tp_itemsize = 0,
.tp_repr = PyFont::repr,
//.tp_hash = PyFont::hash,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Font Object"),
.tp_getset = PyFont::getsetters,
//.tp_base = &PyBaseObject_Type,
.tp_init = (initproc)PyFont::init,
.tp_new = PyType_GenericNew, //PyFont::pynew,
};
}

76
src/PyObjectUtils.h Normal file
View File

@ -0,0 +1,76 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "McRFPy_API.h"
#include "PyRAII.h"
namespace PyObjectUtils {
// Template for getting Python type object from module
template<typename T>
PyTypeObject* getPythonType(const char* typeName) {
PyTypeObject* type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, typeName);
if (!type) {
PyErr_Format(PyExc_RuntimeError, "Could not find %s type in module", typeName);
}
return type;
}
// Generic function to create a Python object of given type
inline PyObject* createPyObjectGeneric(const char* typeName) {
PyTypeObject* type = getPythonType<void>(typeName);
if (!type) return nullptr;
PyObject* obj = type->tp_alloc(type, 0);
Py_DECREF(type);
return obj;
}
// Helper function to allocate and initialize a Python object with data
template<typename PyObjType, typename DataType>
PyObject* createPyObjectWithData(const char* typeName, DataType data) {
PyTypeObject* type = getPythonType<void>(typeName);
if (!type) return nullptr;
PyObjType* obj = (PyObjType*)type->tp_alloc(type, 0);
Py_DECREF(type);
if (obj) {
obj->data = data;
}
return (PyObject*)obj;
}
// Function to convert UIDrawable to appropriate Python object
// This is moved to UICollection.cpp to avoid circular dependencies
// RAII-based object creation example
inline PyObject* createPyObjectGenericRAII(const char* typeName) {
PyRAII::PyTypeRef type(typeName, McRFPy_API::mcrf_module);
if (!type) {
PyErr_Format(PyExc_RuntimeError, "Could not find %s type in module", typeName);
return nullptr;
}
PyObject* obj = type->tp_alloc(type.get(), 0);
// Return the new reference (caller owns it)
return obj;
}
// Example of using PyObjectRef for safer reference management
template<typename PyObjType, typename DataType>
PyObject* createPyObjectWithDataRAII(const char* typeName, DataType data) {
PyRAII::PyObjectRef obj = PyRAII::createObject<PyObjType>(typeName, McRFPy_API::mcrf_module);
if (!obj) {
PyErr_Format(PyExc_RuntimeError, "Could not create %s object", typeName);
return nullptr;
}
// Access the object through the RAII wrapper
((PyObjType*)obj.get())->data = data;
// Release ownership to return to Python
return obj.release();
}
}

164
src/PyPositionHelper.h Normal file
View File

@ -0,0 +1,164 @@
#pragma once
#include "Python.h"
#include "PyVector.h"
#include "McRFPy_API.h"
// Helper class for standardized position argument parsing across UI classes
class PyPositionHelper {
public:
// Template structure for parsing results
struct ParseResult {
float x = 0.0f;
float y = 0.0f;
bool has_position = false;
};
struct ParseResultInt {
int x = 0;
int y = 0;
bool has_position = false;
};
// Parse position from multiple formats for UI class constructors
// Supports: (x, y), x=x, y=y, ((x,y)), (pos=(x,y)), (Vector), pos=Vector
static ParseResult parse_position(PyObject* args, PyObject* kwds,
int* arg_index = nullptr)
{
ParseResult result;
float x = 0.0f, y = 0.0f;
PyObject* pos_obj = nullptr;
int start_index = arg_index ? *arg_index : 0;
// Check for positional tuple (x, y) first
if (!kwds && PyTuple_Size(args) > start_index + 1) {
PyObject* first = PyTuple_GetItem(args, start_index);
PyObject* second = PyTuple_GetItem(args, start_index + 1);
// Check if both are numbers
if ((PyFloat_Check(first) || PyLong_Check(first)) &&
(PyFloat_Check(second) || PyLong_Check(second))) {
x = PyFloat_Check(first) ? PyFloat_AsDouble(first) : PyLong_AsLong(first);
y = PyFloat_Check(second) ? PyFloat_AsDouble(second) : PyLong_AsLong(second);
result.x = x;
result.y = y;
result.has_position = true;
if (arg_index) *arg_index += 2;
return result;
}
}
// Check for single positional argument that might be tuple or Vector
if (!kwds && PyTuple_Size(args) > start_index) {
PyObject* first = PyTuple_GetItem(args, start_index);
PyVectorObject* vec = PyVector::from_arg(first);
if (vec) {
result.x = vec->data.x;
result.y = vec->data.y;
result.has_position = true;
if (arg_index) *arg_index += 1;
return result;
}
}
// Try keyword arguments
if (kwds) {
PyObject* x_obj = PyDict_GetItemString(kwds, "x");
PyObject* y_obj = PyDict_GetItemString(kwds, "y");
PyObject* pos_kw = PyDict_GetItemString(kwds, "pos");
if (x_obj && y_obj) {
if ((PyFloat_Check(x_obj) || PyLong_Check(x_obj)) &&
(PyFloat_Check(y_obj) || PyLong_Check(y_obj))) {
result.x = PyFloat_Check(x_obj) ? PyFloat_AsDouble(x_obj) : PyLong_AsLong(x_obj);
result.y = PyFloat_Check(y_obj) ? PyFloat_AsDouble(y_obj) : PyLong_AsLong(y_obj);
result.has_position = true;
return result;
}
}
if (pos_kw) {
PyVectorObject* vec = PyVector::from_arg(pos_kw);
if (vec) {
result.x = vec->data.x;
result.y = vec->data.y;
result.has_position = true;
return result;
}
}
}
return result;
}
// Parse integer position for Grid.at() and similar
static ParseResultInt parse_position_int(PyObject* args, PyObject* kwds)
{
ParseResultInt result;
// Check for positional tuple (x, y) first
if (!kwds && PyTuple_Size(args) >= 2) {
PyObject* first = PyTuple_GetItem(args, 0);
PyObject* second = PyTuple_GetItem(args, 1);
if (PyLong_Check(first) && PyLong_Check(second)) {
result.x = PyLong_AsLong(first);
result.y = PyLong_AsLong(second);
result.has_position = true;
return result;
}
}
// Check for single tuple argument
if (!kwds && PyTuple_Size(args) == 1) {
PyObject* first = PyTuple_GetItem(args, 0);
if (PyTuple_Check(first) && PyTuple_Size(first) == 2) {
PyObject* x_obj = PyTuple_GetItem(first, 0);
PyObject* y_obj = PyTuple_GetItem(first, 1);
if (PyLong_Check(x_obj) && PyLong_Check(y_obj)) {
result.x = PyLong_AsLong(x_obj);
result.y = PyLong_AsLong(y_obj);
result.has_position = true;
return result;
}
}
}
// Try keyword arguments
if (kwds) {
PyObject* x_obj = PyDict_GetItemString(kwds, "x");
PyObject* y_obj = PyDict_GetItemString(kwds, "y");
PyObject* pos_obj = PyDict_GetItemString(kwds, "pos");
if (x_obj && y_obj && PyLong_Check(x_obj) && PyLong_Check(y_obj)) {
result.x = PyLong_AsLong(x_obj);
result.y = PyLong_AsLong(y_obj);
result.has_position = true;
return result;
}
if (pos_obj && PyTuple_Check(pos_obj) && PyTuple_Size(pos_obj) == 2) {
PyObject* x_val = PyTuple_GetItem(pos_obj, 0);
PyObject* y_val = PyTuple_GetItem(pos_obj, 1);
if (PyLong_Check(x_val) && PyLong_Check(y_val)) {
result.x = PyLong_AsLong(x_val);
result.y = PyLong_AsLong(y_val);
result.has_position = true;
return result;
}
}
}
return result;
}
// Error message helper
static void set_position_error() {
PyErr_SetString(PyExc_TypeError,
"Position can be specified as: (x, y), x=x, y=y, ((x,y)), pos=(x,y), or pos=Vector");
}
static void set_position_int_error() {
PyErr_SetString(PyExc_TypeError,
"Position must be specified as: (x, y), x=x, y=y, ((x,y)), or pos=(x,y) with integer values");
}
};

138
src/PyRAII.h Normal file
View File

@ -0,0 +1,138 @@
#pragma once
#include "Python.h"
#include <utility>
namespace PyRAII {
// RAII wrapper for PyObject* that automatically manages reference counting
class PyObjectRef {
private:
PyObject* ptr;
public:
// Constructors
PyObjectRef() : ptr(nullptr) {}
explicit PyObjectRef(PyObject* p, bool steal_ref = false) : ptr(p) {
if (ptr && !steal_ref) {
Py_INCREF(ptr);
}
}
// Copy constructor
PyObjectRef(const PyObjectRef& other) : ptr(other.ptr) {
if (ptr) {
Py_INCREF(ptr);
}
}
// Move constructor
PyObjectRef(PyObjectRef&& other) noexcept : ptr(other.ptr) {
other.ptr = nullptr;
}
// Destructor
~PyObjectRef() {
Py_XDECREF(ptr);
}
// Copy assignment
PyObjectRef& operator=(const PyObjectRef& other) {
if (this != &other) {
Py_XDECREF(ptr);
ptr = other.ptr;
if (ptr) {
Py_INCREF(ptr);
}
}
return *this;
}
// Move assignment
PyObjectRef& operator=(PyObjectRef&& other) noexcept {
if (this != &other) {
Py_XDECREF(ptr);
ptr = other.ptr;
other.ptr = nullptr;
}
return *this;
}
// Access operators
PyObject* get() const { return ptr; }
PyObject* operator->() const { return ptr; }
PyObject& operator*() const { return *ptr; }
operator bool() const { return ptr != nullptr; }
// Release ownership (for returning to Python)
PyObject* release() {
PyObject* temp = ptr;
ptr = nullptr;
return temp;
}
// Reset with new pointer
void reset(PyObject* p = nullptr, bool steal_ref = false) {
if (p != ptr) {
Py_XDECREF(ptr);
ptr = p;
if (ptr && !steal_ref) {
Py_INCREF(ptr);
}
}
}
};
// Helper class for managing PyTypeObject* references from module lookups
class PyTypeRef {
private:
PyTypeObject* type;
public:
PyTypeRef() : type(nullptr) {}
explicit PyTypeRef(const char* typeName, PyObject* module) {
type = (PyTypeObject*)PyObject_GetAttrString(module, typeName);
// GetAttrString returns a new reference, so we own it
}
~PyTypeRef() {
Py_XDECREF((PyObject*)type);
}
// Delete copy operations to prevent accidental reference issues
PyTypeRef(const PyTypeRef&) = delete;
PyTypeRef& operator=(const PyTypeRef&) = delete;
// Allow move operations
PyTypeRef(PyTypeRef&& other) noexcept : type(other.type) {
other.type = nullptr;
}
PyTypeRef& operator=(PyTypeRef&& other) noexcept {
if (this != &other) {
Py_XDECREF((PyObject*)type);
type = other.type;
other.type = nullptr;
}
return *this;
}
PyTypeObject* get() const { return type; }
PyTypeObject* operator->() const { return type; }
operator bool() const { return type != nullptr; }
};
// Convenience function to create a new object with RAII
template<typename PyObjType>
PyObjectRef createObject(const char* typeName, PyObject* module) {
PyTypeRef type(typeName, module);
if (!type) {
return PyObjectRef();
}
PyObject* obj = type->tp_alloc(type.get(), 0);
// tp_alloc returns a new reference, so we steal it
return PyObjectRef(obj, true);
}
}

View File

@ -2,6 +2,7 @@
#include "ActionCode.h"
#include "Resources.h"
#include "PyCallable.h"
#include <algorithm>
PyScene::PyScene(GameEngine* g) : Scene(g)
{
@ -11,7 +12,8 @@ PyScene::PyScene(GameEngine* g) : Scene(g)
registerAction(ActionCode::MOUSEWHEEL + ActionCode::WHEEL_DEL, "wheel_up");
registerAction(ActionCode::MOUSEWHEEL + ActionCode::WHEEL_NEG + ActionCode::WHEEL_DEL, "wheel_down");
registerAction(ActionCode::KEY + sf::Keyboard::Grave, "debug_menu");
// console (` / ~ key) - don't hard code.
//registerAction(ActionCode::KEY + sf::Keyboard::Grave, "debug_menu");
}
void PyScene::update()
@ -20,38 +22,39 @@ void PyScene::update()
void PyScene::do_mouse_input(std::string button, std::string type)
{
// In headless mode, mouse input is not available
if (game->isHeadless()) {
return;
}
auto unscaledmousepos = sf::Mouse::getPosition(game->getWindow());
auto mousepos = game->getWindow().mapPixelToCoords(unscaledmousepos);
UIDrawable* target;
for (auto d: *ui_elements)
{
target = d->click_at(sf::Vector2f(mousepos));
if (target)
{
/*
PyObject* args = Py_BuildValue("(iiss)", (int)mousepos.x, (int)mousepos.y, button.c_str(), type.c_str());
PyObject* retval = PyObject_Call(target->click_callable, args, NULL);
if (!retval)
{
std::cout << "click_callable has raised an exception. It's going to STDERR and being dropped:" << std::endl;
PyErr_Print();
PyErr_Clear();
} else if (retval != Py_None)
{
std::cout << "click_callable returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
}
*/
// Convert window coordinates to game coordinates using the viewport
auto mousepos = game->windowToGameCoords(sf::Vector2f(unscaledmousepos));
// Only sort if z_index values have changed
if (ui_elements_need_sort) {
// Sort in ascending order (same as render)
std::sort(ui_elements->begin(), ui_elements->end(),
[](const auto& a, const auto& b) { return a->z_index < b->z_index; });
ui_elements_need_sort = false;
}
// Check elements in reverse z-order (highest z_index first, top to bottom)
// Use reverse iterators to go from end to beginning
for (auto it = ui_elements->rbegin(); it != ui_elements->rend(); ++it) {
const auto& element = *it;
if (!element->visible) continue;
if (auto target = element->click_at(sf::Vector2f(mousepos))) {
target->click_callable->call(mousepos, button, type);
return; // Stop after first handler
}
}
}
void PyScene::doAction(std::string name, std::string type)
{
if (ACTIONPY) {
McRFPy_API::doAction(name.substr(0, name.size() - 3));
}
else if (name.compare("left") == 0 || name.compare("rclick") == 0 || name.compare("wheel_up") == 0 || name.compare("wheel_down") == 0) {
if (name.compare("left") == 0 || name.compare("rclick") == 0 || name.compare("wheel_up") == 0 || name.compare("wheel_down") == 0) {
do_mouse_input(name, type);
}
else if ACTIONONCE("debug_menu") {
@ -59,16 +62,33 @@ void PyScene::doAction(std::string name, std::string type)
}
}
void PyScene::sRender()
void PyScene::render()
{
game->getWindow().clear();
game->getRenderTarget().clear();
auto vec = *ui_elements;
for (auto e: vec)
{
if (e)
e->render();
// Only sort if z_index values have changed
if (ui_elements_need_sort) {
std::sort(ui_elements->begin(), ui_elements->end(),
[](const std::shared_ptr<UIDrawable>& a, const std::shared_ptr<UIDrawable>& b) {
return a->z_index < b->z_index;
});
ui_elements_need_sort = false;
}
game->getWindow().display();
// Render in sorted order (no need to copy anymore)
for (auto e: *ui_elements)
{
if (e) {
// Track metrics
game->metrics.uiElements++;
if (e->visible) {
game->metrics.visibleElements++;
// Count this as a draw call (each visible element = 1+ draw calls)
game->metrics.drawCalls++;
}
e->render();
}
}
// Display is handled by GameEngine
}

View File

@ -11,7 +11,10 @@ public:
PyScene(GameEngine*);
void update() override final;
void doAction(std::string, std::string) override final;
void sRender() override final;
void render() override final;
void do_mouse_input(std::string, std::string);
// Dirty flag for z_index sorting optimization
bool ui_elements_need_sort = true;
};

268
src/PySceneObject.cpp Normal file
View File

@ -0,0 +1,268 @@
#include "PySceneObject.h"
#include "PyScene.h"
#include "GameEngine.h"
#include "McRFPy_API.h"
#include <iostream>
// Static map to store Python scene objects by name
static std::map<std::string, PySceneObject*> python_scenes;
PyObject* PySceneClass::__new__(PyTypeObject* type, PyObject* args, PyObject* kwds)
{
PySceneObject* self = (PySceneObject*)type->tp_alloc(type, 0);
if (self) {
self->initialized = false;
// Don't create C++ scene yet - wait for __init__
}
return (PyObject*)self;
}
int PySceneClass::__init__(PySceneObject* self, PyObject* args, PyObject* kwds)
{
static const char* keywords[] = {"name", nullptr};
const char* name = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "s", const_cast<char**>(keywords), &name)) {
return -1;
}
// Check if scene with this name already exists
if (python_scenes.count(name) > 0) {
PyErr_Format(PyExc_ValueError, "Scene with name '%s' already exists", name);
return -1;
}
self->name = name;
// Create the C++ PyScene
McRFPy_API::game->createScene(name);
// Get reference to the created scene
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
// Store this Python object in our registry
python_scenes[name] = self;
Py_INCREF(self); // Keep a reference
// Create a Python function that routes to on_keypress
// We'll register this after the object is fully initialized
self->initialized = true;
return 0;
}
void PySceneClass::__dealloc(PyObject* self_obj)
{
PySceneObject* self = (PySceneObject*)self_obj;
// Remove from registry
if (python_scenes.count(self->name) > 0 && python_scenes[self->name] == self) {
python_scenes.erase(self->name);
}
// Call Python object destructor
Py_TYPE(self)->tp_free(self);
}
PyObject* PySceneClass::__repr__(PySceneObject* self)
{
return PyUnicode_FromFormat("<Scene '%s'>", self->name.c_str());
}
PyObject* PySceneClass::activate(PySceneObject* self, PyObject* args)
{
// Call the static method from McRFPy_API
PyObject* py_args = Py_BuildValue("(s)", self->name.c_str());
PyObject* result = McRFPy_API::_setScene(NULL, py_args);
Py_DECREF(py_args);
return result;
}
PyObject* PySceneClass::get_ui(PySceneObject* self, PyObject* args)
{
// Call the static method from McRFPy_API
PyObject* py_args = Py_BuildValue("(s)", self->name.c_str());
PyObject* result = McRFPy_API::_sceneUI(NULL, py_args);
Py_DECREF(py_args);
return result;
}
PyObject* PySceneClass::register_keyboard(PySceneObject* self, PyObject* args)
{
PyObject* callable;
if (!PyArg_ParseTuple(args, "O", &callable)) {
return NULL;
}
if (!PyCallable_Check(callable)) {
PyErr_SetString(PyExc_TypeError, "Argument must be callable");
return NULL;
}
// Store the callable
Py_INCREF(callable);
// Get the current scene and set its key_callable
GameEngine* game = McRFPy_API::game;
if (game) {
// We need to be on the right scene first
std::string old_scene = game->scene;
game->scene = self->name;
game->currentScene()->key_callable = std::make_unique<PyKeyCallable>(callable);
game->scene = old_scene;
}
Py_DECREF(callable);
Py_RETURN_NONE;
}
PyObject* PySceneClass::get_name(PySceneObject* self, void* closure)
{
return PyUnicode_FromString(self->name.c_str());
}
PyObject* PySceneClass::get_active(PySceneObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
Py_RETURN_FALSE;
}
return PyBool_FromLong(game->scene == self->name);
}
// Lifecycle callbacks
void PySceneClass::call_on_enter(PySceneObject* self)
{
PyObject* method = PyObject_GetAttrString((PyObject*)self, "on_enter");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallNoArgs(method);
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
}
void PySceneClass::call_on_exit(PySceneObject* self)
{
PyObject* method = PyObject_GetAttrString((PyObject*)self, "on_exit");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallNoArgs(method);
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
}
void PySceneClass::call_on_keypress(PySceneObject* self, std::string key, std::string action)
{
PyGILState_STATE gstate = PyGILState_Ensure();
PyObject* method = PyObject_GetAttrString((PyObject*)self, "on_keypress");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallFunction(method, "ss", key.c_str(), action.c_str());
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
PyGILState_Release(gstate);
}
void PySceneClass::call_update(PySceneObject* self, float dt)
{
PyObject* method = PyObject_GetAttrString((PyObject*)self, "update");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallFunction(method, "f", dt);
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
}
void PySceneClass::call_on_resize(PySceneObject* self, int width, int height)
{
PyObject* method = PyObject_GetAttrString((PyObject*)self, "on_resize");
if (method && PyCallable_Check(method)) {
PyObject* result = PyObject_CallFunction(method, "ii", width, height);
if (result) {
Py_DECREF(result);
} else {
PyErr_Print();
}
}
Py_XDECREF(method);
}
// Properties
PyGetSetDef PySceneClass::getsetters[] = {
{"name", (getter)get_name, NULL, "Scene name", NULL},
{"active", (getter)get_active, NULL, "Whether this scene is currently active", NULL},
{NULL}
};
// Methods
PyMethodDef PySceneClass::methods[] = {
{"activate", (PyCFunction)activate, METH_NOARGS,
"Make this the active scene"},
{"get_ui", (PyCFunction)get_ui, METH_NOARGS,
"Get the UI element collection for this scene"},
{"register_keyboard", (PyCFunction)register_keyboard, METH_VARARGS,
"Register a keyboard handler function (alternative to overriding on_keypress)"},
{NULL}
};
// Helper function to trigger lifecycle events
void McRFPy_API::triggerSceneChange(const std::string& from_scene, const std::string& to_scene)
{
// Call on_exit for the old scene
if (!from_scene.empty() && python_scenes.count(from_scene) > 0) {
PySceneClass::call_on_exit(python_scenes[from_scene]);
}
// Call on_enter for the new scene
if (!to_scene.empty() && python_scenes.count(to_scene) > 0) {
PySceneClass::call_on_enter(python_scenes[to_scene]);
}
}
// Helper function to update Python scenes
void McRFPy_API::updatePythonScenes(float dt)
{
GameEngine* game = McRFPy_API::game;
if (!game) return;
// Only update the active scene
if (python_scenes.count(game->scene) > 0) {
PySceneClass::call_update(python_scenes[game->scene], dt);
}
}
// Helper function to trigger resize events on Python scenes
void McRFPy_API::triggerResize(int width, int height)
{
GameEngine* game = McRFPy_API::game;
if (!game) return;
// Only notify the active scene
if (python_scenes.count(game->scene) > 0) {
PySceneClass::call_on_resize(python_scenes[game->scene], width, height);
}
}

63
src/PySceneObject.h Normal file
View File

@ -0,0 +1,63 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <string>
#include <memory>
// Forward declarations
class PyScene;
// Python object structure for Scene
typedef struct {
PyObject_HEAD
std::string name;
std::shared_ptr<PyScene> scene; // Reference to the C++ scene
bool initialized;
} PySceneObject;
// C++ interface for Python Scene class
class PySceneClass
{
public:
// Type methods
static PyObject* __new__(PyTypeObject* type, PyObject* args, PyObject* kwds);
static int __init__(PySceneObject* self, PyObject* args, PyObject* kwds);
static void __dealloc(PyObject* self);
static PyObject* __repr__(PySceneObject* self);
// Scene methods
static PyObject* activate(PySceneObject* self, PyObject* args);
static PyObject* get_ui(PySceneObject* self, PyObject* args);
static PyObject* register_keyboard(PySceneObject* self, PyObject* args);
// Properties
static PyObject* get_name(PySceneObject* self, void* closure);
static PyObject* get_active(PySceneObject* self, void* closure);
// Lifecycle callbacks (called from C++)
static void call_on_enter(PySceneObject* self);
static void call_on_exit(PySceneObject* self);
static void call_on_keypress(PySceneObject* self, std::string key, std::string action);
static void call_update(PySceneObject* self, float dt);
static void call_on_resize(PySceneObject* self, int width, int height);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
static PyTypeObject PySceneType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Scene",
.tp_basicsize = sizeof(PySceneObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)PySceneClass::__dealloc,
.tp_repr = (reprfunc)PySceneClass::__repr__,
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, // Allow subclassing
.tp_doc = PyDoc_STR("Base class for object-oriented scenes"),
.tp_methods = nullptr, // Set in McRFPy_API.cpp
.tp_getset = nullptr, // Set in McRFPy_API.cpp
.tp_init = (initproc)PySceneClass::__init__,
.tp_new = PySceneClass::__new__,
};
}

141
src/PyTexture.cpp Normal file
View File

@ -0,0 +1,141 @@
#include "PyTexture.h"
#include "McRFPy_API.h"
PyTexture::PyTexture(std::string filename, int sprite_w, int sprite_h)
: source(filename), sprite_width(sprite_w), sprite_height(sprite_h), sheet_width(0), sheet_height(0)
{
texture = sf::Texture();
if (!texture.loadFromFile(source)) {
// Failed to load texture - leave sheet dimensions as 0
// This will be checked in init()
return;
}
texture.setSmooth(false); // Disable smoothing for pixel art
auto size = texture.getSize();
sheet_width = (size.x / sprite_width);
sheet_height = (size.y / sprite_height);
if (size.x % sprite_width != 0 || size.y % sprite_height != 0)
{
std::cout << "Warning: Texture `" << source << "` is not an even number of sprite widths or heights across." << std::endl
<< "Sprite size given was " << sprite_w << "x" << sprite_h << "px but the file has a resolution of " << sheet_width << "x" << sheet_height << "px." << std::endl;
}
}
sf::Sprite PyTexture::sprite(int index, sf::Vector2f pos, sf::Vector2f s)
{
// Protect against division by zero if texture failed to load
if (sheet_width == 0 || sheet_height == 0) {
// Return an empty sprite
return sf::Sprite();
}
int tx = index % sheet_width, ty = index / sheet_width;
auto ir = sf::IntRect(tx * sprite_width, ty * sprite_height, sprite_width, sprite_height);
auto sprite = sf::Sprite(texture, ir);
sprite.setPosition(pos);
sprite.setScale(s);
return sprite;
}
PyObject* PyTexture::pyObject()
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Texture");
PyObject* obj = PyTexture::pynew(type, Py_None, Py_None);
try {
((PyTextureObject*)obj)->data = shared_from_this();
}
catch (std::bad_weak_ptr& e)
{
std::cout << "Bad weak ptr: shared_from_this() failed in PyTexture::pyObject(); did you create a PyTexture outside of std::make_shared? enjoy your segfault, soon!" << std::endl;
}
// TODO - shared_from_this will raise an exception if the object does not have a shared pointer. Constructor should be made private; write a factory function
return obj;
}
PyObject* PyTexture::repr(PyObject* obj)
{
PyTextureObject* self = (PyTextureObject*)obj;
std::ostringstream ss;
if (!self->data)
{
ss << "<Texture [invalid internal object]>";
std::string repr_str = ss.str();
return PyUnicode_DecodeUTF8(repr_str.c_str(), repr_str.size(), "replace");
}
auto& ptex = *(self->data);
ss << "<Texture " << ptex.sheet_height << " rows, " << ptex.sheet_width << " columns; " << ptex.sprite_width << "x" << ptex.sprite_height << "px sprites. source='" << ptex.source << "'>";
std::string repr_str = ss.str();
return PyUnicode_DecodeUTF8(repr_str.c_str(), repr_str.size(), "replace");
}
Py_hash_t PyTexture::hash(PyObject* obj)
{
auto self = (PyTextureObject*)obj;
return reinterpret_cast<Py_hash_t>(self->data.get());
}
int PyTexture::init(PyTextureObject* self, PyObject* args, PyObject* kwds)
{
static const char* keywords[] = { "filename", "sprite_width", "sprite_height", nullptr };
char* filename;
int sprite_width, sprite_height;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "sii", const_cast<char**>(keywords), &filename, &sprite_width, &sprite_height))
return -1;
// Create the texture object
self->data = std::make_shared<PyTexture>(filename, sprite_width, sprite_height);
// Check if the texture failed to load (sheet dimensions will be 0)
if (self->data->sheet_width == 0 || self->data->sheet_height == 0) {
PyErr_Format(PyExc_IOError, "Failed to load texture from file: %s", filename);
return -1;
}
return 0;
}
PyObject* PyTexture::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
{
return (PyObject*)type->tp_alloc(type, 0);
}
PyObject* PyTexture::get_sprite_width(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->sprite_width);
}
PyObject* PyTexture::get_sprite_height(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->sprite_height);
}
PyObject* PyTexture::get_sheet_width(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->sheet_width);
}
PyObject* PyTexture::get_sheet_height(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->sheet_height);
}
PyObject* PyTexture::get_sprite_count(PyTextureObject* self, void* closure)
{
return PyLong_FromLong(self->data->getSpriteCount());
}
PyObject* PyTexture::get_source(PyTextureObject* self, void* closure)
{
return PyUnicode_FromString(self->data->source.c_str());
}
PyGetSetDef PyTexture::getsetters[] = {
{"sprite_width", (getter)PyTexture::get_sprite_width, NULL, "Width of each sprite in pixels", NULL},
{"sprite_height", (getter)PyTexture::get_sprite_height, NULL, "Height of each sprite in pixels", NULL},
{"sheet_width", (getter)PyTexture::get_sheet_width, NULL, "Number of sprite columns in the texture", NULL},
{"sheet_height", (getter)PyTexture::get_sheet_height, NULL, "Number of sprite rows in the texture", NULL},
{"sprite_count", (getter)PyTexture::get_sprite_count, NULL, "Total number of sprites in the texture", NULL},
{"source", (getter)PyTexture::get_source, NULL, "Source filename of the texture", NULL},
{NULL} // Sentinel
};

56
src/PyTexture.h Normal file
View File

@ -0,0 +1,56 @@
#pragma once
#include "Common.h"
#include "Python.h"
class PyTexture;
typedef struct {
PyObject_HEAD
std::shared_ptr<PyTexture> data;
} PyTextureObject;
class PyTexture : public std::enable_shared_from_this<PyTexture>
{
private:
sf::Texture texture;
std::string source;
int sheet_width, sheet_height;
public:
int sprite_width, sprite_height; // just use them read only, OK?
PyTexture(std::string filename, int sprite_w, int sprite_h);
sf::Sprite sprite(int index, sf::Vector2f pos = sf::Vector2f(0, 0), sf::Vector2f s = sf::Vector2f(1.0, 1.0));
int getSpriteCount() const { return sheet_width * sheet_height; }
PyObject* pyObject();
static PyObject* repr(PyObject*);
static Py_hash_t hash(PyObject*);
static int init(PyTextureObject*, PyObject*, PyObject*);
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
// Getters for properties
static PyObject* get_sprite_width(PyTextureObject* self, void* closure);
static PyObject* get_sprite_height(PyTextureObject* self, void* closure);
static PyObject* get_sheet_width(PyTextureObject* self, void* closure);
static PyObject* get_sheet_height(PyTextureObject* self, void* closure);
static PyObject* get_sprite_count(PyTextureObject* self, void* closure);
static PyObject* get_source(PyTextureObject* self, void* closure);
static PyGetSetDef getsetters[];
};
namespace mcrfpydef {
static PyTypeObject PyTextureType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Texture",
.tp_basicsize = sizeof(PyTextureObject),
.tp_itemsize = 0,
.tp_repr = PyTexture::repr,
.tp_hash = PyTexture::hash,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Texture Object"),
.tp_getset = PyTexture::getsetters,
//.tp_base = &PyBaseObject_Type,
.tp_init = (initproc)PyTexture::init,
.tp_new = PyType_GenericNew, //PyTexture::pynew,
};
}

344
src/PyTimer.cpp Normal file
View File

@ -0,0 +1,344 @@
#include "PyTimer.h"
#include "Timer.h"
#include "GameEngine.h"
#include "Resources.h"
#include "PythonObjectCache.h"
#include <sstream>
PyObject* PyTimer::repr(PyObject* self) {
PyTimerObject* timer = (PyTimerObject*)self;
std::ostringstream oss;
oss << "<Timer name='" << timer->name << "' ";
if (timer->data) {
oss << "interval=" << timer->data->getInterval() << "ms ";
if (timer->data->isOnce()) {
oss << "once=True ";
}
if (timer->data->isPaused()) {
oss << "paused";
// Get current time to show remaining
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
oss << " (remaining=" << timer->data->getRemaining(current_time) << "ms)";
} else if (timer->data->isActive()) {
oss << "active";
} else {
oss << "cancelled";
}
} else {
oss << "uninitialized";
}
oss << ">";
return PyUnicode_FromString(oss.str().c_str());
}
PyObject* PyTimer::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds) {
PyTimerObject* self = (PyTimerObject*)type->tp_alloc(type, 0);
if (self) {
new(&self->name) std::string(); // Placement new for std::string
self->data = nullptr;
self->weakreflist = nullptr; // Initialize weakref list
}
return (PyObject*)self;
}
int PyTimer::init(PyTimerObject* self, PyObject* args, PyObject* kwds) {
static const char* kwlist[] = {"name", "callback", "interval", "once", NULL};
const char* name = nullptr;
PyObject* callback = nullptr;
int interval = 0;
int once = 0; // Use int for bool parameter
if (!PyArg_ParseTupleAndKeywords(args, kwds, "sOi|p", const_cast<char**>(kwlist),
&name, &callback, &interval, &once)) {
return -1;
}
if (!PyCallable_Check(callback)) {
PyErr_SetString(PyExc_TypeError, "callback must be callable");
return -1;
}
if (interval <= 0) {
PyErr_SetString(PyExc_ValueError, "interval must be positive");
return -1;
}
self->name = name;
// Get current time from game engine
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
// Create the timer
self->data = std::make_shared<Timer>(callback, interval, current_time, (bool)once);
// Register in Python object cache
if (self->data->serial_number == 0) {
self->data->serial_number = PythonObjectCache::getInstance().assignSerial();
PyObject* weakref = PyWeakref_NewRef((PyObject*)self, NULL);
if (weakref) {
PythonObjectCache::getInstance().registerObject(self->data->serial_number, weakref);
Py_DECREF(weakref); // Cache owns the reference now
}
}
// Register with game engine
if (Resources::game) {
Resources::game->timers[self->name] = self->data;
}
return 0;
}
void PyTimer::dealloc(PyTimerObject* self) {
// Clear weakrefs first
if (self->weakreflist != nullptr) {
PyObject_ClearWeakRefs((PyObject*)self);
}
// Remove from game engine if still registered
if (Resources::game && !self->name.empty()) {
auto it = Resources::game->timers.find(self->name);
if (it != Resources::game->timers.end() && it->second == self->data) {
Resources::game->timers.erase(it);
}
}
// Explicitly destroy std::string
self->name.~basic_string();
// Clear shared_ptr
self->data.reset();
Py_TYPE(self)->tp_free((PyObject*)self);
}
// Timer control methods
PyObject* PyTimer::pause(PyTimerObject* self, PyObject* Py_UNUSED(ignored)) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
self->data->pause(current_time);
Py_RETURN_NONE;
}
PyObject* PyTimer::resume(PyTimerObject* self, PyObject* Py_UNUSED(ignored)) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
self->data->resume(current_time);
Py_RETURN_NONE;
}
PyObject* PyTimer::cancel(PyTimerObject* self, PyObject* Py_UNUSED(ignored)) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
// Remove from game engine
if (Resources::game && !self->name.empty()) {
auto it = Resources::game->timers.find(self->name);
if (it != Resources::game->timers.end() && it->second == self->data) {
Resources::game->timers.erase(it);
}
}
self->data->cancel();
self->data.reset();
Py_RETURN_NONE;
}
PyObject* PyTimer::restart(PyTimerObject* self, PyObject* Py_UNUSED(ignored)) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
self->data->restart(current_time);
Py_RETURN_NONE;
}
// Property getters/setters
PyObject* PyTimer::get_interval(PyTimerObject* self, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
return PyLong_FromLong(self->data->getInterval());
}
int PyTimer::set_interval(PyTimerObject* self, PyObject* value, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return -1;
}
if (!PyLong_Check(value)) {
PyErr_SetString(PyExc_TypeError, "interval must be an integer");
return -1;
}
long interval = PyLong_AsLong(value);
if (interval <= 0) {
PyErr_SetString(PyExc_ValueError, "interval must be positive");
return -1;
}
self->data->setInterval(interval);
return 0;
}
PyObject* PyTimer::get_remaining(PyTimerObject* self, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
int current_time = 0;
if (Resources::game) {
current_time = Resources::game->runtime.getElapsedTime().asMilliseconds();
}
return PyLong_FromLong(self->data->getRemaining(current_time));
}
PyObject* PyTimer::get_paused(PyTimerObject* self, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
return PyBool_FromLong(self->data->isPaused());
}
PyObject* PyTimer::get_active(PyTimerObject* self, void* closure) {
if (!self->data) {
return Py_False;
}
return PyBool_FromLong(self->data->isActive());
}
PyObject* PyTimer::get_callback(PyTimerObject* self, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
PyObject* callback = self->data->getCallback();
if (!callback) {
Py_RETURN_NONE;
}
Py_INCREF(callback);
return callback;
}
int PyTimer::set_callback(PyTimerObject* self, PyObject* value, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return -1;
}
if (!PyCallable_Check(value)) {
PyErr_SetString(PyExc_TypeError, "callback must be callable");
return -1;
}
self->data->setCallback(value);
return 0;
}
PyObject* PyTimer::get_once(PyTimerObject* self, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return nullptr;
}
return PyBool_FromLong(self->data->isOnce());
}
int PyTimer::set_once(PyTimerObject* self, PyObject* value, void* closure) {
if (!self->data) {
PyErr_SetString(PyExc_RuntimeError, "Timer not initialized");
return -1;
}
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "once must be a boolean");
return -1;
}
self->data->setOnce(PyObject_IsTrue(value));
return 0;
}
PyObject* PyTimer::get_name(PyTimerObject* self, void* closure) {
return PyUnicode_FromString(self->name.c_str());
}
PyGetSetDef PyTimer::getsetters[] = {
{"name", (getter)PyTimer::get_name, NULL,
"Timer name (read-only)", NULL},
{"interval", (getter)PyTimer::get_interval, (setter)PyTimer::set_interval,
"Timer interval in milliseconds", NULL},
{"remaining", (getter)PyTimer::get_remaining, NULL,
"Time remaining until next trigger in milliseconds", NULL},
{"paused", (getter)PyTimer::get_paused, NULL,
"Whether the timer is paused", NULL},
{"active", (getter)PyTimer::get_active, NULL,
"Whether the timer is active and not paused", NULL},
{"callback", (getter)PyTimer::get_callback, (setter)PyTimer::set_callback,
"The callback function to be called", NULL},
{"once", (getter)PyTimer::get_once, (setter)PyTimer::set_once,
"Whether the timer stops after firing once", NULL},
{NULL}
};
PyMethodDef PyTimer::methods[] = {
{"pause", (PyCFunction)PyTimer::pause, METH_NOARGS,
"pause() -> None\n\n"
"Pause the timer, preserving the time remaining until next trigger.\n"
"The timer can be resumed later with resume()."},
{"resume", (PyCFunction)PyTimer::resume, METH_NOARGS,
"resume() -> None\n\n"
"Resume a paused timer from where it left off.\n"
"Has no effect if the timer is not paused."},
{"cancel", (PyCFunction)PyTimer::cancel, METH_NOARGS,
"cancel() -> None\n\n"
"Cancel the timer and remove it from the timer system.\n"
"The timer will no longer fire and cannot be restarted."},
{"restart", (PyCFunction)PyTimer::restart, METH_NOARGS,
"restart() -> None\n\n"
"Restart the timer from the beginning.\n"
"Resets the timer to fire after a full interval from now."},
{NULL}
};

90
src/PyTimer.h Normal file
View File

@ -0,0 +1,90 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <memory>
#include <string>
class Timer;
typedef struct {
PyObject_HEAD
std::shared_ptr<Timer> data;
std::string name;
PyObject* weakreflist; // Weak reference support
} PyTimerObject;
class PyTimer
{
public:
// Python type methods
static PyObject* repr(PyObject* self);
static int init(PyTimerObject* self, PyObject* args, PyObject* kwds);
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
static void dealloc(PyTimerObject* self);
// Timer control methods
static PyObject* pause(PyTimerObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* resume(PyTimerObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* cancel(PyTimerObject* self, PyObject* Py_UNUSED(ignored));
static PyObject* restart(PyTimerObject* self, PyObject* Py_UNUSED(ignored));
// Timer property getters
static PyObject* get_name(PyTimerObject* self, void* closure);
static PyObject* get_interval(PyTimerObject* self, void* closure);
static int set_interval(PyTimerObject* self, PyObject* value, void* closure);
static PyObject* get_remaining(PyTimerObject* self, void* closure);
static PyObject* get_paused(PyTimerObject* self, void* closure);
static PyObject* get_active(PyTimerObject* self, void* closure);
static PyObject* get_callback(PyTimerObject* self, void* closure);
static int set_callback(PyTimerObject* self, PyObject* value, void* closure);
static PyObject* get_once(PyTimerObject* self, void* closure);
static int set_once(PyTimerObject* self, PyObject* value, void* closure);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
static PyTypeObject PyTimerType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Timer",
.tp_basicsize = sizeof(PyTimerObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)PyTimer::dealloc,
.tp_repr = PyTimer::repr,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Timer(name, callback, interval, once=False)\n\n"
"Create a timer that calls a function at regular intervals.\n\n"
"Args:\n"
" name (str): Unique identifier for the timer\n"
" callback (callable): Function to call - receives (timer, runtime) args\n"
" interval (int): Time between calls in milliseconds\n"
" once (bool): If True, timer stops after first call. Default: False\n\n"
"Attributes:\n"
" interval (int): Time between calls in milliseconds\n"
" remaining (int): Time until next call in milliseconds (read-only)\n"
" paused (bool): Whether timer is paused (read-only)\n"
" active (bool): Whether timer is active and not paused (read-only)\n"
" callback (callable): The callback function\n"
" once (bool): Whether timer stops after firing once\n\n"
"Methods:\n"
" pause(): Pause the timer, preserving time remaining\n"
" resume(): Resume a paused timer\n"
" cancel(): Stop and remove the timer\n"
" restart(): Reset timer to start from beginning\n\n"
"Example:\n"
" def on_timer(timer, runtime):\n"
" print(f'Timer {timer} fired at {runtime}ms')\n"
" if runtime > 5000:\n"
" timer.cancel()\n"
" \n"
" timer = mcrfpy.Timer('my_timer', on_timer, 1000)\n"
" timer.pause() # Pause timer\n"
" timer.resume() # Resume timer\n"
" timer.once = True # Make it one-shot"),
.tp_methods = PyTimer::methods,
.tp_getset = PyTimer::getsetters,
.tp_init = (initproc)PyTimer::init,
.tp_new = PyTimer::pynew,
};
}

465
src/PyVector.cpp Normal file
View File

@ -0,0 +1,465 @@
#include "PyVector.h"
#include "PyObjectUtils.h"
#include <cmath>
PyGetSetDef PyVector::getsetters[] = {
{"x", (getter)PyVector::get_member, (setter)PyVector::set_member, "X/horizontal component", (void*)0},
{"y", (getter)PyVector::get_member, (setter)PyVector::set_member, "Y/vertical component", (void*)1},
{NULL}
};
PyMethodDef PyVector::methods[] = {
{"magnitude", (PyCFunction)PyVector::magnitude, METH_NOARGS, "Return the length of the vector"},
{"magnitude_squared", (PyCFunction)PyVector::magnitude_squared, METH_NOARGS, "Return the squared length of the vector"},
{"normalize", (PyCFunction)PyVector::normalize, METH_NOARGS, "Return a unit vector in the same direction"},
{"dot", (PyCFunction)PyVector::dot, METH_O, "Return the dot product with another vector"},
{"distance_to", (PyCFunction)PyVector::distance_to, METH_O, "Return the distance to another vector"},
{"angle", (PyCFunction)PyVector::angle, METH_NOARGS, "Return the angle in radians from the positive X axis"},
{"copy", (PyCFunction)PyVector::copy, METH_NOARGS, "Return a copy of this vector"},
{NULL}
};
namespace mcrfpydef {
PyNumberMethods PyVector_as_number = {
.nb_add = PyVector::add,
.nb_subtract = PyVector::subtract,
.nb_multiply = PyVector::multiply,
.nb_remainder = 0,
.nb_divmod = 0,
.nb_power = 0,
.nb_negative = PyVector::negative,
.nb_positive = 0,
.nb_absolute = PyVector::absolute,
.nb_bool = PyVector::bool_check,
.nb_invert = 0,
.nb_lshift = 0,
.nb_rshift = 0,
.nb_and = 0,
.nb_xor = 0,
.nb_or = 0,
.nb_int = 0,
.nb_reserved = 0,
.nb_float = 0,
.nb_inplace_add = 0,
.nb_inplace_subtract = 0,
.nb_inplace_multiply = 0,
.nb_inplace_remainder = 0,
.nb_inplace_power = 0,
.nb_inplace_lshift = 0,
.nb_inplace_rshift = 0,
.nb_inplace_and = 0,
.nb_inplace_xor = 0,
.nb_inplace_or = 0,
.nb_floor_divide = 0,
.nb_true_divide = PyVector::divide,
.nb_inplace_floor_divide = 0,
.nb_inplace_true_divide = 0,
.nb_index = 0,
.nb_matrix_multiply = 0,
.nb_inplace_matrix_multiply = 0
};
}
PyVector::PyVector(sf::Vector2f target)
:data(target) {}
PyObject* PyVector::pyObject()
{
PyTypeObject* type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
if (!type) return nullptr;
PyVectorObject* obj = (PyVectorObject*)type->tp_alloc(type, 0);
Py_DECREF(type);
if (obj) {
obj->data = data;
}
return (PyObject*)obj;
}
sf::Vector2f PyVector::fromPy(PyObject* obj)
{
PyVectorObject* self = (PyVectorObject*)obj;
return self->data;
}
sf::Vector2f PyVector::fromPy(PyVectorObject* self)
{
return self->data;
}
Py_hash_t PyVector::hash(PyObject* obj)
{
auto self = (PyVectorObject*)obj;
Py_hash_t value = 0;
value += self->data.x;
value << 8; value += self->data.y;
return value;
}
PyObject* PyVector::repr(PyObject* obj)
{
PyVectorObject* self = (PyVectorObject*)obj;
std::ostringstream ss;
sf::Vector2f v = self->data;
ss << "<Vector (" << v.x << ", " << v.y << ")>";
std::string repr_str = ss.str();
return PyUnicode_DecodeUTF8(repr_str.c_str(), repr_str.size(), "replace");
}
int PyVector::init(PyVectorObject* self, PyObject* args, PyObject* kwds)
{
using namespace mcrfpydef;
static const char* keywords[] = { "x", "y", nullptr };
PyObject* leader = NULL;
float x=0, y=0;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Of", const_cast<char**>(keywords), &leader, &y))
{
//PyErr_SetString(PyExc_TypeError, "mcrfpy.Vector requires a 2-tuple or two numeric values");
return -1;
}
if (leader == NULL || leader == Py_None)
{
self->data = sf::Vector2f();
return 0;
}
if (PyTuple_Check(leader))
{
if (PyTuple_Size(leader) != 2)
{
PyErr_SetString(PyExc_TypeError, "Invalid tuple length: mcrfpy.Vector requires a 2-tuple");
return -1;
}
x = PyFloat_AsDouble(PyTuple_GetItem(leader, 0));
y = PyFloat_AsDouble(PyTuple_GetItem(leader, 1));
self->data = sf::Vector2f(x, y);
return 0;
}
// else -
else if (!PyFloat_Check(leader) && !(PyLong_Check(leader)))
{
PyErr_SetString(PyExc_TypeError, "mcrfpy.Vector requires a 2-tuple or two numeric values");
return -1;
}
if (PyFloat_Check(leader)) x = PyFloat_AsDouble(leader);
else x = PyLong_AsDouble(leader);
self->data = sf::Vector2f(x, y);
return 0;
}
PyObject* PyVector::pynew(PyTypeObject* type, PyObject* args, PyObject* kwds)
{
return (PyObject*)type->tp_alloc(type, 0);
}
PyObject* PyVector::get_member(PyObject* obj, void* closure)
{
PyVectorObject* self = (PyVectorObject*)obj;
if (reinterpret_cast<long>(closure) == 0) {
// x
return PyFloat_FromDouble(self->data.x);
} else {
// y
return PyFloat_FromDouble(self->data.y);
}
}
int PyVector::set_member(PyObject* obj, PyObject* value, void* closure)
{
PyVectorObject* self = (PyVectorObject*)obj;
float val;
if (PyFloat_Check(value)) {
val = PyFloat_AsDouble(value);
} else if (PyLong_Check(value)) {
val = PyLong_AsDouble(value);
} else {
PyErr_SetString(PyExc_TypeError, "Vector members must be numeric");
return -1;
}
if (reinterpret_cast<long>(closure) == 0) {
// x
self->data.x = val;
} else {
// y
self->data.y = val;
}
return 0;
}
PyVectorObject* PyVector::from_arg(PyObject* args)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
if (PyObject_IsInstance(args, (PyObject*)type)) return (PyVectorObject*)args;
auto obj = (PyVectorObject*)type->tp_alloc(type, 0);
// Handle different input types
if (PyTuple_Check(args)) {
// It's already a tuple, pass it directly to init
int err = init(obj, args, NULL);
if (err) {
Py_DECREF(obj);
return NULL;
}
} else {
// Wrap single argument in a tuple for init
PyObject* tuple = PyTuple_Pack(1, args);
if (!tuple) {
Py_DECREF(obj);
return NULL;
}
int err = init(obj, tuple, NULL);
Py_DECREF(tuple);
if (err) {
Py_DECREF(obj);
return NULL;
}
}
return obj;
}
// Arithmetic operations
PyObject* PyVector::add(PyObject* left, PyObject* right)
{
// Check if both operands are vectors
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
PyVectorObject* vec1 = nullptr;
PyVectorObject* vec2 = nullptr;
if (PyObject_IsInstance(left, (PyObject*)type) && PyObject_IsInstance(right, (PyObject*)type)) {
vec1 = (PyVectorObject*)left;
vec2 = (PyVectorObject*)right;
} else {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(vec1->data.x + vec2->data.x, vec1->data.y + vec2->data.y);
}
return (PyObject*)result;
}
PyObject* PyVector::subtract(PyObject* left, PyObject* right)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
PyVectorObject* vec1 = nullptr;
PyVectorObject* vec2 = nullptr;
if (PyObject_IsInstance(left, (PyObject*)type) && PyObject_IsInstance(right, (PyObject*)type)) {
vec1 = (PyVectorObject*)left;
vec2 = (PyVectorObject*)right;
} else {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(vec1->data.x - vec2->data.x, vec1->data.y - vec2->data.y);
}
return (PyObject*)result;
}
PyObject* PyVector::multiply(PyObject* left, PyObject* right)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
PyVectorObject* vec = nullptr;
double scalar = 0.0;
// Check for Vector * scalar
if (PyObject_IsInstance(left, (PyObject*)type) && (PyFloat_Check(right) || PyLong_Check(right))) {
vec = (PyVectorObject*)left;
scalar = PyFloat_AsDouble(right);
}
// Check for scalar * Vector
else if ((PyFloat_Check(left) || PyLong_Check(left)) && PyObject_IsInstance(right, (PyObject*)type)) {
scalar = PyFloat_AsDouble(left);
vec = (PyVectorObject*)right;
}
else {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(vec->data.x * scalar, vec->data.y * scalar);
}
return (PyObject*)result;
}
PyObject* PyVector::divide(PyObject* left, PyObject* right)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
// Only support Vector / scalar
if (!PyObject_IsInstance(left, (PyObject*)type) || (!PyFloat_Check(right) && !PyLong_Check(right))) {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
PyVectorObject* vec = (PyVectorObject*)left;
double scalar = PyFloat_AsDouble(right);
if (scalar == 0.0) {
PyErr_SetString(PyExc_ZeroDivisionError, "Vector division by zero");
return NULL;
}
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(vec->data.x / scalar, vec->data.y / scalar);
}
return (PyObject*)result;
}
PyObject* PyVector::negative(PyObject* self)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
PyVectorObject* vec = (PyVectorObject*)self;
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = sf::Vector2f(-vec->data.x, -vec->data.y);
}
return (PyObject*)result;
}
PyObject* PyVector::absolute(PyObject* self)
{
PyVectorObject* vec = (PyVectorObject*)self;
return PyFloat_FromDouble(std::sqrt(vec->data.x * vec->data.x + vec->data.y * vec->data.y));
}
int PyVector::bool_check(PyObject* self)
{
PyVectorObject* vec = (PyVectorObject*)self;
return (vec->data.x != 0.0f || vec->data.y != 0.0f) ? 1 : 0;
}
PyObject* PyVector::richcompare(PyObject* left, PyObject* right, int op)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
if (!PyObject_IsInstance(left, (PyObject*)type) || !PyObject_IsInstance(right, (PyObject*)type)) {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
PyVectorObject* vec1 = (PyVectorObject*)left;
PyVectorObject* vec2 = (PyVectorObject*)right;
bool result = false;
switch (op) {
case Py_EQ:
result = (vec1->data.x == vec2->data.x && vec1->data.y == vec2->data.y);
break;
case Py_NE:
result = (vec1->data.x != vec2->data.x || vec1->data.y != vec2->data.y);
break;
default:
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
if (result)
Py_RETURN_TRUE;
else
Py_RETURN_FALSE;
}
// Vector-specific methods
PyObject* PyVector::magnitude(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
float mag = std::sqrt(self->data.x * self->data.x + self->data.y * self->data.y);
return PyFloat_FromDouble(mag);
}
PyObject* PyVector::magnitude_squared(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
float mag_sq = self->data.x * self->data.x + self->data.y * self->data.y;
return PyFloat_FromDouble(mag_sq);
}
PyObject* PyVector::normalize(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
float mag = std::sqrt(self->data.x * self->data.x + self->data.y * self->data.y);
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
if (mag > 0.0f) {
result->data = sf::Vector2f(self->data.x / mag, self->data.y / mag);
} else {
// Zero vector remains zero
result->data = sf::Vector2f(0.0f, 0.0f);
}
}
return (PyObject*)result;
}
PyObject* PyVector::dot(PyVectorObject* self, PyObject* other)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
if (!PyObject_IsInstance(other, (PyObject*)type)) {
PyErr_SetString(PyExc_TypeError, "Argument must be a Vector");
return NULL;
}
PyVectorObject* vec2 = (PyVectorObject*)other;
float dot_product = self->data.x * vec2->data.x + self->data.y * vec2->data.y;
return PyFloat_FromDouble(dot_product);
}
PyObject* PyVector::distance_to(PyVectorObject* self, PyObject* other)
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
if (!PyObject_IsInstance(other, (PyObject*)type)) {
PyErr_SetString(PyExc_TypeError, "Argument must be a Vector");
return NULL;
}
PyVectorObject* vec2 = (PyVectorObject*)other;
float dx = self->data.x - vec2->data.x;
float dy = self->data.y - vec2->data.y;
float distance = std::sqrt(dx * dx + dy * dy);
return PyFloat_FromDouble(distance);
}
PyObject* PyVector::angle(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
float angle_rad = std::atan2(self->data.y, self->data.x);
return PyFloat_FromDouble(angle_rad);
}
PyObject* PyVector::copy(PyVectorObject* self, PyObject* Py_UNUSED(ignored))
{
auto type = (PyTypeObject*)PyObject_GetAttrString(McRFPy_API::mcrf_module, "Vector");
auto result = (PyVectorObject*)type->tp_alloc(type, 0);
if (result) {
result->data = self->data;
}
return (PyObject*)result;
}

73
src/PyVector.h Normal file
View File

@ -0,0 +1,73 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include "McRFPy_API.h"
typedef struct {
PyObject_HEAD
sf::Vector2f data;
} PyVectorObject;
class PyVector
{
public:
sf::Vector2f data;
PyVector(sf::Vector2f);
PyVector();
PyObject* pyObject();
static sf::Vector2f fromPy(PyObject*);
static sf::Vector2f fromPy(PyVectorObject*);
static PyObject* repr(PyObject*);
static Py_hash_t hash(PyObject*);
static int init(PyVectorObject*, PyObject*, PyObject*);
static PyObject* pynew(PyTypeObject* type, PyObject* args=NULL, PyObject* kwds=NULL);
static PyObject* get_member(PyObject*, void*);
static int set_member(PyObject*, PyObject*, void*);
static PyVectorObject* from_arg(PyObject*);
// Arithmetic operations
static PyObject* add(PyObject*, PyObject*);
static PyObject* subtract(PyObject*, PyObject*);
static PyObject* multiply(PyObject*, PyObject*);
static PyObject* divide(PyObject*, PyObject*);
static PyObject* negative(PyObject*);
static PyObject* absolute(PyObject*);
static int bool_check(PyObject*);
// Comparison operations
static PyObject* richcompare(PyObject*, PyObject*, int);
// Vector operations
static PyObject* magnitude(PyVectorObject*, PyObject*);
static PyObject* magnitude_squared(PyVectorObject*, PyObject*);
static PyObject* normalize(PyVectorObject*, PyObject*);
static PyObject* dot(PyVectorObject*, PyObject*);
static PyObject* distance_to(PyVectorObject*, PyObject*);
static PyObject* angle(PyVectorObject*, PyObject*);
static PyObject* copy(PyVectorObject*, PyObject*);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
// Forward declare the PyNumberMethods structure
extern PyNumberMethods PyVector_as_number;
static PyTypeObject PyVectorType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Vector",
.tp_basicsize = sizeof(PyVectorObject),
.tp_itemsize = 0,
.tp_repr = PyVector::repr,
.tp_as_number = &PyVector_as_number,
.tp_hash = PyVector::hash,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("SFML Vector Object"),
.tp_richcompare = PyVector::richcompare,
.tp_methods = PyVector::methods,
.tp_getset = PyVector::getsetters,
.tp_init = (initproc)PyVector::init,
.tp_new = PyVector::pynew,
};
}

514
src/PyWindow.cpp Normal file
View File

@ -0,0 +1,514 @@
#include "PyWindow.h"
#include "GameEngine.h"
#include "McRFPy_API.h"
#include <SFML/Graphics.hpp>
#include <cstring>
// Singleton instance - static variable, not a class member
static PyWindowObject* window_instance = nullptr;
PyObject* PyWindow::get(PyObject* cls, PyObject* args)
{
// Create singleton instance if it doesn't exist
if (!window_instance) {
// Use the class object passed as first argument
PyTypeObject* type = (PyTypeObject*)cls;
if (!type->tp_alloc) {
PyErr_SetString(PyExc_RuntimeError, "Window type not properly initialized");
return NULL;
}
window_instance = (PyWindowObject*)type->tp_alloc(type, 0);
if (!window_instance) {
return NULL;
}
}
Py_INCREF(window_instance);
return (PyObject*)window_instance;
}
PyObject* PyWindow::repr(PyWindowObject* self)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
return PyUnicode_FromString("<Window [no game engine]>");
}
if (game->isHeadless()) {
return PyUnicode_FromString("<Window [headless mode]>");
}
auto& window = game->getWindow();
auto size = window.getSize();
return PyUnicode_FromFormat("<Window %dx%d>", size.x, size.y);
}
// Property getters and setters
PyObject* PyWindow::get_resolution(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
if (game->isHeadless()) {
// Return headless renderer size
return Py_BuildValue("(ii)", 1024, 768); // Default headless size
}
auto& window = game->getWindow();
auto size = window.getSize();
return Py_BuildValue("(ii)", size.x, size.y);
}
int PyWindow::set_resolution(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
PyErr_SetString(PyExc_RuntimeError, "Cannot change resolution in headless mode");
return -1;
}
int width, height;
if (!PyArg_ParseTuple(value, "ii", &width, &height)) {
PyErr_SetString(PyExc_TypeError, "Resolution must be a tuple of two integers (width, height)");
return -1;
}
if (width <= 0 || height <= 0) {
PyErr_SetString(PyExc_ValueError, "Resolution dimensions must be positive");
return -1;
}
auto& window = game->getWindow();
// Get current window settings
auto style = sf::Style::Titlebar | sf::Style::Close;
if (window.getSize() == sf::Vector2u(sf::VideoMode::getDesktopMode().width,
sf::VideoMode::getDesktopMode().height)) {
style = sf::Style::Fullscreen;
}
// Recreate window with new size
window.create(sf::VideoMode(width, height), game->getWindowTitle(), style);
// Restore vsync and framerate settings
// Note: We'll need to store these settings in GameEngine
window.setFramerateLimit(60); // Default for now
return 0;
}
PyObject* PyWindow::get_fullscreen(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
if (game->isHeadless()) {
Py_RETURN_FALSE;
}
auto& window = game->getWindow();
auto size = window.getSize();
auto desktop = sf::VideoMode::getDesktopMode();
// Check if window size matches desktop size (rough fullscreen check)
bool fullscreen = (size.x == desktop.width && size.y == desktop.height);
return PyBool_FromLong(fullscreen);
}
int PyWindow::set_fullscreen(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
PyErr_SetString(PyExc_RuntimeError, "Cannot change fullscreen in headless mode");
return -1;
}
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "Fullscreen must be a boolean");
return -1;
}
bool fullscreen = PyObject_IsTrue(value);
auto& window = game->getWindow();
if (fullscreen) {
// Switch to fullscreen
auto desktop = sf::VideoMode::getDesktopMode();
window.create(desktop, game->getWindowTitle(), sf::Style::Fullscreen);
} else {
// Switch to windowed mode
window.create(sf::VideoMode(1024, 768), game->getWindowTitle(),
sf::Style::Titlebar | sf::Style::Close);
}
// Restore settings
window.setFramerateLimit(60);
return 0;
}
PyObject* PyWindow::get_vsync(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
return PyBool_FromLong(game->getVSync());
}
int PyWindow::set_vsync(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
PyErr_SetString(PyExc_RuntimeError, "Cannot change vsync in headless mode");
return -1;
}
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "vsync must be a boolean");
return -1;
}
bool vsync = PyObject_IsTrue(value);
game->setVSync(vsync);
return 0;
}
PyObject* PyWindow::get_title(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
return PyUnicode_FromString(game->getWindowTitle().c_str());
}
int PyWindow::set_title(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
// Silently ignore in headless mode
return 0;
}
const char* title = PyUnicode_AsUTF8(value);
if (!title) {
PyErr_SetString(PyExc_TypeError, "Title must be a string");
return -1;
}
game->setWindowTitle(title);
return 0;
}
PyObject* PyWindow::get_visible(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
if (game->isHeadless()) {
Py_RETURN_FALSE;
}
auto& window = game->getWindow();
bool visible = window.isOpen(); // Best approximation
return PyBool_FromLong(visible);
}
int PyWindow::set_visible(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
// Silently ignore in headless mode
return 0;
}
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "visible must be a boolean");
return -1;
}
bool visible = PyObject_IsTrue(value);
auto& window = game->getWindow();
window.setVisible(visible);
return 0;
}
PyObject* PyWindow::get_framerate_limit(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
return PyLong_FromLong(game->getFramerateLimit());
}
int PyWindow::set_framerate_limit(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
if (game->isHeadless()) {
// Silently ignore in headless mode
return 0;
}
long limit = PyLong_AsLong(value);
if (PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "framerate_limit must be an integer");
return -1;
}
if (limit < 0) {
PyErr_SetString(PyExc_ValueError, "framerate_limit must be non-negative (0 for unlimited)");
return -1;
}
game->setFramerateLimit(limit);
return 0;
}
// Methods
PyObject* PyWindow::center(PyWindowObject* self, PyObject* args)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
if (game->isHeadless()) {
PyErr_SetString(PyExc_RuntimeError, "Cannot center window in headless mode");
return NULL;
}
auto& window = game->getWindow();
auto size = window.getSize();
auto desktop = sf::VideoMode::getDesktopMode();
int x = (desktop.width - size.x) / 2;
int y = (desktop.height - size.y) / 2;
window.setPosition(sf::Vector2i(x, y));
Py_RETURN_NONE;
}
PyObject* PyWindow::screenshot(PyWindowObject* self, PyObject* args, PyObject* kwds)
{
static const char* keywords[] = {"filename", NULL};
const char* filename = nullptr;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|s", const_cast<char**>(keywords), &filename)) {
return NULL;
}
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
// Get the render target pointer
sf::RenderTarget* target = game->getRenderTargetPtr();
if (!target) {
PyErr_SetString(PyExc_RuntimeError, "No render target available");
return NULL;
}
sf::Image screenshot;
// For RenderWindow
if (auto* window = dynamic_cast<sf::RenderWindow*>(target)) {
sf::Vector2u windowSize = window->getSize();
sf::Texture texture;
texture.create(windowSize.x, windowSize.y);
texture.update(*window);
screenshot = texture.copyToImage();
}
// For RenderTexture (headless mode)
else if (auto* renderTexture = dynamic_cast<sf::RenderTexture*>(target)) {
screenshot = renderTexture->getTexture().copyToImage();
}
else {
PyErr_SetString(PyExc_RuntimeError, "Unknown render target type");
return NULL;
}
// Save to file if filename provided
if (filename) {
if (!screenshot.saveToFile(filename)) {
PyErr_SetString(PyExc_IOError, "Failed to save screenshot");
return NULL;
}
Py_RETURN_NONE;
}
// Otherwise return as bytes
auto pixels = screenshot.getPixelsPtr();
auto size = screenshot.getSize();
return PyBytes_FromStringAndSize((const char*)pixels, size.x * size.y * 4);
}
PyObject* PyWindow::get_game_resolution(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
auto resolution = game->getGameResolution();
return Py_BuildValue("(ii)", resolution.x, resolution.y);
}
int PyWindow::set_game_resolution(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
int width, height;
if (!PyArg_ParseTuple(value, "ii", &width, &height)) {
PyErr_SetString(PyExc_TypeError, "game_resolution must be a tuple of two integers (width, height)");
return -1;
}
if (width <= 0 || height <= 0) {
PyErr_SetString(PyExc_ValueError, "Game resolution dimensions must be positive");
return -1;
}
game->setGameResolution(width, height);
return 0;
}
PyObject* PyWindow::get_scaling_mode(PyWindowObject* self, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return NULL;
}
return PyUnicode_FromString(game->getViewportModeString().c_str());
}
int PyWindow::set_scaling_mode(PyWindowObject* self, PyObject* value, void* closure)
{
GameEngine* game = McRFPy_API::game;
if (!game) {
PyErr_SetString(PyExc_RuntimeError, "No game engine initialized");
return -1;
}
const char* mode_str = PyUnicode_AsUTF8(value);
if (!mode_str) {
PyErr_SetString(PyExc_TypeError, "scaling_mode must be a string");
return -1;
}
GameEngine::ViewportMode mode;
if (strcmp(mode_str, "center") == 0) {
mode = GameEngine::ViewportMode::Center;
} else if (strcmp(mode_str, "stretch") == 0) {
mode = GameEngine::ViewportMode::Stretch;
} else if (strcmp(mode_str, "fit") == 0) {
mode = GameEngine::ViewportMode::Fit;
} else {
PyErr_SetString(PyExc_ValueError, "scaling_mode must be 'center', 'stretch', or 'fit'");
return -1;
}
game->setViewportMode(mode);
return 0;
}
// Property definitions
PyGetSetDef PyWindow::getsetters[] = {
{"resolution", (getter)get_resolution, (setter)set_resolution,
"Window resolution as (width, height) tuple", NULL},
{"fullscreen", (getter)get_fullscreen, (setter)set_fullscreen,
"Window fullscreen state", NULL},
{"vsync", (getter)get_vsync, (setter)set_vsync,
"Vertical sync enabled state", NULL},
{"title", (getter)get_title, (setter)set_title,
"Window title string", NULL},
{"visible", (getter)get_visible, (setter)set_visible,
"Window visibility state", NULL},
{"framerate_limit", (getter)get_framerate_limit, (setter)set_framerate_limit,
"Frame rate limit (0 for unlimited)", NULL},
{"game_resolution", (getter)get_game_resolution, (setter)set_game_resolution,
"Fixed game resolution as (width, height) tuple", NULL},
{"scaling_mode", (getter)get_scaling_mode, (setter)set_scaling_mode,
"Viewport scaling mode: 'center', 'stretch', or 'fit'", NULL},
{NULL}
};
// Method definitions
PyMethodDef PyWindow::methods[] = {
{"get", (PyCFunction)PyWindow::get, METH_VARARGS | METH_CLASS,
"Get the Window singleton instance"},
{"center", (PyCFunction)PyWindow::center, METH_NOARGS,
"Center the window on the screen"},
{"screenshot", (PyCFunction)PyWindow::screenshot, METH_VARARGS | METH_KEYWORDS,
"Take a screenshot. Pass filename to save to file, or get raw bytes if no filename."},
{NULL}
};

69
src/PyWindow.h Normal file
View File

@ -0,0 +1,69 @@
#pragma once
#include "Common.h"
#include "Python.h"
// Forward declarations
class GameEngine;
// Python object structure for Window singleton
typedef struct {
PyObject_HEAD
// No data - Window is a singleton that accesses GameEngine
} PyWindowObject;
// C++ interface for the Window singleton
class PyWindow
{
public:
// Static methods for Python type
static PyObject* get(PyObject* cls, PyObject* args);
static PyObject* repr(PyWindowObject* self);
// Getters and setters for window properties
static PyObject* get_resolution(PyWindowObject* self, void* closure);
static int set_resolution(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_fullscreen(PyWindowObject* self, void* closure);
static int set_fullscreen(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_vsync(PyWindowObject* self, void* closure);
static int set_vsync(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_title(PyWindowObject* self, void* closure);
static int set_title(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_visible(PyWindowObject* self, void* closure);
static int set_visible(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_framerate_limit(PyWindowObject* self, void* closure);
static int set_framerate_limit(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_game_resolution(PyWindowObject* self, void* closure);
static int set_game_resolution(PyWindowObject* self, PyObject* value, void* closure);
static PyObject* get_scaling_mode(PyWindowObject* self, void* closure);
static int set_scaling_mode(PyWindowObject* self, PyObject* value, void* closure);
// Methods
static PyObject* center(PyWindowObject* self, PyObject* args);
static PyObject* screenshot(PyWindowObject* self, PyObject* args, PyObject* kwds);
static PyGetSetDef getsetters[];
static PyMethodDef methods[];
};
namespace mcrfpydef {
static PyTypeObject PyWindowType = {
.ob_base = {.ob_base = {.ob_refcnt = 1, .ob_type = NULL}, .ob_size = 0},
.tp_name = "mcrfpy.Window",
.tp_basicsize = sizeof(PyWindowObject),
.tp_itemsize = 0,
.tp_dealloc = (destructor)[](PyObject* self) {
// Don't delete the singleton instance
Py_TYPE(self)->tp_free(self);
},
.tp_repr = (reprfunc)PyWindow::repr,
.tp_flags = Py_TPFLAGS_DEFAULT,
.tp_doc = PyDoc_STR("Window singleton for accessing and modifying the game window properties"),
.tp_methods = nullptr, // Set in McRFPy_API.cpp after definition
.tp_getset = nullptr, // Set in McRFPy_API.cpp after definition
.tp_new = [](PyTypeObject* type, PyObject* args, PyObject* kwds) -> PyObject* {
PyErr_SetString(PyExc_TypeError, "Cannot instantiate Window. Use Window.get() to access the singleton.");
return NULL;
}
};
}

85
src/PythonObjectCache.cpp Normal file
View File

@ -0,0 +1,85 @@
#include "PythonObjectCache.h"
#include <iostream>
PythonObjectCache* PythonObjectCache::instance = nullptr;
PythonObjectCache& PythonObjectCache::getInstance() {
if (!instance) {
instance = new PythonObjectCache();
}
return *instance;
}
PythonObjectCache::~PythonObjectCache() {
clear();
}
uint64_t PythonObjectCache::assignSerial() {
return next_serial.fetch_add(1, std::memory_order_relaxed);
}
void PythonObjectCache::registerObject(uint64_t serial, PyObject* weakref) {
if (!weakref || serial == 0) return;
std::lock_guard<std::mutex> lock(serial_mutex);
// Clean up any existing entry
auto it = cache.find(serial);
if (it != cache.end()) {
Py_DECREF(it->second);
}
// Store the new weak reference
Py_INCREF(weakref);
cache[serial] = weakref;
}
PyObject* PythonObjectCache::lookup(uint64_t serial) {
if (serial == 0) return nullptr;
// No mutex needed for read - GIL protects PyWeakref_GetObject
auto it = cache.find(serial);
if (it != cache.end()) {
PyObject* obj = PyWeakref_GetObject(it->second);
if (obj && obj != Py_None) {
Py_INCREF(obj);
return obj;
}
}
return nullptr;
}
void PythonObjectCache::remove(uint64_t serial) {
if (serial == 0) return;
std::lock_guard<std::mutex> lock(serial_mutex);
auto it = cache.find(serial);
if (it != cache.end()) {
Py_DECREF(it->second);
cache.erase(it);
}
}
void PythonObjectCache::cleanup() {
std::lock_guard<std::mutex> lock(serial_mutex);
auto it = cache.begin();
while (it != cache.end()) {
PyObject* obj = PyWeakref_GetObject(it->second);
if (!obj || obj == Py_None) {
Py_DECREF(it->second);
it = cache.erase(it);
} else {
++it;
}
}
}
void PythonObjectCache::clear() {
std::lock_guard<std::mutex> lock(serial_mutex);
for (auto& pair : cache) {
Py_DECREF(pair.second);
}
cache.clear();
}

40
src/PythonObjectCache.h Normal file
View File

@ -0,0 +1,40 @@
#pragma once
#include <Python.h>
#include <unordered_map>
#include <mutex>
#include <atomic>
#include <cstdint>
class PythonObjectCache {
private:
static PythonObjectCache* instance;
std::mutex serial_mutex;
std::atomic<uint64_t> next_serial{1};
std::unordered_map<uint64_t, PyObject*> cache;
PythonObjectCache() = default;
~PythonObjectCache();
public:
static PythonObjectCache& getInstance();
// Assign a new serial number
uint64_t assignSerial();
// Register a Python object with a serial number
void registerObject(uint64_t serial, PyObject* weakref);
// Lookup a Python object by serial number
// Returns new reference or nullptr
PyObject* lookup(uint64_t serial);
// Remove an entry from the cache
void remove(uint64_t serial);
// Clean up dead weak references
void cleanup();
// Clear entire cache (for module cleanup)
void clear();
};

View File

@ -30,16 +30,6 @@ std::string Scene::action(int code)
return actions[code];
}
bool Scene::registerActionInjected(int code, std::string name)
{
std::cout << "Inject registered action - default implementation\n";
return false;
}
bool Scene::unregisterActionInjected(int code, std::string name)
{
return false;
}
void Scene::key_register(PyObject* callable)
{

View File

@ -4,7 +4,6 @@
#define ACTION(X, Y) (name.compare(X) == 0 && type.compare(Y) == 0)
#define ACTIONONCE(X) ((name.compare(X) == 0 && type.compare("start") == 0 && !actionState[name]))
#define ACTIONAFTER(X) ((name.compare(X) == 0 && type.compare("end") == 0))
#define ACTIONPY ((name.size() > 3 && name.compare(name.size() - 3, 3, "_py") == 0))
#include "Common.h"
#include <list>
@ -31,14 +30,12 @@ public:
//Scene();
Scene(GameEngine*);
virtual void update() = 0;
virtual void sRender() = 0;
virtual void render() = 0;
virtual void doAction(std::string, std::string) = 0;
bool hasAction(std::string);
bool hasAction(int);
std::string action(int);
virtual bool registerActionInjected(int, std::string);
virtual bool unregisterActionInjected(int, std::string);
std::shared_ptr<std::vector<std::shared_ptr<UIDrawable>>> ui_elements;

85
src/SceneTransition.cpp Normal file
View File

@ -0,0 +1,85 @@
#include "SceneTransition.h"
void SceneTransition::start(TransitionType t, const std::string& from, const std::string& to, float dur) {
type = t;
fromScene = from;
toScene = to;
duration = dur;
elapsed = 0.0f;
// Initialize render textures if needed
if (!oldSceneTexture) {
oldSceneTexture = std::make_unique<sf::RenderTexture>();
oldSceneTexture->create(1024, 768);
}
if (!newSceneTexture) {
newSceneTexture = std::make_unique<sf::RenderTexture>();
newSceneTexture->create(1024, 768);
}
}
void SceneTransition::update(float dt) {
if (type == TransitionType::None) return;
elapsed += dt;
}
void SceneTransition::render(sf::RenderTarget& target) {
if (type == TransitionType::None) return;
float progress = getProgress();
float easedProgress = easeInOut(progress);
// Update sprites with current textures
oldSprite.setTexture(oldSceneTexture->getTexture());
newSprite.setTexture(newSceneTexture->getTexture());
switch (type) {
case TransitionType::Fade:
// Fade out old scene, fade in new scene
oldSprite.setColor(sf::Color(255, 255, 255, 255 * (1.0f - easedProgress)));
newSprite.setColor(sf::Color(255, 255, 255, 255 * easedProgress));
target.draw(oldSprite);
target.draw(newSprite);
break;
case TransitionType::SlideLeft:
// Old scene slides out to left, new scene slides in from right
oldSprite.setPosition(-1024 * easedProgress, 0);
newSprite.setPosition(1024 * (1.0f - easedProgress), 0);
target.draw(oldSprite);
target.draw(newSprite);
break;
case TransitionType::SlideRight:
// Old scene slides out to right, new scene slides in from left
oldSprite.setPosition(1024 * easedProgress, 0);
newSprite.setPosition(-1024 * (1.0f - easedProgress), 0);
target.draw(oldSprite);
target.draw(newSprite);
break;
case TransitionType::SlideUp:
// Old scene slides up, new scene slides in from bottom
oldSprite.setPosition(0, -768 * easedProgress);
newSprite.setPosition(0, 768 * (1.0f - easedProgress));
target.draw(oldSprite);
target.draw(newSprite);
break;
case TransitionType::SlideDown:
// Old scene slides down, new scene slides in from top
oldSprite.setPosition(0, 768 * easedProgress);
newSprite.setPosition(0, -768 * (1.0f - easedProgress));
target.draw(oldSprite);
target.draw(newSprite);
break;
default:
break;
}
}
float SceneTransition::easeInOut(float t) {
// Smooth ease-in-out curve
return t < 0.5f ? 2 * t * t : -1 + (4 - 2 * t) * t;
}

42
src/SceneTransition.h Normal file
View File

@ -0,0 +1,42 @@
#pragma once
#include "Common.h"
#include <SFML/Graphics.hpp>
#include <string>
#include <memory>
enum class TransitionType {
None,
Fade,
SlideLeft,
SlideRight,
SlideUp,
SlideDown
};
class SceneTransition {
public:
TransitionType type = TransitionType::None;
float duration = 0.0f;
float elapsed = 0.0f;
std::string fromScene;
std::string toScene;
// Render textures for transition
std::unique_ptr<sf::RenderTexture> oldSceneTexture;
std::unique_ptr<sf::RenderTexture> newSceneTexture;
// Sprites for rendering textures
sf::Sprite oldSprite;
sf::Sprite newSprite;
SceneTransition() = default;
void start(TransitionType t, const std::string& from, const std::string& to, float dur);
void update(float dt);
void render(sf::RenderTarget& target);
bool isComplete() const { return elapsed >= duration; }
float getProgress() const { return duration > 0 ? std::min(elapsed / duration, 1.0f) : 1.0f; }
// Easing function for smooth transitions
static float easeInOut(float t);
};

View File

@ -1,31 +1,140 @@
#include "Timer.h"
#include "PythonObjectCache.h"
#include "PyCallable.h"
Timer::Timer(PyObject* _target, int _interval, int now)
: target(_target), interval(_interval), last_ran(now)
Timer::Timer(PyObject* _target, int _interval, int now, bool _once)
: callback(std::make_shared<PyCallable>(_target)), interval(_interval), last_ran(now),
paused(false), pause_start_time(0), total_paused_time(0), once(_once)
{}
Timer::Timer()
: target(Py_None), interval(0), last_ran(0)
: callback(std::make_shared<PyCallable>(Py_None)), interval(0), last_ran(0),
paused(false), pause_start_time(0), total_paused_time(0), once(false)
{}
Timer::~Timer() {
if (serial_number != 0) {
PythonObjectCache::getInstance().remove(serial_number);
}
}
bool Timer::hasElapsed(int now) const
{
if (paused) return false;
return now >= last_ran + interval;
}
bool Timer::test(int now)
{
if (!target || target == Py_None) return false;
if (now > last_ran + interval)
if (!callback || callback->isNone()) return false;
if (hasElapsed(now))
{
last_ran = now;
PyObject* args = Py_BuildValue("(i)", now);
PyObject* retval = PyObject_Call(target, args, NULL);
// Get the PyTimer wrapper from cache to pass to callback
PyObject* timer_obj = nullptr;
if (serial_number != 0) {
timer_obj = PythonObjectCache::getInstance().lookup(serial_number);
}
// Build args: (timer, runtime) or just (runtime) if no wrapper found
PyObject* args;
if (timer_obj) {
args = Py_BuildValue("(Oi)", timer_obj, now);
} else {
// Fallback to old behavior if no wrapper found
args = Py_BuildValue("(i)", now);
}
PyObject* retval = callback->call(args, NULL);
Py_DECREF(args);
if (!retval)
{
std::cout << "timer has raised an exception. It's going to STDERR and being dropped:" << std::endl;
std::cout << "Timer callback has raised an exception. It's going to STDERR and being dropped:" << std::endl;
PyErr_Print();
PyErr_Clear();
} else if (retval != Py_None)
{
std::cout << "timer returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
std::cout << "Timer returned a non-None value. It's not an error, it's just not being saved or used." << std::endl;
Py_DECREF(retval);
}
// Handle one-shot timers
if (once) {
cancel();
}
return true;
}
return false;
}
void Timer::pause(int current_time)
{
if (!paused) {
paused = true;
pause_start_time = current_time;
}
}
void Timer::resume(int current_time)
{
if (paused) {
paused = false;
int paused_duration = current_time - pause_start_time;
total_paused_time += paused_duration;
// Adjust last_ran to account for the pause
last_ran += paused_duration;
}
}
void Timer::restart(int current_time)
{
last_ran = current_time;
paused = false;
pause_start_time = 0;
total_paused_time = 0;
}
void Timer::cancel()
{
// Cancel by setting callback to None
callback = std::make_shared<PyCallable>(Py_None);
}
bool Timer::isActive() const
{
return callback && !callback->isNone() && !paused;
}
int Timer::getRemaining(int current_time) const
{
if (paused) {
// When paused, calculate time remaining from when it was paused
int elapsed_when_paused = pause_start_time - last_ran;
return interval - elapsed_when_paused;
}
int elapsed = current_time - last_ran;
return interval - elapsed;
}
int Timer::getElapsed(int current_time) const
{
if (paused) {
return pause_start_time - last_ran;
}
return current_time - last_ran;
}
PyObject* Timer::getCallback()
{
if (!callback) return Py_None;
return callback->borrow();
}
void Timer::setCallback(PyObject* new_callback)
{
callback = std::make_shared<PyCallable>(new_callback);
}

View File

@ -1,15 +1,54 @@
#pragma once
#include "Common.h"
#include "Python.h"
#include <memory>
class PyCallable;
class GameEngine; // forward declare
class Timer
{
public:
PyObject* target;
private:
std::shared_ptr<PyCallable> callback;
int interval;
int last_ran;
// Pause/resume support
bool paused;
int pause_start_time;
int total_paused_time;
// One-shot timer support
bool once;
public:
uint64_t serial_number = 0; // For Python object cache
Timer(); // for map to build
Timer(PyObject*, int, int);
bool test(int);
Timer(PyObject* target, int interval, int now, bool once = false);
~Timer();
// Core timer functionality
bool test(int now);
bool hasElapsed(int now) const;
// Timer control methods
void pause(int current_time);
void resume(int current_time);
void restart(int current_time);
void cancel();
// Timer state queries
bool isPaused() const { return paused; }
bool isActive() const;
int getInterval() const { return interval; }
void setInterval(int new_interval) { interval = new_interval; }
int getRemaining(int current_time) const;
int getElapsed(int current_time) const;
bool isOnce() const { return once; }
void setOnce(bool value) { once = value; }
// Callback management
PyObject* getCallback();
void setCallback(PyObject* new_callback);
};

View File

@ -1,471 +0,0 @@
#include "UI.h"
#include "Resources.h"
#include "GameEngine.h"
/* //callability fields & methods
PyObject* click_callable;
virtual UIDrawable* click_at(sf::Vector2f point);
void click_register(PyObject*);
void click_unregister();
*/
UIDrawable::UIDrawable() { click_callable = NULL; }
UIDrawable* UIFrame::click_at(sf::Vector2f point)
{
for (auto e: *children)
{
auto p = e->click_at(point + box.getPosition());
if (p)
return p;
}
if (click_callable)
{
float x = box.getPosition().x, y = box.getPosition().y, w = box.getSize().x, h = box.getSize().y;
if (point.x > x && point.y > y && point.x < x+w && point.y < y+h) return this;
}
return NULL;
}
UIDrawable* UICaption::click_at(sf::Vector2f point)
{
if (click_callable)
{
if (text.getGlobalBounds().contains(point)) return this;
}
return NULL;
}
UIDrawable* UISprite::click_at(sf::Vector2f point)
{
if (click_callable)
{
if(sprite.getGlobalBounds().contains(point)) return this;
}
return NULL;
}
UIDrawable* UIGrid::click_at(sf::Vector2f point)
{
if (click_callable)
{
if(box.getGlobalBounds().contains(point)) return this;
}
return NULL;
}
void UIDrawable::click_register(PyObject* callable)
{
/*
if (click_callable)
{
// decrement reference before overwriting
Py_DECREF(click_callable);
}
click_callable = callable;
Py_INCREF(click_callable);
*/
click_callable = std::make_unique<PyClickCallable>(callable);
}
void UIDrawable::click_unregister()
{
/*
if (click_callable == NULL) return;
Py_DECREF(click_callable);
click_callable = NULL;
*/
click_callable.reset();
}
void UIDrawable::render()
{
//std::cout << "Rendering base UIDrawable\n";
render(sf::Vector2f());
}
UIFrame::UIFrame():
//x(0), y(0), w(0), h(0),
outline(0)
{
children = std::make_shared<std::vector<std::shared_ptr<UIDrawable>>>();
box.setPosition(0, 0);
box.setSize(sf::Vector2f(0, 0));
/*
pyOutlineColor = NULL;
pyFillColor = NULL;
_outlineColor = NULL;
_fillColor = NULL;
*/
}
UIFrame::UIFrame(float _x, float _y, float _w, float _h):
//x(_x), y(_y), w(_w), h(_h),
outline(0)
{
box.setPosition(_x, _y);
box.setSize(sf::Vector2f(_w, _h));
children = std::make_shared<std::vector<std::shared_ptr<UIDrawable>>>();
/*
pyOutlineColor = NULL;
pyFillColor = NULL;
_outlineColor = NULL;
_fillColor = NULL;
*/
}
UIFrame::~UIFrame()
{
children.reset();
/*
if (pyOutlineColor) Py_DECREF(pyOutlineColor);
else if (_outlineColor) delete _outlineColor;
if (pyFillColor) Py_DECREF(pyFillColor);
else if (_fillColor) delete _fillColor;
*/
}
/*
sf::Color& fillColor(); // getter
void fillColor(sf::Color c); // C++ setter
void fillColor(PyObject* pyColor); // Python setter
sf::Color& outlineColor(); // getter
void outlineColor(sf::Color c); // C++ setter
void outlineColor(PyObject* pyColor); // Python setter
*/
PyObjectsEnum UIFrame::derived_type()
{
return PyObjectsEnum::UIFRAME;
}
void UIFrame::render(sf::Vector2f offset)
{
//std::cout << "Rendering UIFrame w/ offset " << offset.x << ", " << offset.y << "\n";
//std::cout << "position = " << x << ", " << y << "\n";
box.move(offset);
Resources::game->getWindow().draw(box);
box.move(-offset);
//sf::RectangleShape box = sf::RectangleShape(sf::Vector2f(w,h));
//sf::Vector2f pos = sf::Vector2f(x, y);
//box.setPosition(offset + pos);
//if (_fillColor) { box.setFillColor(fillColor()); }
//if (_outlineColor) { box.setOutlineColor(outlineColor()); }
//box.setOutlineThickness(outline);
//Resources::game->getWindow().draw(box);
for (auto drawable : *children) {
drawable->render(offset + box.getPosition());
}
}
void UICaption::render(sf::Vector2f offset)
{
//std::cout << "Rendering Caption with offset\n";
text.move(offset);
Resources::game->getWindow().draw(text);
text.move(-offset);
}
UISprite::UISprite() {}
UISprite::UISprite(IndexTexture* _itex, int _sprite_index, float x = 0.0, float y = 0.0, float s = 1.0)
: itex(_itex), sprite_index(_sprite_index)
{
sprite.setTexture(_itex->texture);
sprite.setTextureRect(_itex->spriteCoordinates(_sprite_index));
sprite.setPosition(sf::Vector2f(x, y));
sprite.setScale(sf::Vector2f(s, s));
}
UISprite::UISprite(IndexTexture* _itex, int _sprite_index, sf::Vector2f pos, float s = 1.0)
: itex(_itex), sprite_index(_sprite_index)
{
sprite.setTexture(_itex->texture);
sprite.setTextureRect(_itex->spriteCoordinates(_sprite_index));
sprite.setPosition(pos);
sprite.setScale(sf::Vector2f(s, s));
}
//void UISprite::update()
//{
//auto& tex = Resources::game->textures[texture_index];
//sprite.setTexture(tex.texture);
//sprite.setScale(sf::Vector2f(scale, scale));
//sprite.setPosition(sf::Vector2f(x, y));
//std::cout << "Drawable position: " << x << ", " << y << " -> " << s.getPosition().x << ", " << s.getPosition().y << std::endl;
//sprite.setTextureRect(tex.spriteCoordinates(sprite_index));
//}
void UISprite::render(sf::Vector2f offset)
{
sprite.move(offset);
Resources::game->getWindow().draw(sprite);
sprite.move(-offset);
}
// 7DRL hack; needed to draw entities to UIGrid. TODO, apply this technique to all UIDrawables
void UISprite::render(sf::Vector2f offset, sf::RenderTexture& target)
{
sprite.move(offset);
target.draw(sprite);
sprite.move(-offset);
}
void UISprite::setPosition(float x, float y)
{
setPosition(sf::Vector2f(x, y));
}
void UISprite::setPosition(sf::Vector2f pos)
{
sprite.setPosition(pos);
}
void UISprite::setScale(float s)
{
sprite.setScale(sf::Vector2f(s, s));
}
PyObjectsEnum UICaption::derived_type()
{
return PyObjectsEnum::UICAPTION;
}
PyObjectsEnum UISprite::derived_type()
{
return PyObjectsEnum::UISPRITE;
}
// UIGrid support classes' methods
UIGridPoint::UIGridPoint()
:color(1.0f, 1.0f, 1.0f), color_overlay(0.0f, 0.0f, 0.0f), walkable(false), transparent(false),
tilesprite(-1), tile_overlay(-1), uisprite(-1)
{
}
UIEntity::UIEntity() {} // this will not work lol. TODO remove default constructor by finding the shared pointer inits that use it
UIEntity::UIEntity(UIGrid& grid)
: gridstate(grid.grid_x * grid.grid_y)
{
}
// UIGrid methods
UIGrid::UIGrid()
{
}
UIGrid::UIGrid(int gx, int gy, IndexTexture* _itex, float _x, float _y, float _w, float _h)
: grid_x(gx), grid_y(gy),
zoom(1.0f), center_x((gx/2) * _itex->grid_size), center_y((gy/2) * _itex->grid_size),
itex(_itex), points(gx * gy)
{
// set up blank list of entities
entities = std::make_shared<std::list<std::shared_ptr<UIEntity>>>();
box.setSize(sf::Vector2f(_w, _h));
box.setPosition(sf::Vector2f(_x, _y));
box.setFillColor(sf::Color(0,0,0,0));
renderTexture.create(_w, _h);
sprite.setTexture(_itex->texture);
output.setTextureRect(
sf::IntRect(0, 0,
box.getSize().x, box.getSize().y));
output.setPosition(box.getPosition());
// textures are upside-down inside renderTexture
output.setTexture(renderTexture.getTexture());
}
UIGrid::UIGrid(int gx, int gy, IndexTexture* _itex, sf::Vector2f _xy, sf::Vector2f _wh)
: grid_x(gx), grid_y(gy),
zoom(1.0f), center_x((gx/2) * _itex->grid_size), center_y((gy/2) * _itex->grid_size),
itex(_itex), points(gx * gy)
{
// set up blank list of entities
entities = std::make_shared<std::list<std::shared_ptr<UIEntity>>>();
box.setSize(_wh);
box.setPosition(_xy);
box.setFillColor(sf::Color(0,0,0,0));
//renderTexture.create(_wh.x, _wh.y);
// create renderTexture with maximum theoretical size; sprite can resize to show whatever amount needs to be rendered
renderTexture.create(1920, 1080); // TODO - renderTexture should be window size; above 1080p this will cause rendering errors
sprite.setTexture(_itex->texture);
output.setTextureRect(
sf::IntRect(0, 0,
box.getSize().x, box.getSize().y));
output.setPosition(box.getPosition());
// textures are upside-down inside renderTexture
output.setTexture(renderTexture.getTexture());
}
void UIGrid::update()
{
}
void UIGrid::setSprite(int ti)
{
int tx = ti % itex->grid_width, ty = ti / itex->grid_width;
sprite.setTextureRect(sf::IntRect(tx * itex->grid_size, ty * itex->grid_size, itex->grid_size, itex->grid_size));
}
void UIGrid::render(sf::Vector2f)
{
output.setPosition(box.getPosition()); // output sprite can move; update position when drawing
// output size can change; update size when drawing
output.setTextureRect(
sf::IntRect(0, 0,
box.getSize().x, box.getSize().y));
renderTexture.clear(sf::Color(8, 8, 8, 255)); // TODO - UIGrid needs a "background color" field
// sprites that are visible according to zoom, center_x, center_y, and box width
float center_x_sq = center_x / itex->grid_size;
float center_y_sq = center_y / itex->grid_size;
float width_sq = box.getSize().x / (itex->grid_size * zoom);
float height_sq = box.getSize().y / (itex->grid_size * zoom);
float left_edge = center_x_sq - (width_sq / 2.0);
float top_edge = center_y_sq - (height_sq / 2.0);
int left_spritepixels = center_x - (box.getSize().x / 2.0 / zoom);
int top_spritepixels = center_y - (box.getSize().y / 2.0 / zoom);
sprite.setScale(sf::Vector2f(zoom, zoom));
sf::RectangleShape r; // for colors and overlays
r.setSize(sf::Vector2f(itex->grid_size * zoom, itex->grid_size * zoom));
r.setOutlineThickness(0);
int x_limit = left_edge + width_sq + 2;
if (x_limit > grid_x) x_limit = grid_x;
int y_limit = top_edge + height_sq + 2;
if (y_limit > grid_y) y_limit = grid_y;
// base layer - bottom color, tile sprite ("ground")
for (int x = (left_edge - 1 >= 0 ? left_edge - 1 : 0);
x < x_limit; //x < view_width;
x+=1)
{
//for (float y = (top_edge >= 0 ? top_edge : 0);
for (int y = (top_edge - 1 >= 0 ? top_edge - 1 : 0);
y < y_limit; //y < view_height;
y+=1)
{
auto pixel_pos = sf::Vector2f(
(x*itex->grid_size - left_spritepixels) * zoom,
(y*itex->grid_size - top_spritepixels) * zoom );
auto gridpoint = at(std::floor(x), std::floor(y));
sprite.setPosition(pixel_pos);
r.setPosition(pixel_pos);
r.setFillColor(gridpoint.color);
renderTexture.draw(r);
// tilesprite
// if discovered but not visible, set opacity to 90%
// if not discovered... just don't draw it?
if (gridpoint.tilesprite != -1) {
setSprite(gridpoint.tilesprite);
renderTexture.draw(sprite);
}
}
}
// middle layer - entities
// disabling entity rendering until I can render their UISprite inside the rendertexture (not directly to window)
for (auto e : *entities) {
// TODO skip out-of-bounds entities (grid square not visible at all, check for partially on visible grid squares / floating point grid position)
//auto drawent = e->cGrid->indexsprite.drawable();
auto& drawent = e->sprite;
//drawent.setScale(zoom, zoom);
drawent.setScale(zoom);
auto pixel_pos = sf::Vector2f(
(e->position.x*itex->grid_size - left_spritepixels) * zoom,
(e->position.y*itex->grid_size - top_spritepixels) * zoom );
//drawent.setPosition(pixel_pos);
//renderTexture.draw(drawent);
drawent.render(pixel_pos, renderTexture);
}
// top layer - opacity for discovered / visible status (debug, basically)
/* // Disabled until I attach a "perspective"
for (int x = (left_edge - 1 >= 0 ? left_edge - 1 : 0);
x < x_limit; //x < view_width;
x+=1)
{
//for (float y = (top_edge >= 0 ? top_edge : 0);
for (int y = (top_edge - 1 >= 0 ? top_edge - 1 : 0);
y < y_limit; //y < view_height;
y+=1)
{
auto pixel_pos = sf::Vector2f(
(x*itex->grid_size - left_spritepixels) * zoom,
(y*itex->grid_size - top_spritepixels) * zoom );
auto gridpoint = at(std::floor(x), std::floor(y));
sprite.setPosition(pixel_pos);
r.setPosition(pixel_pos);
// visible & discovered layers for testing purposes
if (!gridpoint.discovered) {
r.setFillColor(sf::Color(16, 16, 20, 192)); // 255 opacity for actual blackout
renderTexture.draw(r);
} else if (!gridpoint.visible) {
r.setFillColor(sf::Color(32, 32, 40, 128));
renderTexture.draw(r);
}
// overlay
// uisprite
}
}
*/
// grid lines for testing & validation
/*
sf::Vertex line[] =
{
sf::Vertex(sf::Vector2f(0, 0), sf::Color::Red),
sf::Vertex(box.getSize(), sf::Color::Red),
};
renderTexture.draw(line, 2, sf::Lines);
sf::Vertex lineb[] =
{
sf::Vertex(sf::Vector2f(0, box.getSize().y), sf::Color::Blue),
sf::Vertex(sf::Vector2f(box.getSize().x, 0), sf::Color::Blue),
};
renderTexture.draw(lineb, 2, sf::Lines);
*/
// render to window
renderTexture.display();
Resources::game->getWindow().draw(output);
}
UIGridPoint& UIGrid::at(int x, int y)
{
return points[y * grid_x + x];
}
PyObjectsEnum UIGrid::derived_type()
{
return PyObjectsEnum::UIGRID;
}

2495
src/UI.h

File diff suppressed because it is too large Load Diff

139
src/UIBase.h Normal file
View File

@ -0,0 +1,139 @@
#pragma once
#include "Python.h"
#include <memory>
class UIEntity;
typedef struct {
PyObject_HEAD
std::shared_ptr<UIEntity> data;
PyObject* weakreflist; // Weak reference support
} PyUIEntityObject;
class UIFrame;
typedef struct {
PyObject_HEAD
std::shared_ptr<UIFrame> data;
PyObject* weakreflist; // Weak reference support
} PyUIFrameObject;
class UICaption;
typedef struct {
PyObject_HEAD
std::shared_ptr<UICaption> data;
PyObject* font;
PyObject* weakreflist; // Weak reference support
} PyUICaptionObject;
class UIGrid;
typedef struct {
PyObject_HEAD
std::shared_ptr<UIGrid> data;
PyObject* weakreflist; // Weak reference support
} PyUIGridObject;
class UISprite;
typedef struct {
PyObject_HEAD
std::shared_ptr<UISprite> data;
PyObject* weakreflist; // Weak reference support
} PyUISpriteObject;
// Common Python method implementations for UIDrawable-derived classes
// These template functions provide shared functionality for Python bindings
// get_bounds method implementation (#89)
template<typename T>
static PyObject* UIDrawable_get_bounds(T* self, PyObject* Py_UNUSED(args))
{
auto bounds = self->data->get_bounds();
return Py_BuildValue("(ffff)", bounds.left, bounds.top, bounds.width, bounds.height);
}
// move method implementation (#98)
template<typename T>
static PyObject* UIDrawable_move(T* self, PyObject* args)
{
float dx, dy;
if (!PyArg_ParseTuple(args, "ff", &dx, &dy)) {
return NULL;
}
self->data->move(dx, dy);
Py_RETURN_NONE;
}
// resize method implementation (#98)
template<typename T>
static PyObject* UIDrawable_resize(T* self, PyObject* args)
{
float w, h;
if (!PyArg_ParseTuple(args, "ff", &w, &h)) {
return NULL;
}
self->data->resize(w, h);
Py_RETURN_NONE;
}
// Macro to add common UIDrawable methods to a method array
#define UIDRAWABLE_METHODS \
{"get_bounds", (PyCFunction)UIDrawable_get_bounds<PyObjectType>, METH_NOARGS, \
"Get bounding box as (x, y, width, height)"}, \
{"move", (PyCFunction)UIDrawable_move<PyObjectType>, METH_VARARGS, \
"Move by relative offset (dx, dy)"}, \
{"resize", (PyCFunction)UIDrawable_resize<PyObjectType>, METH_VARARGS, \
"Resize to new dimensions (width, height)"}
// Property getters/setters for visible and opacity
template<typename T>
static PyObject* UIDrawable_get_visible(T* self, void* closure)
{
return PyBool_FromLong(self->data->visible);
}
template<typename T>
static int UIDrawable_set_visible(T* self, PyObject* value, void* closure)
{
if (!PyBool_Check(value)) {
PyErr_SetString(PyExc_TypeError, "visible must be a boolean");
return -1;
}
self->data->visible = PyObject_IsTrue(value);
return 0;
}
template<typename T>
static PyObject* UIDrawable_get_opacity(T* self, void* closure)
{
return PyFloat_FromDouble(self->data->opacity);
}
template<typename T>
static int UIDrawable_set_opacity(T* self, PyObject* value, void* closure)
{
float opacity;
if (PyFloat_Check(value)) {
opacity = PyFloat_AsDouble(value);
} else if (PyLong_Check(value)) {
opacity = PyLong_AsDouble(value);
} else {
PyErr_SetString(PyExc_TypeError, "opacity must be a number");
return -1;
}
// Clamp to valid range
if (opacity < 0.0f) opacity = 0.0f;
if (opacity > 1.0f) opacity = 1.0f;
self->data->opacity = opacity;
return 0;
}
// Macro to add common UIDrawable properties to a getsetters array
#define UIDRAWABLE_GETSETTERS \
{"visible", (getter)UIDrawable_get_visible<PyObjectType>, (setter)UIDrawable_set_visible<PyObjectType>, \
"Visibility flag", NULL}, \
{"opacity", (getter)UIDrawable_get_opacity<PyObjectType>, (setter)UIDrawable_set_opacity<PyObjectType>, \
"Opacity (0.0 = transparent, 1.0 = opaque)", NULL}
// UIEntity specializations are defined in UIEntity.cpp after UIEntity class is complete

Some files were not shown because too many files have changed in this diff Show More